Home | History | Annotate | Download | only in Analysis
      1 //===- StratifiedSets.h - Abstract stratified sets implementation. --------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #ifndef LLVM_ADT_STRATIFIEDSETS_H
     11 #define LLVM_ADT_STRATIFIEDSETS_H
     12 
     13 #include "AliasAnalysisSummary.h"
     14 #include "llvm/ADT/DenseMap.h"
     15 #include "llvm/ADT/Optional.h"
     16 #include "llvm/ADT/SmallSet.h"
     17 #include "llvm/ADT/SmallVector.h"
     18 #include <bitset>
     19 #include <cassert>
     20 #include <cmath>
     21 #include <type_traits>
     22 #include <utility>
     23 #include <vector>
     24 
     25 namespace llvm {
     26 namespace cflaa {
     27 /// An index into Stratified Sets.
     28 typedef unsigned StratifiedIndex;
     29 /// NOTE: ^ This can't be a short -- bootstrapping clang has a case where
     30 /// ~1M sets exist.
     31 
     32 // \brief Container of information related to a value in a StratifiedSet.
     33 struct StratifiedInfo {
     34   StratifiedIndex Index;
     35   /// For field sensitivity, etc. we can tack fields on here.
     36 };
     37 
     38 /// A "link" between two StratifiedSets.
     39 struct StratifiedLink {
     40   /// \brief This is a value used to signify "does not exist" where the
     41   /// StratifiedIndex type is used.
     42   ///
     43   /// This is used instead of Optional<StratifiedIndex> because
     44   /// Optional<StratifiedIndex> would eat up a considerable amount of extra
     45   /// memory, after struct padding/alignment is taken into account.
     46   static const StratifiedIndex SetSentinel;
     47 
     48   /// The index for the set "above" current
     49   StratifiedIndex Above;
     50 
     51   /// The link for the set "below" current
     52   StratifiedIndex Below;
     53 
     54   /// Attributes for these StratifiedSets.
     55   AliasAttrs Attrs;
     56 
     57   StratifiedLink() : Above(SetSentinel), Below(SetSentinel) {}
     58 
     59   bool hasBelow() const { return Below != SetSentinel; }
     60   bool hasAbove() const { return Above != SetSentinel; }
     61 
     62   void clearBelow() { Below = SetSentinel; }
     63   void clearAbove() { Above = SetSentinel; }
     64 };
     65 
     66 /// \brief These are stratified sets, as described in "Fast algorithms for
     67 /// Dyck-CFL-reachability with applications to Alias Analysis" by Zhang Q, Lyu M
     68 /// R, Yuan H, and Su Z. -- in short, this is meant to represent different sets
     69 /// of Value*s. If two Value*s are in the same set, or if both sets have
     70 /// overlapping attributes, then the Value*s are said to alias.
     71 ///
     72 /// Sets may be related by position, meaning that one set may be considered as
     73 /// above or below another. In CFL Alias Analysis, this gives us an indication
     74 /// of how two variables are related; if the set of variable A is below a set
     75 /// containing variable B, then at some point, a variable that has interacted
     76 /// with B (or B itself) was either used in order to extract the variable A, or
     77 /// was used as storage of variable A.
     78 ///
     79 /// Sets may also have attributes (as noted above). These attributes are
     80 /// generally used for noting whether a variable in the set has interacted with
     81 /// a variable whose origins we don't quite know (i.e. globals/arguments), or if
     82 /// the variable may have had operations performed on it (modified in a function
     83 /// call). All attributes that exist in a set A must exist in all sets marked as
     84 /// below set A.
     85 template <typename T> class StratifiedSets {
     86 public:
     87   StratifiedSets() = default;
     88 
     89   // TODO: Figure out how to make MSVC not call the copy ctor here, and delete
     90   // it.
