Home | History | Annotate | Download | only in Analysis
      1 //===- CostModel.cpp ------ Cost Model Analysis ---------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the cost model analysis. It provides a very basic cost
     11 // estimation for LLVM-IR. This analysis uses the services of the codegen
     12 // to approximate the cost of any IR instruction when lowered to machine
     13 // instructions. The cost results are unit-less and the cost number represents
     14 // the throughput of the machine assuming that all loads hit the cache, all
     15 // branches are predicted, etc. The cost numbers can be added in order to
     16 // compare two or more transformation alternatives.
     17 //
     18 //===----------------------------------------------------------------------===//
     19 
     20 #include "llvm/ADT/STLExtras.h"
     21 #include "llvm/Analysis/Passes.h"
     22 #include "llvm/Analysis/TargetTransformInfo.h"
     23 #include "llvm/IR/Function.h"
     24 #include "llvm/IR/Instructions.h"
     25 #include "llvm/IR/IntrinsicInst.h"
     26 #include "llvm/IR/Value.h"
     27 #include "llvm/Pass.h"
     28 #include "llvm/Support/CommandLine.h"
     29 #include "llvm/Support/Debug.h"
     30 #include "llvm/Support/raw_ostream.h"
     31 using namespace llvm;
     32 
     33 #define CM_NAME "cost-model"
     34 #define DEBUG_TYPE CM_NAME
     35 
     36 static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false),
     37                                      cl::Hidden,
     38                                      cl::desc("Recognize reduction patterns."));
     39 
     40 namespace {
     41   class CostModelAnalysis : public FunctionPass {
     42 
     43   public:
     44     static char ID; // Class identification, replacement for typeinfo
     45     CostModelAnalysis() : FunctionPass(ID), F(nullptr), TTI(nullptr) {
     46       initializeCostModelAnalysisPass(
     47         *PassRegistry::getPassRegistry());
     48     }
     49 
     50     /// Returns the expected cost of the instruction.
     51     /// Returns -1 if the cost is unknown.
     52     /// Note, this method does not cache the cost calculation and it
     53     /// can be expensive in some cases.
     54     unsigned getInstructionCost(const Instruction *I) const;
     55 
     56   private:
     57     void getAnalysisUsage(AnalysisUsage &AU) const override;
     58     bool runOnFunction(Function &F) override;
     59     void print(raw_ostream &OS, const Module*) const override;
     60 
     61     /// The function that we analyze.
     62     Function *F;
     63     /// Target information.
     64     const TargetTransformInfo *TTI;
     65   };
     66 }  // End of anonymous namespace
     67 
     68 // Register this pass.
     69 char CostModelAnalysis::ID = 0;
     70 static const char cm_name[] = "Cost Model Analysis";
     71 INITIALIZE_PASS_BEGIN(CostModelAnalysis, CM_NAME, cm_name, false, true)
     72 INITIALIZE_PASS_END  (CostModelAnalysis, CM_NAME, cm_name, false, true)
     73 
     74 FunctionPass *llvm::createCostModelAnalysisPass() {
     75   return new CostModelAnalysis();
     76 }
     77 
     78 void
     79 CostModelAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
     80   AU.setPreservesAll();
     81 }
     82 
     83 bool
     84 CostModelAnalysis::runOnFunction(Function &F) {
     85  this->F = &F;
     86  auto *TTIWP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
     87  TTI = TTIWP ? &TTIWP->getTTI(F) : nullptr;
     88 
     89  return false;
     90 }
     91 
     92 static bool isReverseVectorMask(SmallVectorImpl<int> &Mask) {
     93   for (unsigned i = 0, MaskSize = Mask.size(); i < MaskSize; ++i)
     94     if (Mask[i] > 0 && Mask[i] != (int)(MaskSize - 1 - i))
     95       return false;
     96   return true;
     97 }
     98 
     99 static bool isAlternateVectorMask(SmallVectorImpl<int> &Mask) {
    100   bool isAlternate = true;
    101   unsigned MaskSize = Mask.size();
    102 
    103   // Example: shufflevector A, B, <0,5,2,7>
    104   for (unsigned i = 0; i < MaskSize && isAlternate; ++i) {
    105     if (Mask[i] < 0)
    106       continue;
    107     isAlternate = Mask[i] == (int)((i & 1) ? MaskSize + i : i);
    108   }
    109 
    110   if (isAlternate)
    111     return true;
    112 
    113   isAlternate = true;
    114   // Example: shufflevector A, B, <4,1,6,3>
    115   for (unsigned i = 0; i < MaskSize && isAlternate; ++i) {
    116     if (Mask[i] < 0)
    117       continue;
    118     isAlternate = Mask[i] == (int)((i & 1) ? i : MaskSize + i);
    119   }
    120 
    121   return isAlternate;
    122 }
    123 
    124 static TargetTransformInfo::OperandValueKind getOperandInfo(Value *V) {
    125   TargetTransformInfo::OperandValueKind OpInfo =
    126     TargetTransformInfo::OK_AnyValue;
    127 
    128   // Check for a splat of a constant or for a non uniform vector of constants.
