Home | History | Annotate | Download | only in CodeGen
      1 //===- LexicalScopes.cpp - Collecting lexical scope info ------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements LexicalScopes analysis.
     11 //
     12 // This pass collects lexical scope information and maps machine instructions
     13 // to respective lexical scopes.
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #include "llvm/CodeGen/LexicalScopes.h"
     18 #include "llvm/CodeGen/MachineFunction.h"
     19 #include "llvm/CodeGen/MachineInstr.h"
     20 #include "llvm/IR/DebugInfo.h"
     21 #include "llvm/IR/Function.h"
     22 #include "llvm/Support/Debug.h"
     23 #include "llvm/Support/ErrorHandling.h"
     24 #include "llvm/Support/FormattedStream.h"
     25 using namespace llvm;
     26 
     27 #define DEBUG_TYPE "lexicalscopes"
     28 
     29 /// reset - Reset the instance so that it's prepared for another function.
     30 void LexicalScopes::reset() {
     31   MF = nullptr;
     32   CurrentFnLexicalScope = nullptr;
     33   LexicalScopeMap.clear();
     34   AbstractScopeMap.clear();
     35   InlinedLexicalScopeMap.clear();
     36   AbstractScopesList.clear();
     37 }
     38 
     39 /// initialize - Scan machine function and constuct lexical scope nest.
     40 void LexicalScopes::initialize(const MachineFunction &Fn) {
     41   reset();
     42   MF = &Fn;
     43   SmallVector<InsnRange, 4> MIRanges;
     44   DenseMap<const MachineInstr *, LexicalScope *> MI2ScopeMap;
     45   extractLexicalScopes(MIRanges, MI2ScopeMap);
     46   if (CurrentFnLexicalScope) {
     47     constructScopeNest(CurrentFnLexicalScope);
     48     assignInstructionRanges(MIRanges, MI2ScopeMap);
     49   }
     50 }
     51 
     52 /// extractLexicalScopes - Extract instruction ranges for each lexical scopes
     53 /// for the given machine function.
     54 void LexicalScopes::extractLexicalScopes(
     55     SmallVectorImpl<InsnRange> &MIRanges,
     56     DenseMap<const MachineInstr *, LexicalScope *> &MI2ScopeMap) {
     57 
     58   // Scan each instruction and create scopes. First build working set of scopes.
     59   for (const auto &MBB : *MF) {
     60     const MachineInstr *RangeBeginMI = nullptr;
     61     const MachineInstr *PrevMI = nullptr;
     62     const DILocation *PrevDL = nullptr;
     63     for (const auto &MInsn : MBB) {
     64       // Check if instruction has valid location information.
     65       const DILocation *MIDL = MInsn.getDebugLoc();
     66       if (!MIDL) {
     67         PrevMI = &MInsn;
     68         continue;
     69       }
     70 
     71       // If scope has not changed then skip this instruction.
     72       if (MIDL == PrevDL) {
     73         PrevMI = &MInsn;
     74         continue;
     75       }
     76 
     77       // Ignore DBG_VALUE. It does not contribute to any instruction in output.
     78       if (MInsn.isDebugValue())
     79         continue;
     80 
     81       if (RangeBeginMI) {
     82         // If we have already seen a beginning of an instruction range and
     83         // current instruction scope does not match scope of first instruction
     84         // in this range then create a new instruction range.
     85         InsnRange R(RangeBeginMI, PrevMI);
     86         MI2ScopeMap[RangeBeginMI] = getOrCreateLexicalScope(PrevDL);
     87         MIRanges.push_back(R);
     88       }
     89 
     90       // This is a beginning of a new instruction range.
     91       RangeBeginMI = &MInsn;
     92 
     93       // Reset previous markers.
     94       PrevMI = &MInsn;
     95       PrevDL = MIDL;
     96     }
     97 
     98     // Create last instruction range.
     99     if (RangeBeginMI && PrevMI && PrevDL) {
    100       InsnRange R(RangeBeginMI, PrevMI);
    101       MIRanges.push_back(R);
    102       MI2ScopeMap[RangeBeginMI] = getOrCreateLexicalScope(PrevDL);
    103     }
    104   }
    105 }
    106 
    107 /// findLexicalScope - Find lexical scope, either regular or inlined, for the
    108 /// given DebugLoc. Return NULL if not found.
    109 LexicalScope *LexicalScopes::findLexicalScope(const DILocation *DL) {
    110   DILocalScope *Scope = DL->getScope();
    111   if (!Scope)
    112     return nullptr;
    113 
    114   // The scope that we were created with could have an extra file - which
    115   // isn't what we care about in this case.
