Home | History | Annotate | Download | only in CodeGen
      1 //===-- ShadowStackGCLowering.cpp - Custom lowering for shadow-stack gc ---===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the custom lowering code required by the shadow-stack GC
     11 // strategy.
     12 //
     13 // This pass implements the code transformation described in this paper:
     14 //   "Accurate Garbage Collection in an Uncooperative Environment"
     15 //   Fergus Henderson, ISMM, 2002
     16 //
     17 //===----------------------------------------------------------------------===//
     18 
     19 #include "llvm/CodeGen/Passes.h"
     20 #include "llvm/ADT/StringExtras.h"
     21 #include "llvm/CodeGen/GCStrategy.h"
     22 #include "llvm/IR/CallSite.h"
     23 #include "llvm/IR/IRBuilder.h"
     24 #include "llvm/IR/IntrinsicInst.h"
     25 #include "llvm/IR/Module.h"
     26 
     27 using namespace llvm;
     28 
     29 #define DEBUG_TYPE "shadowstackgclowering"
     30 
     31 namespace {
     32 
     33 class ShadowStackGCLowering : public FunctionPass {
     34   /// RootChain - This is the global linked-list that contains the chain of GC
     35   /// roots.
     36   GlobalVariable *Head;
     37 
     38   /// StackEntryTy - Abstract type of a link in the shadow stack.
     39   ///
     40   StructType *StackEntryTy;
     41   StructType *FrameMapTy;
     42 
     43   /// Roots - GC roots in the current function. Each is a pair of the
     44   /// intrinsic call and its corresponding alloca.
     45   std::vector<std::pair<CallInst *, AllocaInst *>> Roots;
     46 
     47 public:
     48   static char ID;
     49   ShadowStackGCLowering();
     50 
     51   bool doInitialization(Module &M) override;
     52   bool runOnFunction(Function &F) override;
     53 
     54 private:
     55   bool IsNullValue(Value *V);
     56   Constant *GetFrameMap(Function &F);
     57   Type *GetConcreteStackEntryType(Function &F);
     58   void CollectRoots(Function &F);
     59   static GetElementPtrInst *CreateGEP(LLVMContext &Context, IRBuilder<> &B,
     60                                       Type *Ty, Value *BasePtr, int Idx1,
     61                                       const char *Name);
     62   static GetElementPtrInst *CreateGEP(LLVMContext &Context, IRBuilder<> &B,
     63                                       Type *Ty, Value *BasePtr, int Idx1, int Idx2,
     64                                       const char *Name);
     65 };
     66 }
     67 
     68 INITIALIZE_PASS_BEGIN(ShadowStackGCLowering, "shadow-stack-gc-lowering",
     69                       "Shadow Stack GC Lowering", false, false)
     70 INITIALIZE_PASS_DEPENDENCY(GCModuleInfo)
     71 INITIALIZE_PASS_END(ShadowStackGCLowering, "shadow-stack-gc-lowering",
     72                     "Shadow Stack GC Lowering", false, false)
     73 
     74 FunctionPass *llvm::createShadowStackGCLoweringPass() { return new ShadowStackGCLowering(); }
     75 
     76 char ShadowStackGCLowering::ID = 0;
     77 
     78 ShadowStackGCLowering::ShadowStackGCLowering()
     79   : FunctionPass(ID), Head(nullptr), StackEntryTy(nullptr),
     80     FrameMapTy(nullptr) {
     81   initializeShadowStackGCLoweringPass(*PassRegistry::getPassRegistry());
     82 }
     83 
     84 namespace {
     85 /// EscapeEnumerator - This is a little algorithm to find all escape points
     86 /// from a function so that "finally"-style code can be inserted. In addition
     87 /// to finding the existing return and unwind instructions, it also (if
     88 /// necessary) transforms any call instructions into invokes and sends them to
     89 /// a landing pad.
     90 ///
     91 /// It's wrapped up in a state machine using the same transform C# uses for
     92 /// 'yield return' enumerators, This transform allows it to be non-allocating.
     93 class EscapeEnumerator {
     94   Function &F;
     95   const char *CleanupBBName;
     96 
     97   // State.