     91 
     92   // Can't default these due to compile errors in MSVC2013
     93   StratifiedSets(StratifiedSets &&Other) { *this = std::move(Other); }
     94   StratifiedSets &operator=(StratifiedSets &&Other) {
     95     Values = std::move(Other.Values);
     96     Links = std::move(Other.Links);
     97     return *this;
     98   }
     99 
    100   StratifiedSets(DenseMap<T, StratifiedInfo> Map,
    101                  std::vector<StratifiedLink> Links)
    102       : Values(std::move(Map)), Links(std::move(Links)) {}
    103 
    104   Optional<StratifiedInfo> find(const T &Elem) const {
    105     auto Iter = Values.find(Elem);
    106     if (Iter == Values.end())
    107       return None;
    108     return Iter->second;
    109   }
    110 
    111   const StratifiedLink &getLink(StratifiedIndex Index) const {
    112     assert(inbounds(Index));
    113     return Links[Index];
    114   }
    115 
    116 private:
    117   DenseMap<T, StratifiedInfo> Values;
    118   std::vector<StratifiedLink> Links;
    119 
    120   bool inbounds(StratifiedIndex Idx) const { return Idx < Links.size(); }
    121 };
    122 
    123 /// Generic Builder class that produces StratifiedSets instances.
    124 ///
    125 /// The goal of this builder is to efficiently produce correct StratifiedSets
    126 /// instances. To this end, we use a few tricks:
    127 ///   > Set chains (A method for linking sets together)
    128 ///   > Set remaps (A method for marking a set as an alias [irony?] of another)
    129 ///
    130 /// ==== Set chains ====
    131 /// This builder has a notion of some value A being above, below, or with some
    132 /// other value B:
    133 ///   > The `A above B` relationship implies that there is a reference edge
    134 ///   going from A to B. Namely, it notes that A can store anything in B's set.
    135 ///   > The `A below B` relationship is the opposite of `A above B`. It implies
    136 ///   that there's a dereference edge going from A to B.
    137 ///   > The `A with B` relationship states that there's an assignment edge going
    138 ///   from A to B, and that A and B should be treated as equals.
    139 ///
    140 /// As an example, take the following code snippet:
    141 ///
    142 /// %a = alloca i32, align 4
    143 /// %ap = alloca i32*, align 8
    144 /// %app = alloca i32**, align 8
    145 /// store %a, %ap
    146 /// store %ap, %app
    147 /// %aw = getelementptr %ap, i32 0
    148 ///
    149 /// Given this, the following relations exist:
    150 ///   - %a below %ap & %ap above %a
    151 ///   - %ap below %app & %app above %ap
    152 ///   - %aw with %ap & %ap with %aw
    153 ///
    154 /// These relations produce the following sets:
    155 ///   [{%a}, {%ap, %aw}, {%app}]
    156 ///
    157 /// ...Which state that the only MayAlias relationship in the above program is
    158 /// between %ap and %aw.
    159 ///
    160 /// Because LLVM allows arbitrary casts, code like the following needs to be
    161 /// supported:
    162 ///   %ip = alloca i64, align 8
    163 ///   %ipp = alloca i64*, align 8
    164 ///   %i = bitcast i64** ipp to i64
    165 ///   store i64* %ip, i64** %ipp
    166 ///   store i64 %i, i64* %ip
    167 ///
    168 /// Which, because %ipp ends up *both* above and below %ip, is fun.
    169 ///
    170 /// This is solved by merging %i and %ipp into a single set (...which is the
    171 /// only way to solve this, since their bit patterns are equivalent). Any sets
    172 /// that ended up in between %i and %ipp at the time of merging (in this case,
    173 /// the set containing %ip) also get conservatively merged into the set of %i
    174 /// and %ipp. In short, the resulting StratifiedSet from the above code would be
    175 /// {%ip, %ipp, %i}.
    176 ///
    177 /// ==== Set remaps ====
    178 /// More of an implementation detail than anything -- when merging sets, we need
    179 /// to update the numbers of all of the elements mapped to those sets. Rather
    180 /// than doing this at each merge, we note in the BuilderLink structure that a
    181 /// remap has occurred, and use this information so we can defer renumbering set
    182 /// elements until build time.
    183 template <typename T> class StratifiedSetsBuilder {
    184   /// \brief Represents a Stratified Set, with information about the Stratified
    185   /// Set above it, the set below it, and whether the current set has been
    186   /// remapped to another.
