Home | History | Annotate | Download | only in Analysis
      1 //===- DivergenceAnalysis.cpp --------- Divergence Analysis Implementation -==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements divergence analysis which determines whether a branch
     11 // in a GPU program is divergent.It can help branch optimizations such as jump
     12 // threading and loop unswitching to make better decisions.
     13 //
     14 // GPU programs typically use the SIMD execution model, where multiple threads
     15 // in the same execution group have to execute in lock-step. Therefore, if the
     16 // code contains divergent branches (i.e., threads in a group do not agree on
     17 // which path of the branch to take), the group of threads has to execute all
     18 // the paths from that branch with different subsets of threads enabled until
     19 // they converge at the immediately post-dominating BB of the paths.
     20 //
     21 // Due to this execution model, some optimizations such as jump
     22 // threading and loop unswitching can be unfortunately harmful when performed on
     23 // divergent branches. Therefore, an analysis that computes which branches in a
     24 // GPU program are divergent can help the compiler to selectively run these
     25 // optimizations.
     26 //
     27 // This file defines divergence analysis which computes a conservative but
     28 // non-trivial approximation of all divergent branches in a GPU program. It
     29 // partially implements the approach described in
     30 //
     31 //   Divergence Analysis
     32 //   Sampaio, Souza, Collange, Pereira
     33 //   TOPLAS '13
     34 //
     35 // The divergence analysis identifies the sources of divergence (e.g., special
     36 // variables that hold the thread ID), and recursively marks variables that are
     37 // data or sync dependent on a source of divergence as divergent.
     38 //
     39 // While data dependency is a well-known concept, the notion of sync dependency
     40 // is worth more explanation. Sync dependence characterizes the control flow
     41 // aspect of the propagation of branch divergence. For example,
     42 //
     43 //   %cond = icmp slt i32 %tid, 10
     44 //   br i1 %cond, label %then, label %else
     45 // then:
     46 //   br label %merge
     47 // else:
     48 //   br label %merge
     49 // merge:
     50 //   %a = phi i32 [ 0, %then ], [ 1, %else ]
     51 //
     52 // Suppose %tid holds the thread ID. Although %a is not data dependent on %tid
     53 // because %tid is not on its use-def chains, %a is sync dependent on %tid
     54 // because the branch "br i1 %cond" depends on %tid and affects which value %a
     55 // is assigned to.
     56 //
     57 // The current implementation has the following limitations:
     58 // 1. intra-procedural. It conservatively considers the arguments of a
     59 //    non-kernel-entry function and the return value of a function call as
     60 //    divergent.
     61 // 2. memory as black box. It conservatively considers values loaded from
     62 //    generic or local address as divergent. This can be improved by leveraging
     63 //    pointer analysis.
     64 //
     65 //===----------------------------------------------------------------------===//
     66 
     67 #include "llvm/Analysis/DivergenceAnalysis.h"
     68 #include "llvm/Analysis/Passes.h"
     69 #include "llvm/Analysis/PostDominators.h"
     70 #include "llvm/Analysis/TargetTransformInfo.h"
     71 #include "llvm/IR/Dominators.h"
     72 #include "llvm/IR/InstIterator.h"
     73 #include "llvm/IR/Instructions.h"
     74 #include "llvm/IR/IntrinsicInst.h"
     75 #include "llvm/IR/Value.h"
     76 #include "llvm/Support/Debug.h"
     77 #include "llvm/Support/raw_ostream.h"
     78 #include <vector>
     79 using namespace llvm;
     80 
     81 namespace {
     82 
     83 class DivergencePropagator {
     84 public:
     85   DivergencePropagator(Function &F, TargetTransformInfo &TTI, DominatorTree &DT,
     86                        PostDominatorTree &PDT, DenseSet<const Value *> &DV)
     87       : F(F), TTI(TTI), DT(DT), PDT(PDT), DV(DV) {}
     88   void populateWithSourcesOfDivergence();
     89   void propagate();
     90 
     91 private:
     92   // A helper function that explores data dependents of V.
     93   void exploreDataDependency(Value *V);
     94   // A helper function that explores sync dependents of TI.
     95   void exploreSyncDependency(TerminatorInst *TI);
     96   // Computes the influence region from Start to End. This region includes all
     97   // basic blocks on any simple path from Start to End.
     98   void computeInfluenceRegion(BasicBlock *Start, BasicBlock *End,
     99                               DenseSet<BasicBlock *> &InfluenceRegion);
    100   // Finds all users of I that are outside the influence region, and add these
    101   // users to Worklist.
    102   void findUsersOutsideInfluenceRegion(
    103       Instruction &I, const DenseSet<BasicBlock *> &InfluenceRegion);
    104 
    105   Function &F;
    106   TargetTransformInfo &TTI;
    107   DominatorTree &DT;
    108   PostDominatorTree &PDT;
    109   std::vector<Value *> Worklist; // Stack for DFS.