    129   if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) {
    130     OpInfo = TargetTransformInfo::OK_NonUniformConstantValue;
    131     if (cast<Constant>(V)->getSplatValue() != nullptr)
    132       OpInfo = TargetTransformInfo::OK_UniformConstantValue;
    133   }
    134 
    135   return OpInfo;
    136 }
    137 
    138 static bool matchPairwiseShuffleMask(ShuffleVectorInst *SI, bool IsLeft,
    139                                      unsigned Level) {
    140   // We don't need a shuffle if we just want to have element 0 in position 0 of
    141   // the vector.
    142   if (!SI && Level == 0 && IsLeft)
    143     return true;
    144   else if (!SI)
    145     return false;
    146 
    147   SmallVector<int, 32> Mask(SI->getType()->getVectorNumElements(), -1);
    148 
    149   // Build a mask of 0, 2, ... (left) or 1, 3, ... (right) depending on whether
    150   // we look at the left or right side.
    151   for (unsigned i = 0, e = (1 << Level), val = !IsLeft; i != e; ++i, val += 2)
    152     Mask[i] = val;
    153 
    154   SmallVector<int, 16> ActualMask = SI->getShuffleMask();
    155   return Mask == ActualMask;
    156 }
    157 
    158 static bool matchPairwiseReductionAtLevel(const BinaryOperator *BinOp,
    159                                           unsigned Level, unsigned NumLevels) {
    160   // Match one level of pairwise operations.
    161   // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
    162   //       <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
    163   // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
    164   //       <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
    165   // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
    166   if (BinOp == nullptr)
    167     return false;
    168 
    169   assert(BinOp->getType()->isVectorTy() && "Expecting a vector type");
    170 
    171   unsigned Opcode = BinOp->getOpcode();
    172   Value *L = BinOp->getOperand(0);
    173   Value *R = BinOp->getOperand(1);
    174 
    175   ShuffleVectorInst *LS = dyn_cast<ShuffleVectorInst>(L);
    176   if (!LS && Level)
    177     return false;
    178   ShuffleVectorInst *RS = dyn_cast<ShuffleVectorInst>(R);
    179   if (!RS && Level)
    180     return false;
    181 
    182   // On level 0 we can omit one shufflevector instruction.
    183   if (!Level && !RS && !LS)
    184     return false;
    185 
    186   // Shuffle inputs must match.
    187   Value *NextLevelOpL = LS ? LS->getOperand(0) : nullptr;
    188   Value *NextLevelOpR = RS ? RS->getOperand(0) : nullptr;
    189   Value *NextLevelOp = nullptr;
    190   if (NextLevelOpR && NextLevelOpL) {
    191     // If we have two shuffles their operands must match.
    192     if (NextLevelOpL != NextLevelOpR)
    193       return false;
    194 
    195     NextLevelOp = NextLevelOpL;
    196   } else if (Level == 0 && (NextLevelOpR || NextLevelOpL)) {
    197     // On the first level we can omit the shufflevector <0, undef,...>. So the
    198     // input to the other shufflevector <1, undef> must match with one of the
    199     // inputs to the current binary operation.
    200     // Example:
    201     //  %NextLevelOpL = shufflevector %R, <1, undef ...>
    202     //  %BinOp        = fadd          %NextLevelOpL, %R
    203     if (NextLevelOpL && NextLevelOpL != R)
    204       return false;
    205     else if (NextLevelOpR && NextLevelOpR != L)
    206       return false;
    207 
    208     NextLevelOp = NextLevelOpL ? R : L;
    209   } else
    210     return false;
    211 
    212   // Check that the next levels binary operation exists and matches with the
    213   // current one.
