Home | History | Annotate | Download | only in CodeGen
      1 //===--------------------- InterleavedAccessPass.cpp ----------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the Interleaved Access pass, which identifies
     11 // interleaved memory accesses and transforms them into target specific
     12 // intrinsics.
     13 //
     14 // An interleaved load reads data from memory into several vectors, with
     15 // DE-interleaving the data on a factor. An interleaved store writes several
     16 // vectors to memory with RE-interleaving the data on a factor.
     17 //
     18 // As interleaved accesses are difficult to identified in CodeGen (mainly
     19 // because the VECTOR_SHUFFLE DAG node is quite different from the shufflevector
     20 // IR), we identify and transform them to intrinsics in this pass so the
     21 // intrinsics can be easily matched into target specific instructions later in
     22 // CodeGen.
     23 //
     24 // E.g. An interleaved load (Factor = 2):
     25 //        %wide.vec = load <8 x i32>, <8 x i32>* %ptr
     26 //        %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <0, 2, 4, 6>
     27 //        %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <1, 3, 5, 7>
     28 //
     29 // It could be transformed into a ld2 intrinsic in AArch64 backend or a vld2
     30 // intrinsic in ARM backend.
     31 //
     32 // E.g. An interleaved store (Factor = 3):
     33 //        %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
     34 //                                    <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
     35 //        store <12 x i32> %i.vec, <12 x i32>* %ptr
     36 //
     37 // It could be transformed into a st3 intrinsic in AArch64 backend or a vst3
     38 // intrinsic in ARM backend.
     39 //
     40 //===----------------------------------------------------------------------===//
     41 
     42 #include "llvm/CodeGen/Passes.h"
     43 #include "llvm/IR/Dominators.h"
     44 #include "llvm/IR/InstIterator.h"
     45 #include "llvm/Support/Debug.h"
     46 #include "llvm/Support/MathExtras.h"
     47 #include "llvm/Support/raw_ostream.h"
     48 #include "llvm/Target/TargetLowering.h"
     49 #include "llvm/Target/TargetSubtargetInfo.h"
     50 
     51 using namespace llvm;
     52 
     53 #define DEBUG_TYPE "interleaved-access"
     54 
     55 static cl::opt<bool> LowerInterleavedAccesses(
     56     "lower-interleaved-accesses",
     57     cl::desc("Enable lowering interleaved accesses to intrinsics"),
     58     cl::init(true), cl::Hidden);
     59 
     60 static unsigned MaxFactor; // The maximum supported interleave factor.
     61 
     62 namespace {
     63 
     64 class InterleavedAccess : public FunctionPass {
     65 
     66 public:
     67   static char ID;
     68   InterleavedAccess(const TargetMachine *TM = nullptr)
     69       : FunctionPass(ID), DT(nullptr), TM(TM), TLI(nullptr) {
     70     initializeInterleavedAccessPass(*PassRegistry::getPassRegistry());
     71   }
     72 
     73   const char *getPassName() const override { return "Interleaved Access Pass"; }
     74 
     75   bool runOnFunction(Function &F) override;
     76 
     77   void getAnalysisUsage(AnalysisUsage &AU) const override {
     78     AU.addRequired<DominatorTreeWrapperPass>();
     79     AU.addPreserved<DominatorTreeWrapperPass>();
     80   }
     81 
     82 private:
     83   DominatorTree *DT;
     84   const TargetMachine *TM;
     85   const TargetLowering *TLI;
     86 
     87   /// \brief Transform an interleaved load into target specific intrinsics.
     88   bool lowerInterleavedLoad(LoadInst *LI,
     89                             SmallVector<Instruction *, 32> &DeadInsts);
     90 
     91   /// \brief Transform an interleaved store into target specific intrinsics.
     92   bool lowerInterleavedStore(StoreInst *SI,
     93                              SmallVector<Instruction *, 32> &DeadInsts);
     94 
     95   /// \brief Returns true if the uses of an interleaved load by the
     96   /// extractelement instructions in \p Extracts can be replaced by uses of the
     97   /// shufflevector instructions in \p Shuffles instead. If so, the necessary
     98   /// replacements are also performed.