    187   struct BuilderLink {
    188     const StratifiedIndex Number;
    189 
    190     BuilderLink(StratifiedIndex N) : Number(N) {
    191       Remap = StratifiedLink::SetSentinel;
    192     }
    193 
    194     bool hasAbove() const {
    195       assert(!isRemapped());
    196       return Link.hasAbove();
    197     }
    198 
    199     bool hasBelow() const {
    200       assert(!isRemapped());
    201       return Link.hasBelow();
    202     }
    203 
    204     void setBelow(StratifiedIndex I) {
    205       assert(!isRemapped());
    206       Link.Below = I;
    207     }
    208 
    209     void setAbove(StratifiedIndex I) {
    210       assert(!isRemapped());
    211       Link.Above = I;
    212     }
    213 
    214     void clearBelow() {
    215       assert(!isRemapped());
    216       Link.clearBelow();
    217     }
    218 
    219     void clearAbove() {
    220       assert(!isRemapped());
    221       Link.clearAbove();
    222     }
    223 
    224     StratifiedIndex getBelow() const {
    225       assert(!isRemapped());
    226       assert(hasBelow());
    227       return Link.Below;
    228     }
    229 
    230     StratifiedIndex getAbove() const {
    231       assert(!isRemapped());
    232       assert(hasAbove());
    233       return Link.Above;
    234     }
    235 
    236     AliasAttrs getAttrs() {
    237       assert(!isRemapped());
    238       return Link.Attrs;
    239     }
    240 
    241     void setAttrs(AliasAttrs Other) {
    242       assert(!isRemapped());
    243       Link.Attrs |= Other;
    244     }
    245 
    246     bool isRemapped() const { return Remap != StratifiedLink::SetSentinel; }
    247 
    248     /// For initial remapping to another set
    249     void remapTo(StratifiedIndex Other) {
    250       assert(!isRemapped());
    251       Remap = Other;
    252     }
    253 
    254     StratifiedIndex getRemapIndex() const {
    255       assert(isRemapped());
    256       return Remap;
    257     }
    258 
    259     /// Should only be called when we're already remapped.
    260     void updateRemap(StratifiedIndex Other) {
    261       assert(isRemapped());
    262       Remap = Other;
    263     }
    264 
    265     /// Prefer the above functions to calling things directly on what's returned
    266     /// from this -- they guard against unexpected calls when the current
    267     /// BuilderLink is remapped.
    268     const StratifiedLink &getLink() const { return Link; }
    269 
    270   private:
    271     StratifiedLink Link;
    272     StratifiedIndex Remap;
    273   };
    274 
    275   /// \brief This function performs all of the set unioning/value renumbering
    276   /// that we've been putting off, and generates a vector<StratifiedLink> that
    277   /// may be placed in a StratifiedSets instance.
    278   void finalizeSets(std::vector<StratifiedLink> &StratLinks) {
    279     DenseMap<StratifiedIndex, StratifiedIndex> Remaps;
    280     for (auto &Link : Links) {
    281       if (Link.isRemapped())
    282         continue;
    283 
    284       StratifiedIndex Number = StratLinks.size();
    285       Remaps.insert(std::make_pair(Link.Number, Number));
    286       StratLinks.push_back(Link.getLink());
    287     }
    288 
    289     for (auto &Link : StratLinks) {
    290       if (Link.hasAbove()) {
    291         auto &Above = linksAt(Link.Above);
    292         auto Iter = Remaps.find(Above.Number);
    293         assert(Iter != Remaps.end());
    294         Link.Above = Iter->second;
    295       }
    296 
    297       if (Link.hasBelow()) {
    298         auto &Below = linksAt(Link.Below);
    299         auto Iter = Remaps.find(Below.Number);
    300         assert(Iter != Remaps.end());
    301         Link.Below = Iter->second;
    302       }
    303     }
    304 
    305     for (auto &Pair : Values) {
    306       auto &Info = Pair.second;
    307       auto &Link = linksAt(Info.Index);
    308       auto Iter = Remaps.find(Link.Number);
    309       assert(Iter != Remaps.end());
    310       Info.Index = Iter->second;
    311     }
    312   }
    313 
    314   /// \brief There's a guarantee in StratifiedLink where all bits set in a
    315   /// Link.externals will be set in all Link.externals "below" it.