    110   DenseSet<const Value *> &DV;   // Stores all divergent values.
    111 };
    112 
    113 void DivergencePropagator::populateWithSourcesOfDivergence() {
    114   Worklist.clear();
    115   DV.clear();
    116   for (auto &I : instructions(F)) {
    117     if (TTI.isSourceOfDivergence(&I)) {
    118       Worklist.push_back(&I);
    119       DV.insert(&I);
    120     }
    121   }
    122   for (auto &Arg : F.args()) {
    123     if (TTI.isSourceOfDivergence(&Arg)) {
    124       Worklist.push_back(&Arg);
    125       DV.insert(&Arg);
    126     }
    127   }
    128 }
    129 
    130 void DivergencePropagator::exploreSyncDependency(TerminatorInst *TI) {
    131   // Propagation rule 1: if branch TI is divergent, all PHINodes in TI's
    132   // immediate post dominator are divergent. This rule handles if-then-else
    133   // patterns. For example,
    134   //
    135   // if (tid < 5)
    136   //   a1 = 1;
    137   // else
    138   //   a2 = 2;
    139   // a = phi(a1, a2); // sync dependent on (tid < 5)
    140   BasicBlock *ThisBB = TI->getParent();
    141 
    142   // Unreachable blocks may not be in the dominator tree.
    143   if (!DT.isReachableFromEntry(ThisBB))
    144     return;
    145 
    146   // If the function has no exit blocks or doesn't reach any exit blocks, the
    147   // post dominator may be null.
    148   DomTreeNode *ThisNode = PDT.getNode(ThisBB);
    149   if (!ThisNode)
    150     return;
    151 
    152   BasicBlock *IPostDom = ThisNode->getIDom()->getBlock();
    153   if (IPostDom == nullptr)
    154     return;
    155 
    156   for (auto I = IPostDom->begin(); isa<PHINode>(I); ++I) {
    157     // A PHINode is uniform if it returns the same value no matter which path is
    158     // taken.
    159     if (!cast<PHINode>(I)->hasConstantOrUndefValue() && DV.insert(&*I).second)
    160       Worklist.push_back(&*I);
    161   }
    162 
    163   // Propagation rule 2: if a value defined in a loop is used outside, the user
    164   // is sync dependent on the condition of the loop exits that dominate the
    165   // user. For example,
    166   //
    167   // int i = 0;
    168   // do {
    169   //   i++;
    170   //   if (foo(i)) ... // uniform
    171   // } while (i < tid);
    172   // if (bar(i)) ...   // divergent
    173   //
    174   // A program may contain unstructured loops. Therefore, we cannot leverage
    175   // LoopInfo, which only recognizes natural loops.
    176   //
    177   // The algorithm used here handles both natural and unstructured loops.  Given
    178   // a branch TI, we first compute its influence region, the union of all simple
    179   // paths from TI to its immediate post dominator (IPostDom). Then, we search
    180   // for all the values defined in the influence region but used outside. All
    181   // these users are sync dependent on TI.
    182   DenseSet<BasicBlock *> InfluenceRegion;
    183   computeInfluenceRegion(ThisBB, IPostDom, InfluenceRegion);
    184   // An insight that can speed up the search process is that all the in-region
    185   // values that are used outside must dominate TI. Therefore, instead of
    186   // searching every basic blocks in the influence region, we search all the
    187   // dominators of TI until it is outside the influence region.
    188   BasicBlock *InfluencedBB = ThisBB;
    189   while (InfluenceRegion.count(InfluencedBB)) {
    190     for (auto &I : *InfluencedBB)
    191       findUsersOutsideInfluenceRegion(I, InfluenceRegion);
    192     DomTreeNode *IDomNode = DT.getNode(InfluencedBB)->getIDom();
    193     if (IDomNode == nullptr)
    194       break;
    195     InfluencedBB = IDomNode->getBlock();
    196   }
    197 }
    198 
    199 void DivergencePropagator::findUsersOutsideInfluenceRegion(
    200     Instruction &I, const DenseSet<BasicBlock *> &InfluenceRegion) {
    201   for (User *U : I.users()) {
    202     Instruction *UserInst = cast<Instruction>(U);
    203     if (!InfluenceRegion.count(UserInst->getParent())) {
    204       if (DV.insert(UserInst).second)
    205         Worklist.push_back(UserInst);
    206     }
    207   }
    208 }
    209 
    210 // A helper function for computeInfluenceRegion that adds successors of "ThisBB"
    211 // to the influence region.
