Home | History | Annotate | Download | only in Analysis
      1 //===-- CFG.cpp - BasicBlock analysis --------------------------------------==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This family of functions performs analyses on basic blocks, and instructions
     11 // contained within basic blocks.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "llvm/Analysis/CFG.h"
     16 #include "llvm/ADT/SmallSet.h"
     17 #include "llvm/Analysis/LoopInfo.h"
     18 #include "llvm/IR/Dominators.h"
     19 
     20 using namespace llvm;
     21 
     22 /// FindFunctionBackedges - Analyze the specified function to find all of the
     23 /// loop backedges in the function and return them.  This is a relatively cheap
     24 /// (compared to computing dominators and loop info) analysis.
     25 ///
     26 /// The output is added to Result, as pairs of <from,to> edge info.
     27 void llvm::FindFunctionBackedges(const Function &F,
     28      SmallVectorImpl<std::pair<const BasicBlock*,const BasicBlock*> > &Result) {
     29   const BasicBlock *BB = &F.getEntryBlock();
     30   if (succ_empty(BB))
     31     return;
     32 
     33   SmallPtrSet<const BasicBlock*, 8> Visited;
     34   SmallVector<std::pair<const BasicBlock*, succ_const_iterator>, 8> VisitStack;
     35   SmallPtrSet<const BasicBlock*, 8> InStack;
     36 
     37   Visited.insert(BB);
     38   VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
     39   InStack.insert(BB);
     40   do {
     41     std::pair<const BasicBlock*, succ_const_iterator> &Top = VisitStack.back();
     42     const BasicBlock *ParentBB = Top.first;
     43     succ_const_iterator &I = Top.second;
     44 
     45     bool FoundNew = false;
     46     while (I != succ_end(ParentBB)) {
     47       BB = *I++;
     48       if (Visited.insert(BB).second) {
     49         FoundNew = true;
     50         break;
     51       }
     52       // Successor is in VisitStack, it's a back edge.
     53       if (InStack.count(BB))
     54         Result.push_back(std::make_pair(ParentBB, BB));
     55     }
     56 
     57     if (FoundNew) {
     58       // Go down one level if there is a unvisited successor.
     59       InStack.insert(BB);
     60       VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
     61     } else {
     62       // Go up one level.
     63       InStack.erase(VisitStack.pop_back_val().first);
     64     }
     65   } while (!VisitStack.empty());
     66 }
     67 
     68 /// GetSuccessorNumber - Search for the specified successor of basic block BB
     69 /// and return its position in the terminator instruction's list of
     70 /// successors.  It is an error to call this with a block that is not a
     71 /// successor.
     72 unsigned llvm::GetSuccessorNumber(const BasicBlock *BB,
     73     const BasicBlock *Succ) {
     74   const TerminatorInst *Term = BB->getTerminator();
     75 #ifndef NDEBUG
     76   unsigned e = Term->getNumSuccessors();
     77 #endif
     78   for (unsigned i = 0; ; ++i) {
     79     assert(i != e && "Didn't find edge?");
     80     if (Term->getSuccessor(i) == Succ)
     81       return i;
     82   }
     83 }
     84 
     85 /// isCriticalEdge - Return true if the specified edge is a critical edge.
     86 /// Critical edges are edges from a block with multiple successors to a block
     87 /// with multiple predecessors.
     88 bool llvm::isCriticalEdge(const TerminatorInst *TI, unsigned SuccNum,
     89                           bool AllowIdenticalEdges) {
     90   assert(SuccNum < TI->getNumSuccessors() && "Illegal edge specification!");
     91   if (TI->getNumSuccessors() == 1) return false;
     92 
     93   const BasicBlock *Dest = TI->getSuccessor(SuccNum);
     94   const_pred_iterator I = pred_begin(Dest), E = pred_end(Dest);
     95 
     96   // If there is more than one predecessor, this is a critical edge...
     97   assert(I != E && "No preds, but we have an edge to the block?");
     98   const BasicBlock *FirstPred = *I;
     99   ++I;        // Skip one edge due to the incoming arc from TI.
    100   if (!AllowIdenticalEdges)
    101     return I != E;
    102 
    103   // If AllowIdenticalEdges is true, then we allow this edge to be considered
    104   // non-critical iff all preds come from TI's block.
    105   for (; I != E; ++I)
    106     if (*I != FirstPred)
    107       return true;
    108   return false;
    109 }
    110 
    111 // LoopInfo contains a mapping from basic block to the innermost loop. Find
    112 // the outermost loop in the loop nest that contains BB.
    113 static const Loop *getOutermostLoop(const LoopInfo *LI, const BasicBlock *BB) {
    114   const Loop *L = LI->getLoopFor(BB);
    115   if (L) {
    116     while (const Loop *Parent = L->getParentLoop())
    117       L = Parent;
    118   }
    119   return L;
    120 }
    121 
    122 // True if there is a loop which contains both BB1 and BB2.