     99   bool tryReplaceExtracts(ArrayRef<ExtractElementInst *> Extracts,
    100                           ArrayRef<ShuffleVectorInst *> Shuffles);
    101 };
    102 } // end anonymous namespace.
    103 
    104 char InterleavedAccess::ID = 0;
    105 INITIALIZE_TM_PASS_BEGIN(
    106     InterleavedAccess, "interleaved-access",
    107     "Lower interleaved memory accesses to target specific intrinsics", false,
    108     false)
    109 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
    110 INITIALIZE_TM_PASS_END(
    111     InterleavedAccess, "interleaved-access",
    112     "Lower interleaved memory accesses to target specific intrinsics", false,
    113     false)
    114 
    115 FunctionPass *llvm::createInterleavedAccessPass(const TargetMachine *TM) {
    116   return new InterleavedAccess(TM);
    117 }
    118 
    119 /// \brief Check if the mask is a DE-interleave mask of the given factor
    120 /// \p Factor like:
    121 ///     <Index, Index+Factor, ..., Index+(NumElts-1)*Factor>
    122 static bool isDeInterleaveMaskOfFactor(ArrayRef<int> Mask, unsigned Factor,
    123                                        unsigned &Index) {
    124   // Check all potential start indices from 0 to (Factor - 1).
    125   for (Index = 0; Index < Factor; Index++) {
    126     unsigned i = 0;
    127 
    128     // Check that elements are in ascending order by Factor. Ignore undef
    129     // elements.
    130     for (; i < Mask.size(); i++)
    131       if (Mask[i] >= 0 && static_cast<unsigned>(Mask[i]) != Index + i * Factor)
    132         break;
    133 
    134     if (i == Mask.size())
    135       return true;
    136   }
    137 
    138   return false;
    139 }
    140 
    141 /// \brief Check if the mask is a DE-interleave mask for an interleaved load.
    142 ///
    143 /// E.g. DE-interleave masks (Factor = 2) could be:
    144 ///     <0, 2, 4, 6>    (mask of index 0 to extract even elements)
    145 ///     <1, 3, 5, 7>    (mask of index 1 to extract odd elements)
    146 static bool isDeInterleaveMask(ArrayRef<int> Mask, unsigned &Factor,
    147                                unsigned &Index) {
    148   if (Mask.size() < 2)
    149     return false;
    150 
    151   // Check potential Factors.
    152   for (Factor = 2; Factor <= MaxFactor; Factor++)
    153     if (isDeInterleaveMaskOfFactor(Mask, Factor, Index))
    154       return true;
    155 
    156   return false;
    157 }
    158 
    159 /// \brief Check if the mask is RE-interleave mask for an interleaved store.
    160 ///
    161 /// I.e. <0, NumSubElts, ... , NumSubElts*(Factor - 1), 1, NumSubElts + 1, ...>
    162 ///
    163 /// E.g. The RE-interleave mask (Factor = 2) could be:
    164 ///     <0, 4, 1, 5, 2, 6, 3, 7>
    165 static bool isReInterleaveMask(ArrayRef<int> Mask, unsigned &Factor) {
    166   unsigned NumElts = Mask.size();
    167   if (NumElts < 4)
    168     return false;
    169 
    170   // Check potential Factors.
    171   for (Factor = 2; Factor <= MaxFactor; Factor++) {
    172     if (NumElts % Factor)
    173       continue;
    174 
    175     unsigned NumSubElts = NumElts / Factor;
    176     if (!isPowerOf2_32(NumSubElts))
    177       continue;
    178 
    179     // Check whether each element matchs the RE-interleaved rule. Ignore undef
    180     // elements.
    181     unsigned i = 0;
    182     for (; i < NumElts; i++)
    183       if (Mask[i] >= 0 &&
    184           static_cast<unsigned>(Mask[i]) !=
    185               (i % Factor) * NumSubElts + i / Factor)
    186         break;
    187 
    188     // Find a RE-interleaved mask of current factor.