    116   Scope = Scope->getNonLexicalBlockFileScope();
    117 
    118   if (auto *IA = DL->getInlinedAt()) {
    119     auto I = InlinedLexicalScopeMap.find(std::make_pair(Scope, IA));
    120     return I != InlinedLexicalScopeMap.end() ? &I->second : nullptr;
    121   }
    122   return findLexicalScope(Scope);
    123 }
    124 
    125 /// getOrCreateLexicalScope - Find lexical scope for the given DebugLoc. If
    126 /// not available then create new lexical scope.
    127 LexicalScope *LexicalScopes::getOrCreateLexicalScope(const DILocalScope *Scope,
    128                                                      const DILocation *IA) {
    129   if (IA) {
    130     // Create an abstract scope for inlined function.
    131     getOrCreateAbstractScope(Scope);
    132     // Create an inlined scope for inlined function.
    133     return getOrCreateInlinedScope(Scope, IA);
    134   }
    135 
    136   return getOrCreateRegularScope(Scope);
    137 }
    138 
    139 /// getOrCreateRegularScope - Find or create a regular lexical scope.
    140 LexicalScope *
    141 LexicalScopes::getOrCreateRegularScope(const DILocalScope *Scope) {
    142   assert(Scope && "Invalid Scope encoding!");
    143   Scope = Scope->getNonLexicalBlockFileScope();
    144 
    145   auto I = LexicalScopeMap.find(Scope);
    146   if (I != LexicalScopeMap.end())
    147     return &I->second;
    148 
    149   // FIXME: Should the following dyn_cast be DILexicalBlock?
    150   LexicalScope *Parent = nullptr;
    151   if (auto *Block = dyn_cast<DILexicalBlockBase>(Scope))
    152     Parent = getOrCreateLexicalScope(Block->getScope());
    153   I = LexicalScopeMap.emplace(std::piecewise_construct,
    154                               std::forward_as_tuple(Scope),
    155                               std::forward_as_tuple(Parent, Scope, nullptr,
    156                                                     false)).first;
    157 
    158   if (!Parent) {
    159     assert(cast<DISubprogram>(Scope)->describes(MF->getFunction()));
    160     assert(!CurrentFnLexicalScope);
    161     CurrentFnLexicalScope = &I->second;
    162   }
    163 
    164   return &I->second;
    165 }
    166 
    167 /// getOrCreateInlinedScope - Find or create an inlined lexical scope.
    168 LexicalScope *
    169 LexicalScopes::getOrCreateInlinedScope(const DILocalScope *Scope,
    170                                        const DILocation *InlinedAt) {
    171   assert(Scope && "Invalid Scope encoding!");
    172   Scope = Scope->getNonLexicalBlockFileScope();
    173   std::pair<const DILocalScope *, const DILocation *> P(Scope, InlinedAt);
    174   auto I = InlinedLexicalScopeMap.find(P);
    175   if (I != InlinedLexicalScopeMap.end())
    176     return &I->second;
    177 
    178   LexicalScope *Parent;
    179   if (auto *Block = dyn_cast<DILexicalBlockBase>(Scope))
    180     Parent = getOrCreateInlinedScope(Block->getScope(), InlinedAt);
    181   else
    182     Parent = getOrCreateLexicalScope(InlinedAt);
    183 
    184   I = InlinedLexicalScopeMap.emplace(std::piecewise_construct,
    185                                      std::forward_as_tuple(P),
    186                                      std::forward_as_tuple(Parent, Scope,
    187                                                            InlinedAt, false))
    188           .first;
    189   return &I->second;
    190 }
    191 
    192 /// getOrCreateAbstractScope - Find or create an abstract lexical scope.
    193 LexicalScope *
    194 LexicalScopes::getOrCreateAbstractScope(const DILocalScope *Scope) {
    195   assert(Scope && "Invalid Scope encoding!");
    196   Scope = Scope->getNonLexicalBlockFileScope();
    197   auto I = AbstractScopeMap.find(Scope);
    198   if (I != AbstractScopeMap.end())
    199     return &I->second;
    200 
    201   // FIXME: Should the following isa be DILexicalBlock?
    202   LexicalScope *Parent = nullptr;
    203   if (auto *Block = dyn_cast<DILexicalBlockBase>(Scope))
    204     Parent = getOrCreateAbstractScope(Block->getScope());
    205 
    206   I = AbstractScopeMap.emplace(std::piecewise_construct,
    207                                std::forward_as_tuple(Scope),
    208                                std::forward_as_tuple(Parent, Scope,
    209                                                      nullptr, true)).first;
    210   if (isa<DISubprogram>(Scope))
    211     AbstractScopesList.push_back(&I->second);
    212   return &I->second;
    213 }
    214 
    215 /// constructScopeNest
    216 void LexicalScopes::constructScopeNest(LexicalScope *Scope) {
    217   assert(Scope && "Unable to calculate scope dominance graph!");
    218   SmallVector<LexicalScope *, 4> WorkStack;
    219   WorkStack.push_back(Scope);
    220   unsigned Counter = 0;
    221   while (!WorkStack.empty()) {
    222     LexicalScope *WS = WorkStack.back();
    223     const SmallVectorImpl<LexicalScope *> &Children = WS->getChildren();
    224     bool visitedChildren = false;
    225     for (SmallVectorImpl<LexicalScope *>::const_iterator SI = Children.begin(),
    226                                                          SE = Children.end();
    227          SI != SE; ++SI) {
    228       LexicalScope *ChildScope = *SI;
    229       if (!ChildScope->getDFSOut()) {
    230         WorkStack.push_back(ChildScope);
    231         visitedChildren = true;
    232         ChildScope->setDFSIn(++Counter);
    233         break;
    234       }
    235     }
    236     if (!visitedChildren) {
    237       WorkStack.pop_back();
    238       WS->setDFSOut(++Counter);
    239     }
    240   }
    241 }
    242 
    243 /// assignInstructionRanges - Find ranges of instructions covered by each
    244 /// lexical scope.