     98   int State;
     99   Function::iterator StateBB, StateE;
    100   IRBuilder<> Builder;
    101 
    102 public:
    103   EscapeEnumerator(Function &F, const char *N = "cleanup")
    104       : F(F), CleanupBBName(N), State(0), Builder(F.getContext()) {}
    105 
    106   IRBuilder<> *Next() {
    107     switch (State) {
    108     default:
    109       return nullptr;
    110 
    111     case 0:
    112       StateBB = F.begin();
    113       StateE = F.end();
    114       State = 1;
    115 
    116     case 1:
    117       // Find all 'return', 'resume', and 'unwind' instructions.
    118       while (StateBB != StateE) {
    119         BasicBlock *CurBB = &*StateBB++;
    120 
    121         // Branches and invokes do not escape, only unwind, resume, and return
    122         // do.
    123         TerminatorInst *TI = CurBB->getTerminator();
    124         if (!isa<ReturnInst>(TI) && !isa<ResumeInst>(TI))
    125           continue;
    126 
    127         Builder.SetInsertPoint(TI);
    128         return &Builder;
    129       }
    130 
    131       State = 2;
    132 
    133       // Find all 'call' instructions.
    134       SmallVector<Instruction *, 16> Calls;
    135       for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
    136         for (BasicBlock::iterator II = BB->begin(), EE = BB->end(); II != EE;
    137              ++II)
    138           if (CallInst *CI = dyn_cast<CallInst>(II))
    139             if (!CI->getCalledFunction() ||
    140                 !CI->getCalledFunction()->getIntrinsicID())
    141               Calls.push_back(CI);
    142 
    143       if (Calls.empty())
    144         return nullptr;
    145 
    146       // Create a cleanup block.
    147       LLVMContext &C = F.getContext();
    148       BasicBlock *CleanupBB = BasicBlock::Create(C, CleanupBBName, &F);
    149       Type *ExnTy =
    150           StructType::get(Type::getInt8PtrTy(C), Type::getInt32Ty(C), nullptr);
    151       if (!F.hasPersonalityFn()) {
    152         Constant *PersFn = F.getParent()->getOrInsertFunction(
    153             "__gcc_personality_v0",
    154             FunctionType::get(Type::getInt32Ty(C), true));
    155         F.setPersonalityFn(PersFn);
    156       }
    157       LandingPadInst *LPad =
    158           LandingPadInst::Create(ExnTy, 1, "cleanup.lpad", CleanupBB);
    159       LPad->setCleanup(true);
    160       ResumeInst *RI = ResumeInst::Create(LPad, CleanupBB);
    161 
    162       // Transform the 'call' instructions into 'invoke's branching to the
    163       // cleanup block. Go in reverse order to make prettier BB names.
    164       SmallVector<Value *, 16> Args;
    165       for (unsigned I = Calls.size(); I != 0;) {
    166         CallInst *CI = cast<CallInst>(Calls[--I]);
    167 
    168         // Split the basic block containing the function call.
    169         BasicBlock *CallBB = CI->getParent();
    170         BasicBlock *NewBB = CallBB->splitBasicBlock(
    171             CI->getIterator(), CallBB->getName() + ".cont");
    172 
    173         // Remove the unconditional branch inserted at the end of CallBB.
    174         CallBB->getInstList().pop_back();
    175         NewBB->getInstList().remove(CI);
    176 
    177         // Create a new invoke instruction.
    178         Args.clear();
    179         CallSite CS(CI);
    180         Args.append(CS.arg_begin(), CS.arg_end());
    181 
    182         InvokeInst *II =
    183             InvokeInst::Create(CI->getCalledValue(), NewBB, CleanupBB, Args,
    184                                CI->getName(), CallBB);
    185         II->setCallingConv(CI->getCallingConv());
    186         II->setAttributes(CI->getAttributes());
    187         CI->replaceAllUsesWith(II);
    188         delete CI;
    189       }
    190 
    191       Builder.SetInsertPoint(RI);
    192       return &Builder;
    193     }
    194   }
    195 };
    196 }
    197 
    198 
    199 Constant *ShadowStackGCLowering::GetFrameMap(Function &F) {
    200   // doInitialization creates the abstract type of this value.
    201   Type *VoidPtr = Type::getInt8PtrTy(F.getContext());
    202 
    203   // Truncate the ShadowStackDescriptor if some metadata is null.