    123 static bool loopContainsBoth(const LoopInfo *LI,
    124                              const BasicBlock *BB1, const BasicBlock *BB2) {
    125   const Loop *L1 = getOutermostLoop(LI, BB1);
    126   const Loop *L2 = getOutermostLoop(LI, BB2);
    127   return L1 != nullptr && L1 == L2;
    128 }
    129 
    130 bool llvm::isPotentiallyReachableFromMany(
    131     SmallVectorImpl<BasicBlock *> &Worklist, BasicBlock *StopBB,
    132     const DominatorTree *DT, const LoopInfo *LI) {
    133   // When the stop block is unreachable, it's dominated from everywhere,
    134   // regardless of whether there's a path between the two blocks.
    135   if (DT && !DT->isReachableFromEntry(StopBB))
    136     DT = nullptr;
    137 
    138   // Limit the number of blocks we visit. The goal is to avoid run-away compile
    139   // times on large CFGs without hampering sensible code. Arbitrarily chosen.
    140   unsigned Limit = 32;
    141   SmallPtrSet<const BasicBlock*, 32> Visited;
    142   do {
    143     BasicBlock *BB = Worklist.pop_back_val();
    144     if (!Visited.insert(BB).second)
    145       continue;
    146     if (BB == StopBB)
    147       return true;
    148     if (DT && DT->dominates(BB, StopBB))
    149       return true;
    150     if (LI && loopContainsBoth(LI, BB, StopBB))
    151       return true;
    152 
    153     if (!--Limit) {
    154       // We haven't been able to prove it one way or the other. Conservatively
    155       // answer true -- that there is potentially a path.
    156       return true;
    157     }
    158 
    159     if (const Loop *Outer = LI ? getOutermostLoop(LI, BB) : nullptr) {
    160       // All blocks in a single loop are reachable from all other blocks. From
    161       // any of these blocks, we can skip directly to the exits of the loop,
    162       // ignoring any other blocks inside the loop body.
    163       Outer->getExitBlocks(Worklist);
    164     } else {
    165       Worklist.append(succ_begin(BB), succ_end(BB));
    166     }
    167   } while (!Worklist.empty());
    168 
    169   // We have exhausted all possible paths and are certain that 'To' can not be
    170   // reached from 'From'.
    171   return false;
    172 }
    173 
    174 bool llvm::isPotentiallyReachable(const BasicBlock *A, const BasicBlock *B,
    175                                   const DominatorTree *DT, const LoopInfo *LI) {
    176   assert(A->getParent() == B->getParent() &&
    177          "This analysis is function-local!");
    178 
    179   SmallVector<BasicBlock*, 32> Worklist;
    180   Worklist.push_back(const_cast<BasicBlock*>(A));
    181 
    182   return isPotentiallyReachableFromMany(Worklist, const_cast<BasicBlock *>(B),
    183                                         DT, LI);
    184 }
    185 
    186 bool llvm::isPotentiallyReachable(const Instruction *A, const Instruction *B,
    187                                   const DominatorTree *DT, const LoopInfo *LI) {
    188   assert(A->getParent()->getParent() == B->getParent()->getParent() &&
    189          "This analysis is function-local!");
    190 
    191   SmallVector<BasicBlock*, 32> Worklist;
    192 
    193   if (A->getParent() == B->getParent()) {
    194     // The same block case is special because it's the only time we're looking
    195     // within a single block to see which instruction comes first. Once we
    196     // start looking at multiple blocks, the first instruction of the block is
    197     // reachable, so we only need to determine reachability between whole
    198     // blocks.
    199     BasicBlock *BB = const_cast<BasicBlock *>(A->getParent());
    200 
    201     // If the block is in a loop then we can reach any instruction in the block
    202     // from any other instruction in the block by going around a backedge.
    203     if (LI && LI->getLoopFor(BB) != nullptr)
    204       return true;
    205 
    206     // Linear scan, start at 'A', see whether we hit 'B' or the end first.
    207     for (BasicBlock::const_iterator I = A->getIterator(), E = BB->end(); I != E;
    208          ++I) {
    209       if (&*I == B)
    210         return true;
    211     }
    212 
    213     // Can't be in a loop if it's the entry block -- the entry block may not
    214     // have predecessors.
    215     if (BB == &BB->getParent()->getEntryBlock())
    216       return false;
    217 
    218     // Otherwise, continue doing the normal per-BB CFG walk.
    219     Worklist.append(succ_begin(BB), succ_end(BB));
    220 
    221     if (Worklist.empty()) {
    222       // We've proven that there's no path!
    223       return false;
    224     }
    225   } else {
    226     Worklist.push_back(const_cast<BasicBlock*>(A->getParent()));
    227   }
    228 
    229   if (A->getParent() == &A->getParent()->getParent()->getEntryBlock())
    230     return true;
    231   if (B->getParent() == &A->getParent()->getParent()->getEntryBlock())
    232     return false;
    233 
    234   return isPotentiallyReachableFromMany(
    235       Worklist, const_cast<BasicBlock *>(B->getParent()), DT, LI);
    236 }
    237