1 //===- DivergenceAnalysis.cpp --------- Divergence Analysis Implementation -==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements divergence analysis which determines whether a branch 11 // in a GPU program is divergent.It can help branch optimizations such as jump 12 // threading and loop unswitching to make better decisions. 13 // 14 // GPU programs typically use the SIMD execution model, where multiple threads 15 // in the same execution group have to execute in lock-step. Therefore, if the 16 // code contains divergent branches (i.e., threads in a group do not agree on 17 // which path of the branch to take), the group of threads has to execute all 18 // the paths from that branch with different subsets of threads enabled until 19 // they converge at the immediately post-dominating BB of the paths. 20 // 21 // Due to this execution model, some optimizations such as jump 22 // threading and loop unswitching can be unfortunately harmful when performed on 23 // divergent branches. Therefore, an analysis that computes which branches in a 24 // GPU program are divergent can help the compiler to selectively run these 25 // optimizations. 26 // 27 // This file defines divergence analysis which computes a conservative but 28 // non-trivial approximation of all divergent branches in a GPU program. It 29 // partially implements the approach described in 30 // 31 // Divergence Analysis 32 // Sampaio, Souza, Collange, Pereira 33 // TOPLAS '13 34 // 35 // The divergence analysis identifies the sources of divergence (e.g., special 36 // variables that hold the thread ID), and recursively marks variables that are 37 // data or sync dependent on a source of divergence as divergent. 38 // 39 // While data dependency is a well-known concept, the notion of sync dependency 40 // is worth more explanation. Sync dependence characterizes the control flow 41 // aspect of the propagation of branch divergence. For example, 42 // 43 // %cond = icmp slt i32 %tid, 10 44 // br i1 %cond, label %then, label %else 45 // then: 46 // br label %merge 47 // else: 48 // br label %merge 49 // merge: 50 // %a = phi i32 [ 0, %then ], [ 1, %else ] 51 // 52 // Suppose %tid holds the thread ID. Although %a is not data dependent on %tid 53 // because %tid is not on its use-def chains, %a is sync dependent on %tid 54 // because the branch "br i1 %cond" depends on %tid and affects which value %a 55 // is assigned to. 56 // 57 // The current implementation has the following limitations: 58 // 1. intra-procedural. It conservatively considers the arguments of a 59 // non-kernel-entry function and the return value of a function call as 60 // divergent. 61 // 2. memory as black box. It conservatively considers values loaded from 62 // generic or local address as divergent. This can be improved by leveraging 63 // pointer analysis. 64 // 65 //===----------------------------------------------------------------------===// 66 67 #include "llvm/Analysis/DivergenceAnalysis.h" 68 #include "llvm/Analysis/Passes.h" 69 #include "llvm/Analysis/PostDominators.h" 70 #include "llvm/Analysis/TargetTransformInfo.h" 71 #include "llvm/IR/Dominators.h" 72 #include "llvm/IR/InstIterator.h" 73 #include "llvm/IR/Instructions.h" 74 #include "llvm/IR/IntrinsicInst.h" 75 #include "llvm/IR/Value.h" 76 #include "llvm/Support/Debug.h" 77 #include "llvm/Support/raw_ostream.h" 78 #include <vector> 79 using namespace llvm; 80 81 namespace { 82 83 class DivergencePropagator { 84 public: 85 DivergencePropagator(Function &F, TargetTransformInfo &TTI, DominatorTree &DT, 86 PostDominatorTree &PDT, DenseSet<const Value *> &DV) 87 : F(F), TTI(TTI), DT(DT), PDT(PDT), DV(DV) {} 88 void populateWithSourcesOfDivergence(); 89 void propagate(); 90 91 private: 92 // A helper function that explores data dependents of V. 93 void exploreDataDependency(Value *V); 94 // A helper function that explores sync dependents of TI. 95 void exploreSyncDependency(TerminatorInst *TI); 96 // Computes the influence region from Start to End. This region includes all 97 // basic blocks on any simple path from Start to End. 98 void computeInfluenceRegion(BasicBlock *Start, BasicBlock *End, 99 DenseSet<BasicBlock *> &InfluenceRegion); 100 // Finds all users of I that are outside the influence region, and add these 101 // users to Worklist. 