    316   static void propagateAttrs(std::vector<StratifiedLink> &Links) {
    317     const auto getHighestParentAbove = [&Links](StratifiedIndex Idx) {
    318       const auto *Link = &Links[Idx];
    319       while (Link->hasAbove()) {
    320         Idx = Link->Above;
    321         Link = &Links[Idx];
    322       }
    323       return Idx;
    324     };
    325 
    326     SmallSet<StratifiedIndex, 16> Visited;
    327     for (unsigned I = 0, E = Links.size(); I < E; ++I) {
    328       auto CurrentIndex = getHighestParentAbove(I);
    329       if (!Visited.insert(CurrentIndex).second)
    330         continue;
    331 
    332       while (Links[CurrentIndex].hasBelow()) {
    333         auto &CurrentBits = Links[CurrentIndex].Attrs;
    334         auto NextIndex = Links[CurrentIndex].Below;
    335         auto &NextBits = Links[NextIndex].Attrs;
    336         NextBits |= CurrentBits;
    337         CurrentIndex = NextIndex;
    338       }
    339     }
    340   }
    341 
    342 public:
    343   /// Builds a StratifiedSet from the information we've been given since either
    344   /// construction or the prior build() call.
    345   StratifiedSets<T> build() {
    346     std::vector<StratifiedLink> StratLinks;
    347     finalizeSets(StratLinks);
    348     propagateAttrs(StratLinks);
    349     Links.clear();
    350     return StratifiedSets<T>(std::move(Values), std::move(StratLinks));
    351   }
    352 
    353   bool has(const T &Elem) const { return get(Elem).hasValue(); }
    354 
    355   bool add(const T &Main) {
    356     if (get(Main).hasValue())
    357       return false;
    358 
    359     auto NewIndex = getNewUnlinkedIndex();
    360     return addAtMerging(Main, NewIndex);
    361   }
    362 
    363   /// \brief Restructures the stratified sets as necessary to make "ToAdd" in a
    364   /// set above "Main". There are some cases where this is not possible (see
    365   /// above), so we merge them such that ToAdd and Main are in the same set.
    366   bool addAbove(const T &Main, const T &ToAdd) {
    367     assert(has(Main));
    368     auto Index = *indexOf(Main);
    369     if (!linksAt(Index).hasAbove())
    370       addLinkAbove(Index);
    371 
    372     auto Above = linksAt(Index).getAbove();
    373     return addAtMerging(ToAdd, Above);
    374   }
    375 
    376   /// \brief Restructures the stratified sets as necessary to make "ToAdd" in a
    377   /// set below "Main". There are some cases where this is not possible (see
    378   /// above), so we merge them such that ToAdd and Main are in the same set.
    379   bool addBelow(const T &Main, const T &ToAdd) {
    380     assert(has(Main));
    381     auto Index = *indexOf(Main);
    382     if (!linksAt(Index).hasBelow())
    383       addLinkBelow(Index);
    384 
    385     auto Below = linksAt(Index).getBelow();
    386     return addAtMerging(ToAdd, Below);
    387   }
    388 
    389   bool addWith(const T &Main, const T &ToAdd) {
    390     assert(has(Main));
    391     auto MainIndex = *indexOf(Main);
    392     return addAtMerging(ToAdd, MainIndex);
    393   }
    394 
    395   void noteAttributes(const T &Main, AliasAttrs NewAttrs) {
    396     assert(has(Main));
    397     auto *Info = *get(Main);
    398     auto &Link = linksAt(Info->Index);
    399     Link.setAttrs(NewAttrs);
    400   }
    401 
    402 private:
    403   DenseMap<T, StratifiedInfo> Values;
    404   std::vector<BuilderLink> Links;
    405 
    406   /// Adds the given element at the given index, merging sets if necessary.