    204   unsigned NumMeta = 0;
    205   SmallVector<Constant *, 16> Metadata;
    206   for (unsigned I = 0; I != Roots.size(); ++I) {
    207     Constant *C = cast<Constant>(Roots[I].first->getArgOperand(1));
    208     if (!C->isNullValue())
    209       NumMeta = I + 1;
    210     Metadata.push_back(ConstantExpr::getBitCast(C, VoidPtr));
    211   }
    212   Metadata.resize(NumMeta);
    213 
    214   Type *Int32Ty = Type::getInt32Ty(F.getContext());
    215 
    216   Constant *BaseElts[] = {
    217       ConstantInt::get(Int32Ty, Roots.size(), false),
    218       ConstantInt::get(Int32Ty, NumMeta, false),
    219   };
    220 
    221   Constant *DescriptorElts[] = {
    222       ConstantStruct::get(FrameMapTy, BaseElts),
    223       ConstantArray::get(ArrayType::get(VoidPtr, NumMeta), Metadata)};
    224 
    225   Type *EltTys[] = {DescriptorElts[0]->getType(), DescriptorElts[1]->getType()};
    226   StructType *STy = StructType::create(EltTys, "gc_map." + utostr(NumMeta));
    227 
    228   Constant *FrameMap = ConstantStruct::get(STy, DescriptorElts);
    229 
    230   // FIXME: Is this actually dangerous as WritingAnLLVMPass.html claims? Seems
    231   //        that, short of multithreaded LLVM, it should be safe; all that is
    232   //        necessary is that a simple Module::iterator loop not be invalidated.
    233   //        Appending to the GlobalVariable list is safe in that sense.
    234   //
    235   //        All of the output passes emit globals last. The ExecutionEngine
    236   //        explicitly supports adding globals to the module after
    237   //        initialization.
    238   //
    239   //        Still, if it isn't deemed acceptable, then this transformation needs
    240   //        to be a ModulePass (which means it cannot be in the 'llc' pipeline
    241   //        (which uses a FunctionPassManager (which segfaults (not asserts) if
    242   //        provided a ModulePass))).
    243   Constant *GV = new GlobalVariable(*F.getParent(), FrameMap->getType(), true,
    244                                     GlobalVariable::InternalLinkage, FrameMap,
    245                                     "__gc_" + F.getName());
    246 
    247   Constant *GEPIndices[2] = {
    248       ConstantInt::get(Type::getInt32Ty(F.getContext()), 0),
    249       ConstantInt::get(Type::getInt32Ty(F.getContext()), 0)};
    250   return ConstantExpr::getGetElementPtr(FrameMap->getType(), GV, GEPIndices);
    251 }
    252 
    253 Type *ShadowStackGCLowering::GetConcreteStackEntryType(Function &F) {
    254   // doInitialization creates the generic version of this type.
    255   std::vector<Type *> EltTys;
    256   EltTys.push_back(StackEntryTy);
    257   for (size_t I = 0; I != Roots.size(); I++)
    258     EltTys.push_back(Roots[I].second->getAllocatedType());
    259 
    260   return StructType::create(EltTys, ("gc_stackentry." + F.getName()).str());
    261 }
    262 
    263 /// doInitialization - If this module uses the GC intrinsics, find them now. If
    264 /// not, exit fast.
    265 bool ShadowStackGCLowering::doInitialization(Module &M) {
    266   bool Active = false;
    267   for (Function &F : M) {
    268     if (F.hasGC() && F.getGC() == std::string("shadow-stack")) {
    269       Active = true;
    270       break;
    271     }
    272   }
    273   if (!Active)
    274     return false;
    275 
    276   // struct FrameMap {
    277   //   int32_t NumRoots; // Number of roots in stack frame.
    278   //   int32_t NumMeta;  // Number of metadata descriptors. May be < NumRoots.
    279   //   void *Meta[];     // May be absent for roots without metadata.
    280   // };
    281   std::vector<Type *> EltTys;
    282   // 32 bits is ok up to a 32GB stack frame. :)
    283   EltTys.push_back(Type::getInt32Ty(M.getContext()));
    284   // Specifies length of variable length array.
    285   EltTys.push_back(Type::getInt32Ty(M.getContext()));
    286   FrameMapTy = StructType::create(EltTys, "gc_map");
    287   PointerType *FrameMapPtrTy = PointerType::getUnqual(FrameMapTy);
    288 
    289   // struct StackEntry {
    290   //   ShadowStackEntry *Next; // Caller's stack entry.