    189     if (i == NumElts)
    190       return true;
    191   }
    192 
    193   return false;
    194 }
    195 
    196 bool InterleavedAccess::lowerInterleavedLoad(
    197     LoadInst *LI, SmallVector<Instruction *, 32> &DeadInsts) {
    198   if (!LI->isSimple())
    199     return false;
    200 
    201   SmallVector<ShuffleVectorInst *, 4> Shuffles;
    202   SmallVector<ExtractElementInst *, 4> Extracts;
    203 
    204   // Check if all users of this load are shufflevectors. If we encounter any
    205   // users that are extractelement instructions, we save them to later check if
    206   // they can be modifed to extract from one of the shufflevectors instead of
    207   // the load.
    208   for (auto UI = LI->user_begin(), E = LI->user_end(); UI != E; UI++) {
    209     auto *Extract = dyn_cast<ExtractElementInst>(*UI);
    210     if (Extract && isa<ConstantInt>(Extract->getIndexOperand())) {
    211       Extracts.push_back(Extract);
    212       continue;
    213     }
    214     ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(*UI);
    215     if (!SVI || !isa<UndefValue>(SVI->getOperand(1)))
    216       return false;
    217 
    218     Shuffles.push_back(SVI);
    219   }
    220 
    221   if (Shuffles.empty())
    222     return false;
    223 
    224   unsigned Factor, Index;
    225 
    226   // Check if the first shufflevector is DE-interleave shuffle.
    227   if (!isDeInterleaveMask(Shuffles[0]->getShuffleMask(), Factor, Index))
    228     return false;
    229 
    230   // Holds the corresponding index for each DE-interleave shuffle.
    231   SmallVector<unsigned, 4> Indices;
    232   Indices.push_back(Index);
    233 
    234   Type *VecTy = Shuffles[0]->getType();
    235 
    236   // Check if other shufflevectors are also DE-interleaved of the same type
    237   // and factor as the first shufflevector.
    238   for (unsigned i = 1; i < Shuffles.size(); i++) {
    239     if (Shuffles[i]->getType() != VecTy)
    240       return false;
    241 
    242     if (!isDeInterleaveMaskOfFactor(Shuffles[i]->getShuffleMask(), Factor,
    243                                     Index))
    244       return false;
    245 
    246     Indices.push_back(Index);
    247   }
    248 
    249   // Try and modify users of the load that are extractelement instructions to
    250   // use the shufflevector instructions instead of the load.
    251   if (!tryReplaceExtracts(Extracts, Shuffles))
    252     return false;
    253 
    254   DEBUG(dbgs() << "IA: Found an interleaved load: " << *LI << "\n");
    255 
    256   // Try to create target specific intrinsics to replace the load and shuffles.
    257   if (!TLI->lowerInterleavedLoad(LI, Shuffles, Indices, Factor))
    258     return false;
    259 
    260   for (auto SVI : Shuffles)
    261     DeadInsts.push_back(SVI);
    262 
    263   DeadInsts.push_back(LI);
    264   return true;
    265 }
    266 
    267 bool InterleavedAccess::tryReplaceExtracts(
    268     ArrayRef<ExtractElementInst *> Extracts,
    269     ArrayRef<ShuffleVectorInst *> Shuffles) {
    270 
    271   // If there aren't any extractelement instructions to modify, there's nothing
    272   // to do.
    273   if (Extracts.empty())
    274     return true;
    275 
    276   // Maps extractelement instructions to vector-index pairs. The extractlement
    277   // instructions will be modified to use the new vector and index operands.
    278   DenseMap<ExtractElementInst *, std::pair<Value *, int>> ReplacementMap;
    279 
    280   for (auto *Extract : Extracts) {
    281 
    282     // The vector index that is extracted.
    283     auto *IndexOperand = cast<ConstantInt>(Extract->getIndexOperand());
    284     auto Index = IndexOperand->getSExtValue();
    285 
    286     // Look for a suitable shufflevector instruction. The goal is to modify the
    287     // extractelement instruction (which uses an interleaved load) to use one
    288     // of the shufflevector instructions instead of the load.