    407   bool addAtMerging(const T &ToAdd, StratifiedIndex Index) {
    408     StratifiedInfo Info = {Index};
    409     auto Pair = Values.insert(std::make_pair(ToAdd, Info));
    410     if (Pair.second)
    411       return true;
    412 
    413     auto &Iter = Pair.first;
    414     auto &IterSet = linksAt(Iter->second.Index);
    415     auto &ReqSet = linksAt(Index);
    416 
    417     // Failed to add where we wanted to. Merge the sets.
    418     if (&IterSet != &ReqSet)
    419       merge(IterSet.Number, ReqSet.Number);
    420 
    421     return false;
    422   }
    423 
    424   /// Gets the BuilderLink at the given index, taking set remapping into
    425   /// account.
    426   BuilderLink &linksAt(StratifiedIndex Index) {
    427     auto *Start = &Links[Index];
    428     if (!Start->isRemapped())
    429       return *Start;
    430 
    431     auto *Current = Start;
    432     while (Current->isRemapped())
    433       Current = &Links[Current->getRemapIndex()];
    434 
    435     auto NewRemap = Current->Number;
    436 
    437     // Run through everything that has yet to be updated, and update them to
    438     // remap to NewRemap
    439     Current = Start;
    440     while (Current->isRemapped()) {
    441       auto *Next = &Links[Current->getRemapIndex()];
    442       Current->updateRemap(NewRemap);
    443       Current = Next;
    444     }
    445 
    446     return *Current;
    447   }
    448 
    449   /// \brief Merges two sets into one another. Assumes that these sets are not
    450   /// already one in the same.
    451   void merge(StratifiedIndex Idx1, StratifiedIndex Idx2) {
    452     assert(inbounds(Idx1) && inbounds(Idx2));
    453     assert(&linksAt(Idx1) != &linksAt(Idx2) &&
    454            "Merging a set into itself is not allowed");
    455 
    456     // CASE 1: If the set at `Idx1` is above or below `Idx2`, we need to merge
    457     // both the
    458     // given sets, and all sets between them, into one.
    459     if (tryMergeUpwards(Idx1, Idx2))
    460       return;
    461 
    462     if (tryMergeUpwards(Idx2, Idx1))
    463       return;
    464 
    465     // CASE 2: The set at `Idx1` is not in the same chain as the set at `Idx2`.
    466     // We therefore need to merge the two chains together.
    467     mergeDirect(Idx1, Idx2);
    468   }
    469 
    470   /// \brief Merges two sets assuming that the set at `Idx1` is unreachable from
    471   /// traversing above or below the set at `Idx2`.
    472   void mergeDirect(StratifiedIndex Idx1, StratifiedIndex Idx2) {
    473     assert(inbounds(Idx1) && inbounds(Idx2));
    474 
    475     auto *LinksInto = &linksAt(Idx1);
    476     auto *LinksFrom = &linksAt(Idx2);
    477     // Merging everything above LinksInto then proceeding to merge everything
    478     // below LinksInto becomes problematic, so we go as far "up" as possible!
    479     while (LinksInto->hasAbove() && LinksFrom->hasAbove()) {
    480       LinksInto = &linksAt(LinksInto->getAbove());
    481       LinksFrom = &linksAt(LinksFrom->getAbove());
    482     }
    483 
    484     if (LinksFrom->hasAbove()) {
    485       LinksInto->setAbove(LinksFrom->getAbove());
    486       auto &NewAbove = linksAt(LinksInto->getAbove());
    487       NewAbove.setBelow(LinksInto->Number);
    488     }
    489 
    490     // Merging strategy:
    491     //  > If neither has links below, stop.
    492     //  > If only `LinksInto` has links below, stop.
    493     //  > If only `LinksFrom` has links below, reset `LinksInto.Below` to
    494     //  match `LinksFrom.Below`
    495     //  > If both have links above, deal with those next.