    291   //   FrameMap *Map;          // Pointer to constant FrameMap.
    292   //   void *Roots[];          // Stack roots (in-place array, so we pretend).
    293   // };
    294 
    295   StackEntryTy = StructType::create(M.getContext(), "gc_stackentry");
    296 
    297   EltTys.clear();
    298   EltTys.push_back(PointerType::getUnqual(StackEntryTy));
    299   EltTys.push_back(FrameMapPtrTy);
    300   StackEntryTy->setBody(EltTys);
    301   PointerType *StackEntryPtrTy = PointerType::getUnqual(StackEntryTy);
    302 
    303   // Get the root chain if it already exists.
    304   Head = M.getGlobalVariable("llvm_gc_root_chain");
    305   if (!Head) {
    306     // If the root chain does not exist, insert a new one with linkonce
    307     // linkage!
    308     Head = new GlobalVariable(
    309         M, StackEntryPtrTy, false, GlobalValue::LinkOnceAnyLinkage,
    310         Constant::getNullValue(StackEntryPtrTy), "llvm_gc_root_chain");
    311   } else if (Head->hasExternalLinkage() && Head->isDeclaration()) {
    312     Head->setInitializer(Constant::getNullValue(StackEntryPtrTy));
    313     Head->setLinkage(GlobalValue::LinkOnceAnyLinkage);
    314   }
    315 
    316   return true;
    317 }
    318 
    319 bool ShadowStackGCLowering::IsNullValue(Value *V) {
    320   if (Constant *C = dyn_cast<Constant>(V))
    321     return C->isNullValue();
    322   return false;
    323 }
    324 
    325 void ShadowStackGCLowering::CollectRoots(Function &F) {
    326   // FIXME: Account for original alignment. Could fragment the root array.
    327   //   Approach 1: Null initialize empty slots at runtime. Yuck.
    328   //   Approach 2: Emit a map of the array instead of just a count.
    329 
    330   assert(Roots.empty() && "Not cleaned up?");
    331 
    332   SmallVector<std::pair<CallInst *, AllocaInst *>, 16> MetaRoots;
    333 
    334   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
    335     for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E;)
    336       if (IntrinsicInst *CI = dyn_cast<IntrinsicInst>(II++))
    337         if (Function *F = CI->getCalledFunction())
    338           if (F->getIntrinsicID() == Intrinsic::gcroot) {
    339             std::pair<CallInst *, AllocaInst *> Pair = std::make_pair(
    340                 CI,
    341                 cast<AllocaInst>(CI->getArgOperand(0)->stripPointerCasts()));
    342             if (IsNullValue(CI->getArgOperand(1)))
    343               Roots.push_back(Pair);
    344             else
    345               MetaRoots.push_back(Pair);
    346           }
    347 
    348   // Number roots with metadata (usually empty) at the beginning, so that the
    349   // FrameMap::Meta array can be elided.
    350   Roots.insert(Roots.begin(), MetaRoots.begin(), MetaRoots.end());
    351 }
    352 
    353 GetElementPtrInst *ShadowStackGCLowering::CreateGEP(LLVMContext &Context,
    354                                                     IRBuilder<> &B, Type *Ty,
    355                                                     Value *BasePtr, int Idx,
    356                                                     int Idx2,
    357                                                     const char *Name) {
    358   Value *Indices[] = {ConstantInt::get(Type::getInt32Ty(Context), 0),
    359                       ConstantInt::get(Type::getInt32Ty(Context), Idx),
    360                       ConstantInt::get(Type::getInt32Ty(Context), Idx2)};
    361   Value *Val = B.CreateGEP(Ty, BasePtr, Indices, Name);
    362 
    363   assert(isa<GetElementPtrInst>(Val) && "Unexpected folded constant");
    364 
    365   return dyn_cast<GetElementPtrInst>(Val);
    366 }
    367 
    368 GetElementPtrInst *ShadowStackGCLowering::CreateGEP(LLVMContext &Context,
    369                                             IRBuilder<> &B, Type *Ty, Value *BasePtr,
    370                                             int Idx, const char *Name) {
    371   Value *Indices[] = {ConstantInt::get(Type::getInt32Ty(Context), 0),
    372                       ConstantInt::get(Type::getInt32Ty(Context), Idx)};
    373   Value *Val = B.CreateGEP(Ty, BasePtr, Indices, Name);
    374 
    375   assert(isa<GetElementPtrInst>(Val) && "Unexpected folded constant");
    376 
    377   return dyn_cast<GetElementPtrInst>(Val);
    378 }
    379 
    380 /// runOnFunction - Insert code to maintain the shadow stack.