    214   BinaryOperator *NextLevelBinOp = nullptr;
    215   if (Level + 1 != NumLevels) {
    216     if (!(NextLevelBinOp = dyn_cast<BinaryOperator>(NextLevelOp)))
    217       return false;
    218     else if (NextLevelBinOp->getOpcode() != Opcode)
    219       return false;
    220   }
    221 
    222   // Shuffle mask for pairwise operation must match.
    223   if (matchPairwiseShuffleMask(LS, true, Level)) {
    224     if (!matchPairwiseShuffleMask(RS, false, Level))
    225       return false;
    226   } else if (matchPairwiseShuffleMask(RS, true, Level)) {
    227     if (!matchPairwiseShuffleMask(LS, false, Level))
    228       return false;
    229   } else
    230     return false;
    231 
    232   if (++Level == NumLevels)
    233     return true;
    234 
    235   // Match next level.
    236   return matchPairwiseReductionAtLevel(NextLevelBinOp, Level, NumLevels);
    237 }
    238 
    239 static bool matchPairwiseReduction(const ExtractElementInst *ReduxRoot,
    240                                    unsigned &Opcode, Type *&Ty) {
    241   if (!EnableReduxCost)
    242     return false;
    243 
    244   // Need to extract the first element.
    245   ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1));
    246   unsigned Idx = ~0u;
    247   if (CI)
    248     Idx = CI->getZExtValue();
    249   if (Idx != 0)
    250     return false;
    251 
    252   BinaryOperator *RdxStart = dyn_cast<BinaryOperator>(ReduxRoot->getOperand(0));
    253   if (!RdxStart)
    254     return false;
    255 
    256   Type *VecTy = ReduxRoot->getOperand(0)->getType();
    257   unsigned NumVecElems = VecTy->getVectorNumElements();
    258   if (!isPowerOf2_32(NumVecElems))
    259     return false;
    260 
    261   // We look for a sequence of shuffle,shuffle,add triples like the following
    262   // that builds a pairwise reduction tree.
    263   //
    264   //  (X0, X1, X2, X3)
    265   //   (X0 + X1, X2 + X3, undef, undef)
    266   //    ((X0 + X1) + (X2 + X3), undef, undef, undef)
    267   //
    268   // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
    269   //       <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
    270   // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
    271   //       <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
    272   // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
    273   // %rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
    274   //       <4 x i32> <i32 0, i32 undef, i32 undef, i32 undef>
    275   // %rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
    276   //       <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
    277   // %bin.rdx8 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1
    278   // %r = extractelement <4 x float> %bin.rdx8, i32 0
    279   if (!matchPairwiseReductionAtLevel(RdxStart, 0,  Log2_32(NumVecElems)))
    280     return false;
    281 
    282   Opcode = RdxStart->getOpcode();
    283   Ty = VecTy;
    284 
    285   return true;
    286 }
    287 
    288 static std::pair<Value *, ShuffleVectorInst *>
    289 getShuffleAndOtherOprd(BinaryOperator *B) {
    290 
    291   Value *L = B->getOperand(0);
    292   Value *R = B->getOperand(1);
    293   ShuffleVectorInst *S = nullptr;
    294 
    295   if ((S = dyn_cast<ShuffleVectorInst>(L)))
    296     return std::make_pair(R, S);
    297 
    298   S = dyn_cast<ShuffleVectorInst>(R);
    299   return std::make_pair(L, S);
    300 }
    301 
    302 static bool matchVectorSplittingReduction(const ExtractElementInst *ReduxRoot,
    303                                           unsigned &Opcode, Type *&Ty) {
    304   if (!EnableReduxCost)
    305     return false;
    306 
    307   // Need to extract the first element.
    308   ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1));
    309   unsigned Idx = ~0u;
    310   if (CI)
    311     Idx = CI->getZExtValue();
    312   if (Idx != 0)
    313     return false;
    314 
    315   BinaryOperator *RdxStart = dyn_cast<BinaryOperator>(ReduxRoot->getOperand(0));
    316   if (!RdxStart)
    317     return false;
    318   unsigned RdxOpcode = RdxStart->getOpcode();
    319 
    320   Type *VecTy = ReduxRoot->getOperand(0)->getType();
    321   unsigned NumVecElems = VecTy->getVectorNumElements();
    322   if (!isPowerOf2_32(NumVecElems))
    323     return false;
    324 
    325   // We look for a sequence of shuffles and adds like the following matching one
    326   // fadd, shuffle vector pair at a time.