    245 void LexicalScopes::assignInstructionRanges(
    246     SmallVectorImpl<InsnRange> &MIRanges,
    247     DenseMap<const MachineInstr *, LexicalScope *> &MI2ScopeMap) {
    248 
    249   LexicalScope *PrevLexicalScope = nullptr;
    250   for (SmallVectorImpl<InsnRange>::const_iterator RI = MIRanges.begin(),
    251                                                   RE = MIRanges.end();
    252        RI != RE; ++RI) {
    253     const InsnRange &R = *RI;
    254     LexicalScope *S = MI2ScopeMap.lookup(R.first);
    255     assert(S && "Lost LexicalScope for a machine instruction!");
    256     if (PrevLexicalScope && !PrevLexicalScope->dominates(S))
    257       PrevLexicalScope->closeInsnRange(S);
    258     S->openInsnRange(R.first);
    259     S->extendInsnRange(R.second);
    260     PrevLexicalScope = S;
    261   }
    262 
    263   if (PrevLexicalScope)
    264     PrevLexicalScope->closeInsnRange();
    265 }
    266 
    267 /// getMachineBasicBlocks - Populate given set using machine basic blocks which
    268 /// have machine instructions that belong to lexical scope identified by
    269 /// DebugLoc.
    270 void LexicalScopes::getMachineBasicBlocks(
    271     const DILocation *DL, SmallPtrSetImpl<const MachineBasicBlock *> &MBBs) {
    272   MBBs.clear();
    273   LexicalScope *Scope = getOrCreateLexicalScope(DL);
    274   if (!Scope)
    275     return;
    276 
    277   if (Scope == CurrentFnLexicalScope) {
    278     for (const auto &MBB : *MF)
    279       MBBs.insert(&MBB);
    280     return;
    281   }
    282 
    283   SmallVectorImpl<InsnRange> &InsnRanges = Scope->getRanges();
    284   for (SmallVectorImpl<InsnRange>::iterator I = InsnRanges.begin(),
    285                                             E = InsnRanges.end();
    286        I != E; ++I) {
    287     InsnRange &R = *I;
    288     MBBs.insert(R.first->getParent());
    289   }
    290 }
    291 
    292 /// dominates - Return true if DebugLoc's lexical scope dominates at least one
    293 /// machine instruction's lexical scope in a given machine basic block.
    294 bool LexicalScopes::dominates(const DILocation *DL, MachineBasicBlock *MBB) {
    295   LexicalScope *Scope = getOrCreateLexicalScope(DL);
    296   if (!Scope)
    297     return false;
    298 
    299   // Current function scope covers all basic blocks in the function.
    300   if (Scope == CurrentFnLexicalScope && MBB->getParent() == MF)
    301     return true;
    302 
    303   bool Result = false;
    304   for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;
    305        ++I) {
    306     if (const DILocation *IDL = I->getDebugLoc())
    307       if (LexicalScope *IScope = getOrCreateLexicalScope(IDL))
    308         if (Scope->dominates(IScope))
    309           return true;
    310   }
    311   return Result;
    312 }
    313 
    314 /// dump - Print data structures.
    315 void LexicalScope::dump(unsigned Indent) const {
    316 #ifndef NDEBUG
    317   raw_ostream &err = dbgs();
    318   err.indent(Indent);
    319   err << "DFSIn: " << DFSIn << " DFSOut: " << DFSOut << "\n";
    320   const MDNode *N = Desc;
    321   err.indent(Indent);
    322   N->dump();
    323   if (AbstractScope)
    324     err << std::string(Indent, ' ') << "Abstract Scope\n";
    325 
    326   if (!Children.empty())
    327     err << std::string(Indent + 2, ' ') << "Children ...\n";
    328   for (unsigned i = 0, e = Children.size(); i != e; ++i)
    329     if (Children[i] != this)
    330       Children[i]->dump(Indent + 2);
    331 #endif
    332 }
    333