    289     for (auto *Shuffle : Shuffles) {
    290 
    291       // If the shufflevector instruction doesn't dominate the extract, we
    292       // can't create a use of it.
    293       if (!DT->dominates(Shuffle, Extract))
    294         continue;
    295 
    296       // Inspect the indices of the shufflevector instruction. If the shuffle
    297       // selects the same index that is extracted, we can modify the
    298       // extractelement instruction.
    299       SmallVector<int, 4> Indices;
    300       Shuffle->getShuffleMask(Indices);
    301       for (unsigned I = 0; I < Indices.size(); ++I)
    302         if (Indices[I] == Index) {
    303           assert(Extract->getOperand(0) == Shuffle->getOperand(0) &&
    304                  "Vector operations do not match");
    305           ReplacementMap[Extract] = std::make_pair(Shuffle, I);
    306           break;
    307         }
    308 
    309       // If we found a suitable shufflevector instruction, stop looking.
    310       if (ReplacementMap.count(Extract))
    311         break;
    312     }
    313 
    314     // If we did not find a suitable shufflevector instruction, the
    315     // extractelement instruction cannot be modified, so we must give up.
    316     if (!ReplacementMap.count(Extract))
    317       return false;
    318   }
    319 
    320   // Finally, perform the replacements.
    321   IRBuilder<> Builder(Extracts[0]->getContext());
    322   for (auto &Replacement : ReplacementMap) {
    323     auto *Extract = Replacement.first;
    324     auto *Vector = Replacement.second.first;
    325     auto Index = Replacement.second.second;
    326     Builder.SetInsertPoint(Extract);
    327     Extract->replaceAllUsesWith(Builder.CreateExtractElement(Vector, Index));
    328     Extract->eraseFromParent();
    329   }
    330 
    331   return true;
    332 }
    333 
    334 bool InterleavedAccess::lowerInterleavedStore(
    335     StoreInst *SI, SmallVector<Instruction *, 32> &DeadInsts) {
    336   if (!SI->isSimple())
    337     return false;
    338 
    339   ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(SI->getValueOperand());
    340   if (!SVI || !SVI->hasOneUse())
    341     return false;
    342 
    343   // Check if the shufflevector is RE-interleave shuffle.
    344   unsigned Factor;
    345   if (!isReInterleaveMask(SVI->getShuffleMask(), Factor))
    346     return false;
    347 
    348   DEBUG(dbgs() << "IA: Found an interleaved store: " << *SI << "\n");
    349 
    350   // Try to create target specific intrinsics to replace the store and shuffle.
    351   if (!TLI->lowerInterleavedStore(SI, SVI, Factor))
    352     return false;
    353 
    354   // Already have a new target specific interleaved store. Erase the old store.
    355   DeadInsts.push_back(SI);
    356   DeadInsts.push_back(SVI);
    357   return true;
    358 }
    359 
    360 bool InterleavedAccess::runOnFunction(Function &F) {
    361   if (!TM || !LowerInterleavedAccesses)
    362     return false;
    363 
    364   DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName() << "\n");
    365 
    366   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    367   TLI = TM->getSubtargetImpl(F)->getTargetLowering();
    368   MaxFactor = TLI->getMaxSupportedInterleaveFactor();
    369 
    370   // Holds dead instructions that will be erased later.
    371   SmallVector<Instruction *, 32> DeadInsts;
    372   bool Changed = false;
    373 
    374   for (auto &I : instructions(F)) {
    375     if (LoadInst *LI = dyn_cast<LoadInst>(&I))
    376       Changed |= lowerInterleavedLoad(LI, DeadInsts);
    377 
    378     if (StoreInst *SI = dyn_cast<StoreInst>(&I))
    379       Changed |= lowerInterleavedStore(SI, DeadInsts);
    380   }
    381 
    382   for (auto I : DeadInsts)
    383     I->eraseFromParent();
    384 
    385   return Changed;
    386 }
    387