    327   //
    328   // %rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef,
    329   //                           <4 x i32> <i32 2, i32 3, i32 undef, i32 undef>
    330   // %bin.rdx = fadd <4 x float> %rdx, %rdx.shuf
    331   // %rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef,
    332   //                          <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
    333   // %bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7
    334   // %r = extractelement <4 x float> %bin.rdx8, i32 0
    335 
    336   unsigned MaskStart = 1;
    337   Value *RdxOp = RdxStart;
    338   SmallVector<int, 32> ShuffleMask(NumVecElems, 0);
    339   unsigned NumVecElemsRemain = NumVecElems;
    340   while (NumVecElemsRemain - 1) {
    341     // Check for the right reduction operation.
    342     BinaryOperator *BinOp;
    343     if (!(BinOp = dyn_cast<BinaryOperator>(RdxOp)))
    344       return false;
    345     if (BinOp->getOpcode() != RdxOpcode)
    346       return false;
    347 
    348     Value *NextRdxOp;
    349     ShuffleVectorInst *Shuffle;
    350     std::tie(NextRdxOp, Shuffle) = getShuffleAndOtherOprd(BinOp);
    351 
    352     // Check the current reduction operation and the shuffle use the same value.
    353     if (Shuffle == nullptr)
    354       return false;
    355     if (Shuffle->getOperand(0) != NextRdxOp)
    356       return false;
    357 
    358     // Check that shuffle masks matches.
    359     for (unsigned j = 0; j != MaskStart; ++j)
    360       ShuffleMask[j] = MaskStart + j;
    361     // Fill the rest of the mask with -1 for undef.
    362     std::fill(&ShuffleMask[MaskStart], ShuffleMask.end(), -1);
    363 
    364     SmallVector<int, 16> Mask = Shuffle->getShuffleMask();
    365     if (ShuffleMask != Mask)
    366       return false;
    367 
    368     RdxOp = NextRdxOp;
    369     NumVecElemsRemain /= 2;
    370     MaskStart *= 2;
    371   }
    372 
    373   Opcode = RdxOpcode;
    374   Ty = VecTy;
    375   return true;
    376 }
    377 
    378 unsigned CostModelAnalysis::getInstructionCost(const Instruction *I) const {
    379   if (!TTI)
    380     return -1;
    381 
    382   switch (I->getOpcode()) {
    383   case Instruction::GetElementPtr:
    384     return TTI->getUserCost(I);
    385 
    386   case Instruction::Ret:
    387   case Instruction::PHI:
    388   case Instruction::Br: {
    389     return TTI->getCFInstrCost(I->getOpcode());
    390   }
    391   case Instruction::Add:
    392   case Instruction::FAdd:
    393   case Instruction::Sub:
    394   case Instruction::FSub:
    395   case Instruction::Mul:
    396   case Instruction::FMul:
    397   case Instruction::UDiv:
    398   case Instruction::SDiv:
    399   case Instruction::FDiv:
    400   case Instruction::URem:
    401   case Instruction::SRem:
    402   case Instruction::FRem:
    403   case Instruction::Shl:
    404   case Instruction::LShr:
    405   case Instruction::AShr:
    406   case Instruction::And:
    407   case Instruction::Or:
    408   case Instruction::Xor: {
    409     TargetTransformInfo::OperandValueKind Op1VK =
    410       getOperandInfo(I->getOperand(0));
    411     TargetTransformInfo::OperandValueKind Op2VK =
    412       getOperandInfo(I->getOperand(1));
    413     return TTI->getArithmeticInstrCost(I->getOpcode(), I->getType(), Op1VK,
    414                                        Op2VK);
    415   }
    416   case Instruction::Select: {
    417     const SelectInst *SI = cast<SelectInst>(I);
    418     Type *CondTy = SI->getCondition()->getType();
    419     return TTI->getCmpSelInstrCost(I->getOpcode(), I->getType(), CondTy);
    420   }
    421   case Instruction::ICmp:
    422   case Instruction::FCmp: {
    423     Type *ValTy = I->getOperand(0)->getType();
    424     return TTI->getCmpSelInstrCost(I->getOpcode(), ValTy);
    425   }
    426   case Instruction::Store: {
    427     const StoreInst *SI = cast<StoreInst>(I);
    428     Type *ValTy = SI->getValueOperand()->getType();
    429     return TTI->getMemoryOpCost(I->getOpcode(), ValTy,
    430                                  SI->getAlignment(),
    431                                  SI->getPointerAddressSpace());
    432   }
    433   case Instruction::Load: {
    434     const LoadInst *LI = cast<LoadInst>(I);
    435     return TTI->getMemoryOpCost(I->getOpcode(), I->getType(),
    436                                  LI->getAlignment(),
    437                                  LI->getPointerAddressSpace());
    438   }
    439   case Instruction::ZExt:
    440   case Instruction::SExt:
    441   case Instruction::FPToUI:
    442   case Instruction::FPToSI:
    443   case Instruction::FPExt:
    444   case Instruction::PtrToInt:
    445   case Instruction::IntToPtr:
    446   case Instruction::SIToFP:
    447   case Instruction::UIToFP:
    448   case Instruction::Trunc:
    449   case Instruction::FPTrunc:
    450   case Instruction::BitCast:
    451   case Instruction::AddrSpaceCast: {
    452     Type *SrcTy = I->getOperand(0)->getType();
    453     return TTI->getCastInstrCost(I->getOpcode(), I->getType(), SrcTy);
    454   }
    455   case Instruction::ExtractElement: {
    456     const ExtractElementInst * EEI = cast<ExtractElementInst>(I);
    457     ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
    458     unsigned Idx = -1;
    459     if (CI)
    460       Idx = CI->getZExtValue();
    461 
    462     // Try to match a reduction sequence (series of shufflevector and vector
    463     // adds followed by a extractelement).