102 void findUsersOutsideInfluenceRegion( 103 Instruction &I, const DenseSet<BasicBlock *> &InfluenceRegion); 104 105 Function &F; 106 TargetTransformInfo &TTI; 107 DominatorTree &DT; 108 PostDominatorTree &PDT; 109 std::vector<Value *> Worklist; // Stack for DFS. 110 DenseSet<const Value *> &DV; // Stores all divergent values. 111 }; 112 113 void DivergencePropagator::populateWithSourcesOfDivergence() { 114 Worklist.clear(); 115 DV.clear(); 116 for (auto &I : instructions(F)) { 117 if (TTI.isSourceOfDivergence(&I)) { 118 Worklist.push_back(&I); 119 DV.insert(&I); 120 } 121 } 122 for (auto &Arg : F.args()) { 123 if (TTI.isSourceOfDivergence(&Arg)) { 124 Worklist.push_back(&Arg); 125 DV.insert(&Arg); 126 } 127 } 128 } 129 130 void DivergencePropagator::exploreSyncDependency(TerminatorInst *TI) { 131 // Propagation rule 1: if branch TI is divergent, all PHINodes in TI's 132 // immediate post dominator are divergent. This rule handles if-then-else 133 // patterns. For example, 134 // 135 // if (tid < 5) 136 // a1 = 1; 137 // else 138 // a2 = 2; 139 // a = phi(a1, a2); // sync dependent on (tid < 5) 140 BasicBlock *ThisBB = TI->getParent(); 141 142 // Unreachable blocks may not be in the dominator tree. 143 if (!DT.isReachableFromEntry(ThisBB)) 144 return; 145 146 // If the function has no exit blocks or doesn't reach any exit blocks, the 147 // post dominator may be null. 148 DomTreeNode *ThisNode = PDT.getNode(ThisBB); 149 if (!ThisNode) 150 return; 151 152 BasicBlock *IPostDom = ThisNode->getIDom()->getBlock(); 153 if (IPostDom == nullptr) 154 return; 155 156 for (auto I = IPostDom->begin(); isa<PHINode>(I); ++I) { 157 // A PHINode is uniform if it returns the same value no matter which path is 158 // taken. 159 if (!cast<PHINode>(I)->hasConstantOrUndefValue() && DV.insert(&*I).second) 160 Worklist.push_back(&*I); 161 } 162 163 // Propagation rule 2: if a value defined in a loop is used outside, the user 164 // is sync dependent on the condition of the loop exits that dominate the 165 // user. For example, 166 // 167 // int i = 0; 168 // do { 169 // i++; 170 // if (foo(i)) ... // uniform 171 // } while (i < tid); 172 // if (bar(i)) ... // divergent 173 // 174 // A program may contain unstructured loops. Therefore, we cannot leverage 175 // LoopInfo, which only recognizes natural loops. 176 // 177 // The algorithm used here handles both natural and unstructured loops. Given 178 // a branch TI, we first compute its influence region, the union of all simple 179 // paths from TI to its immediate post dominator (IPostDom). Then, we search 180 // for all the values defined in the influence region but used outside. All 181 // these users are sync dependent on TI. 182 DenseSet<BasicBlock *> InfluenceRegion; 183 computeInfluenceRegion(ThisBB, IPostDom, InfluenceRegion); 184 // An insight that can speed up the search process is that all the in-region 185 // values that are used outside must dominate TI. Therefore, instead of 186 // searching every basic blocks in the influence region, we search all the 187 // dominators of TI until it is outside the influence region. 188 BasicBlock *InfluencedBB = ThisBB; 189 while (InfluenceRegion.count(InfluencedBB)) { 190 for (auto &I : *InfluencedBB) 191 findUsersOutsideInfluenceRegion(I, InfluenceRegion); 192 DomTreeNode *IDomNode = DT.getNode(InfluencedBB)->getIDom(); 193 if (IDomNode == nullptr) 194 break; 195 InfluencedBB = IDomNode->getBlock(); 196 } 197 } 198 199 void DivergencePropagator::findUsersOutsideInfluenceRegion( 200 Instruction &I, const DenseSet<BasicBlock *> &InfluenceRegion) { 201 for (User *U : I.users()) { 202 Instruction *UserInst = cast<Instruction>(U); 203 if (!InfluenceRegion.count(UserInst->getParent())) { 204 if (DV.insert(UserInst).second) 205 Worklist.push_back(UserInst); 206 } 207 } 208 } 209 210 // A helper function for computeInfluenceRegion that adds successors of "ThisBB" 211 // to the influence region. 