    212 static void
    213 addSuccessorsToInfluenceRegion(BasicBlock *ThisBB, BasicBlock *End,
    214                                DenseSet<BasicBlock *> &InfluenceRegion,
    215                                std::vector<BasicBlock *> &InfluenceStack) {
    216   for (BasicBlock *Succ : successors(ThisBB)) {
    217     if (Succ != End && InfluenceRegion.insert(Succ).second)
    218       InfluenceStack.push_back(Succ);
    219   }
    220 }
    221 
    222 void DivergencePropagator::computeInfluenceRegion(
    223     BasicBlock *Start, BasicBlock *End,
    224     DenseSet<BasicBlock *> &InfluenceRegion) {
    225   assert(PDT.properlyDominates(End, Start) &&
    226          "End does not properly dominate Start");
    227 
    228   // The influence region starts from the end of "Start" to the beginning of
    229   // "End". Therefore, "Start" should not be in the region unless "Start" is in
    230   // a loop that doesn't contain "End".
    231   std::vector<BasicBlock *> InfluenceStack;
    232   addSuccessorsToInfluenceRegion(Start, End, InfluenceRegion, InfluenceStack);
    233   while (!InfluenceStack.empty()) {
    234     BasicBlock *BB = InfluenceStack.back();
    235     InfluenceStack.pop_back();
    236     addSuccessorsToInfluenceRegion(BB, End, InfluenceRegion, InfluenceStack);
    237   }
    238 }
    239 
    240 void DivergencePropagator::exploreDataDependency(Value *V) {
    241   // Follow def-use chains of V.
    242   for (User *U : V->users()) {
    243     Instruction *UserInst = cast<Instruction>(U);
    244     if (DV.insert(UserInst).second)
    245       Worklist.push_back(UserInst);
    246   }
    247 }
    248 
    249 void DivergencePropagator::propagate() {
    250   // Traverse the dependency graph using DFS.
    251   while (!Worklist.empty()) {
    252     Value *V = Worklist.back();
    253     Worklist.pop_back();
    254     if (TerminatorInst *TI = dyn_cast<TerminatorInst>(V)) {
    255       // Terminators with less than two successors won't introduce sync
    256       // dependency. Ignore them.
    257       if (TI->getNumSuccessors() > 1)
    258         exploreSyncDependency(TI);
    259     }
    260     exploreDataDependency(V);
    261   }
    262 }
    263 
    264 } /// end namespace anonymous
    265 
    266 // Register this pass.
    267 char DivergenceAnalysis::ID = 0;
    268 INITIALIZE_PASS_BEGIN(DivergenceAnalysis, "divergence", "Divergence Analysis",
    269                       false, true)
    270 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
    271 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
    272 INITIALIZE_PASS_END(DivergenceAnalysis, "divergence", "Divergence Analysis",
    273                     false, true)
    274 
    275 FunctionPass *llvm::createDivergenceAnalysisPass() {
    276   return new DivergenceAnalysis();
    277 }
    278 
    279 void DivergenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
    280   AU.addRequired<DominatorTreeWrapperPass>();
    281   AU.addRequired<PostDominatorTreeWrapperPass>();
    282   AU.setPreservesAll();
    283 }
    284 
    285 bool DivergenceAnalysis::runOnFunction(Function &F) {
    286   auto *TTIWP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
    287   if (TTIWP == nullptr)
    288     return false;
    289 
    290   TargetTransformInfo &TTI = TTIWP->getTTI(F);
    291   // Fast path: if the target does not have branch divergence, we do not mark
    292   // any branch as divergent.
    293   if (!TTI.hasBranchDivergence())
    294     return false;
    295 
    296   DivergentValues.clear();
    297   auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
    298   DivergencePropagator DP(F, TTI,
    299                           getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
    300                           PDT, DivergentValues);
    301   DP.populateWithSourcesOfDivergence();
    302   DP.propagate();
    303   return false;
    304 }
    305 
    306 void DivergenceAnalysis::print(raw_ostream &OS, const Module *) const {
    307   if (DivergentValues.empty())
    308     return;
    309   const Value *FirstDivergentValue = *DivergentValues.begin();
    310   const Function *F;
    311   if (const Argument *Arg = dyn_cast<Argument>(FirstDivergentValue)) {
    312     F = Arg->getParent();
    313   } else if (const Instruction *I =
    314                  dyn_cast<Instruction>(FirstDivergentValue)) {
    315     F = I->getParent()->getParent();
    316   } else {
    317     llvm_unreachable("Only arguments and instructions can be divergent");
    318   }
    319 
    320   // Dumps all divergent values in F, arguments and then instructions.
    321   for (auto &Arg : F->args()) {
    322     if (DivergentValues.count(&Arg))
    323       OS << "DIVERGENT:  " << Arg << "\n";
    324   }
    325   // Iterate instructions using instructions() to ensure a deterministic order.
    326   for (auto &I : instructions(F)) {
    327     if (DivergentValues.count(&I))
    328       OS << "DIVERGENT:" << I << "\n";
    329   }
    330 }
    331