    464     unsigned ReduxOpCode;
    465     Type *ReduxType;
    466 
    467     if (matchVectorSplittingReduction(EEI, ReduxOpCode, ReduxType))
    468       return TTI->getReductionCost(ReduxOpCode, ReduxType, false);
    469     else if (matchPairwiseReduction(EEI, ReduxOpCode, ReduxType))
    470       return TTI->getReductionCost(ReduxOpCode, ReduxType, true);
    471 
    472     return TTI->getVectorInstrCost(I->getOpcode(),
    473                                    EEI->getOperand(0)->getType(), Idx);
    474   }
    475   case Instruction::InsertElement: {
    476     const InsertElementInst * IE = cast<InsertElementInst>(I);
    477     ConstantInt *CI = dyn_cast<ConstantInt>(IE->getOperand(2));
    478     unsigned Idx = -1;
    479     if (CI)
    480       Idx = CI->getZExtValue();
    481     return TTI->getVectorInstrCost(I->getOpcode(),
    482                                    IE->getType(), Idx);
    483   }
    484   case Instruction::ShuffleVector: {
    485     const ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
    486     Type *VecTypOp0 = Shuffle->getOperand(0)->getType();
    487     unsigned NumVecElems = VecTypOp0->getVectorNumElements();
    488     SmallVector<int, 16> Mask = Shuffle->getShuffleMask();
    489 
    490     if (NumVecElems == Mask.size()) {
    491       if (isReverseVectorMask(Mask))
    492         return TTI->getShuffleCost(TargetTransformInfo::SK_Reverse, VecTypOp0,
    493                                    0, nullptr);
    494       if (isAlternateVectorMask(Mask))
    495         return TTI->getShuffleCost(TargetTransformInfo::SK_Alternate,
    496                                    VecTypOp0, 0, nullptr);
    497     }
    498 
    499     return -1;
    500   }
    501   case Instruction::Call:
    502     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
    503       SmallVector<Value *, 4> Args;
    504       for (unsigned J = 0, JE = II->getNumArgOperands(); J != JE; ++J)
    505         Args.push_back(II->getArgOperand(J));
    506 
    507       FastMathFlags FMF;
    508       if (auto *FPMO = dyn_cast<FPMathOperator>(II))
    509         FMF = FPMO->getFastMathFlags();
    510 
    511       return TTI->getIntrinsicInstrCost(II->getIntrinsicID(), II->getType(),
    512                                         Args, FMF);
    513     }
    514     return -1;
    515   default:
    516     // We don't have any information on this instruction.
    517     return -1;
    518   }
    519 }
    520 
    521 void CostModelAnalysis::print(raw_ostream &OS, const Module*) const {
    522   if (!F)
    523     return;
    524 
    525   for (BasicBlock &B : *F) {
    526     for (Instruction &Inst : B) {
    527       unsigned Cost = getInstructionCost(&Inst);
    528       if (Cost != (unsigned)-1)
    529         OS << "Cost Model: Found an estimated cost of " << Cost;
    530       else
    531         OS << "Cost Model: Unknown cost";
    532 
    533       OS << " for instruction: " << Inst << "\n";
    534     }
    535   }
    536 }
    537