212 static void 213 addSuccessorsToInfluenceRegion(BasicBlock *ThisBB, BasicBlock *End, 214 DenseSet<BasicBlock *> &InfluenceRegion, 215 std::vector<BasicBlock *> &InfluenceStack) { 216 for (BasicBlock *Succ : successors(ThisBB)) { 217 if (Succ != End && InfluenceRegion.insert(Succ).second) 218 InfluenceStack.push_back(Succ); 219 } 220 } 221 222 void DivergencePropagator::computeInfluenceRegion( 223 BasicBlock *Start, BasicBlock *End, 224 DenseSet<BasicBlock *> &InfluenceRegion) { 225 assert(PDT.properlyDominates(End, Start) && 226 "End does not properly dominate Start"); 227 228 // The influence region starts from the end of "Start" to the beginning of 229 // "End". Therefore, "Start" should not be in the region unless "Start" is in 230 // a loop that doesn't contain "End". 231 std::vector<BasicBlock *> InfluenceStack; 232 addSuccessorsToInfluenceRegion(Start, End, InfluenceRegion, InfluenceStack); 233 while (!InfluenceStack.empty()) { 234 BasicBlock *BB = InfluenceStack.back(); 235 InfluenceStack.pop_back(); 236 addSuccessorsToInfluenceRegion(BB, End, InfluenceRegion, InfluenceStack); 237 } 238 } 239 240 void DivergencePropagator::exploreDataDependency(Value *V) { 241 // Follow def-use chains of V. 242 for (User *U : V->users()) { 243 Instruction *UserInst = cast<Instruction>(U); 244 if (DV.insert(UserInst).second) 245 Worklist.push_back(UserInst); 246 } 247 } 248 249 void DivergencePropagator::propagate() { 250 // Traverse the dependency graph using DFS. 251 while (!Worklist.empty()) { 252 Value *V = Worklist.back(); 253 Worklist.pop_back(); 254 if (TerminatorInst *TI = dyn_cast<TerminatorInst>(V)) { 255 // Terminators with less than two successors won't introduce sync 256 // dependency. Ignore them. 257 if (TI->getNumSuccessors() > 1) 258 exploreSyncDependency(TI); 259 } 260 exploreDataDependency(V); 261 } 262 } 263 264 } /// end namespace anonymous 265 266 // Register this pass. 267 char DivergenceAnalysis::ID = 0; 268 INITIALIZE_PASS_BEGIN(DivergenceAnalysis, "divergence", "Divergence Analysis", 269 false, true) 270 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 271 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) 272 INITIALIZE_PASS_END(DivergenceAnalysis, "divergence", "Divergence Analysis", 273 false, true) 274 275 FunctionPass *llvm::createDivergenceAnalysisPass() { 276 return new DivergenceAnalysis(); 277 } 278 279 void DivergenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 280 AU.addRequired<DominatorTreeWrapperPass>(); 281 AU.addRequired<PostDominatorTreeWrapperPass>(); 282 AU.setPreservesAll(); 283 } 284 285 bool DivergenceAnalysis::runOnFunction(Function &F) { 286 auto *TTIWP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>(); 287 if (TTIWP == nullptr) 288 return false; 289 290 TargetTransformInfo &TTI = TTIWP->getTTI(F); 291 // Fast path: if the target does not have branch divergence, we do not mark 292 // any branch as divergent. 293 if (!TTI.hasBranchDivergence()) 294 return false; 295 296 DivergentValues.clear(); 297 auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree(); 298 DivergencePropagator DP(F, TTI, 299 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 300 PDT, DivergentValues); 301 DP.populateWithSourcesOfDivergence(); 302 DP.propagate(); 303 return false; 304 } 305 306 void DivergenceAnalysis::print(raw_ostream &OS, const Module *) const { 307 if (DivergentValues.empty()) 308 return; 309 const Value *FirstDivergentValue = *DivergentValues.begin(); 310 const Function *F; 311 if (const Argument *Arg = dyn_cast<Argument>(FirstDivergentValue)) { 312 F = Arg->getParent(); 313 } else if (const Instruction *I = 314 dyn_cast<Instruction>(FirstDivergentValue)) { 315 F = I->getParent()->getParent(); 316 } else { 317 llvm_unreachable("Only arguments and instructions can be divergent"); 318 } 319 320 // Dumps all divergent values in F, arguments and then instructions. 321 for (auto &Arg : F->args()) { 322 if (DivergentValues.count(&Arg)) 323 OS << "DIVERGENT: " << Arg << "\n"; 324 } 325 // Iterate instructions using instructions() to ensure a deterministic order. 326 for (auto &I : instructions(F)) { 327 if (DivergentValues.count(&I)) 328 OS << "DIVERGENT:" << I << "\n"; 329 } 330 } 331