    496     while (LinksInto->hasBelow() && LinksFrom->hasBelow()) {
    497       auto FromAttrs = LinksFrom->getAttrs();
    498       LinksInto->setAttrs(FromAttrs);
    499 
    500       // Remap needs to happen after getBelow(), but before
    501       // assignment of LinksFrom
    502       auto *NewLinksFrom = &linksAt(LinksFrom->getBelow());
    503       LinksFrom->remapTo(LinksInto->Number);
    504       LinksFrom = NewLinksFrom;
    505       LinksInto = &linksAt(LinksInto->getBelow());
    506     }
    507 
    508     if (LinksFrom->hasBelow()) {
    509       LinksInto->setBelow(LinksFrom->getBelow());
    510       auto &NewBelow = linksAt(LinksInto->getBelow());
    511       NewBelow.setAbove(LinksInto->Number);
    512     }
    513 
    514     LinksInto->setAttrs(LinksFrom->getAttrs());
    515     LinksFrom->remapTo(LinksInto->Number);
    516   }
    517 
    518   /// Checks to see if lowerIndex is at a level lower than upperIndex. If so, it
    519   /// will merge lowerIndex with upperIndex (and all of the sets between) and
    520   /// return true. Otherwise, it will return false.
    521   bool tryMergeUpwards(StratifiedIndex LowerIndex, StratifiedIndex UpperIndex) {
    522     assert(inbounds(LowerIndex) && inbounds(UpperIndex));
    523     auto *Lower = &linksAt(LowerIndex);
    524     auto *Upper = &linksAt(UpperIndex);
    525     if (Lower == Upper)
    526       return true;
    527 
    528     SmallVector<BuilderLink *, 8> Found;
    529     auto *Current = Lower;
    530     auto Attrs = Current->getAttrs();
    531     while (Current->hasAbove() && Current != Upper) {
    532       Found.push_back(Current);
    533       Attrs |= Current->getAttrs();
    534       Current = &linksAt(Current->getAbove());
    535     }
    536 
    537     if (Current != Upper)
    538       return false;
    539 
    540     Upper->setAttrs(Attrs);
    541 
    542     if (Lower->hasBelow()) {
    543       auto NewBelowIndex = Lower->getBelow();
    544       Upper->setBelow(NewBelowIndex);
    545       auto &NewBelow = linksAt(NewBelowIndex);
    546       NewBelow.setAbove(UpperIndex);
    547     } else {
    548       Upper->clearBelow();
    549     }
    550 
    551     for (const auto &Ptr : Found)
    552       Ptr->remapTo(Upper->Number);
    553 
    554     return true;
    555   }
    556 
    557   Optional<const StratifiedInfo *> get(const T &Val) const {
    558     auto Result = Values.find(Val);
    559     if (Result == Values.end())
    560       return None;
    561     return &Result->second;
    562   }
    563 
    564   Optional<StratifiedInfo *> get(const T &Val) {
    565     auto Result = Values.find(Val);
    566     if (Result == Values.end())
    567       return None;
    568     return &Result->second;
    569   }
    570 
    571   Optional<StratifiedIndex> indexOf(const T &Val) {
    572     auto MaybeVal = get(Val);
    573     if (!MaybeVal.hasValue())
    574       return None;
    575     auto *Info = *MaybeVal;
    576     auto &Link = linksAt(Info->Index);
    577     return Link.Number;
    578   }
    579 
    580   StratifiedIndex addLinkBelow(StratifiedIndex Set) {
    581     auto At = addLinks();
    582     Links[Set].setBelow(At);
    583     Links[At].setAbove(Set);
    584     return At;
    585   }
    586 
    587   StratifiedIndex addLinkAbove(StratifiedIndex Set) {
    588     auto At = addLinks();
    589     Links[At].setBelow(Set);
    590     Links[Set].setAbove(At);
    591     return At;
    592   }
    593 
    594   StratifiedIndex getNewUnlinkedIndex() { return addLinks(); }
    595 
    596   StratifiedIndex addLinks() {
    597     auto Link = Links.size();
    598     Links.push_back(BuilderLink(Link));
    599     return Link;
    600   }
    601 
    602   bool inbounds(StratifiedIndex N) const { return N < Links.size(); }
    603 };
    604 }
    605 }
    606 #endif // LLVM_ADT_STRATIFIEDSETS_H
    607