    381 bool ShadowStackGCLowering::runOnFunction(Function &F) {
    382   // Quick exit for functions that do not use the shadow stack GC.
    383   if (!F.hasGC() ||
    384       F.getGC() != std::string("shadow-stack"))
    385     return false;
    386 
    387   LLVMContext &Context = F.getContext();
    388 
    389   // Find calls to llvm.gcroot.
    390   CollectRoots(F);
    391 
    392   // If there are no roots in this function, then there is no need to add a
    393   // stack map entry for it.
    394   if (Roots.empty())
    395     return false;
    396 
    397   // Build the constant map and figure the type of the shadow stack entry.
    398   Value *FrameMap = GetFrameMap(F);
    399   Type *ConcreteStackEntryTy = GetConcreteStackEntryType(F);
    400 
    401   // Build the shadow stack entry at the very start of the function.
    402   BasicBlock::iterator IP = F.getEntryBlock().begin();
    403   IRBuilder<> AtEntry(IP->getParent(), IP);
    404 
    405   Instruction *StackEntry =
    406       AtEntry.CreateAlloca(ConcreteStackEntryTy, nullptr, "gc_frame");
    407 
    408   while (isa<AllocaInst>(IP))
    409     ++IP;
    410   AtEntry.SetInsertPoint(IP->getParent(), IP);
    411 
    412   // Initialize the map pointer and load the current head of the shadow stack.
    413   Instruction *CurrentHead = AtEntry.CreateLoad(Head, "gc_currhead");
    414   Instruction *EntryMapPtr = CreateGEP(Context, AtEntry, ConcreteStackEntryTy,
    415                                        StackEntry, 0, 1, "gc_frame.map");
    416   AtEntry.CreateStore(FrameMap, EntryMapPtr);
    417 
    418   // After all the allocas...
    419   for (unsigned I = 0, E = Roots.size(); I != E; ++I) {
    420     // For each root, find the corresponding slot in the aggregate...
    421     Value *SlotPtr = CreateGEP(Context, AtEntry, ConcreteStackEntryTy,
    422                                StackEntry, 1 + I, "gc_root");
    423 
    424     // And use it in lieu of the alloca.
    425     AllocaInst *OriginalAlloca = Roots[I].second;
    426     SlotPtr->takeName(OriginalAlloca);
    427     OriginalAlloca->replaceAllUsesWith(SlotPtr);
    428   }
    429 
    430   // Move past the original stores inserted by GCStrategy::InitRoots. This isn't
    431   // really necessary (the collector would never see the intermediate state at
    432   // runtime), but it's nicer not to push the half-initialized entry onto the
    433   // shadow stack.
    434   while (isa<StoreInst>(IP))
    435     ++IP;
    436   AtEntry.SetInsertPoint(IP->getParent(), IP);
    437 
    438   // Push the entry onto the shadow stack.
    439   Instruction *EntryNextPtr = CreateGEP(Context, AtEntry, ConcreteStackEntryTy,
    440                                         StackEntry, 0, 0, "gc_frame.next");
    441   Instruction *NewHeadVal = CreateGEP(Context, AtEntry, ConcreteStackEntryTy,
    442                                       StackEntry, 0, "gc_newhead");
    443   AtEntry.CreateStore(CurrentHead, EntryNextPtr);
    444   AtEntry.CreateStore(NewHeadVal, Head);
    445 
    446   // For each instruction that escapes...
    447   EscapeEnumerator EE(F, "gc_cleanup");
    448   while (IRBuilder<> *AtExit = EE.Next()) {
    449     // Pop the entry from the shadow stack. Don't reuse CurrentHead from
    450     // AtEntry, since that would make the value live for the entire function.
    451     Instruction *EntryNextPtr2 =
    452         CreateGEP(Context, *AtExit, ConcreteStackEntryTy, StackEntry, 0, 0,
    453                   "gc_frame.next");
    454     Value *SavedHead = AtExit->CreateLoad(EntryNextPtr2, "gc_savedhead");
    455     AtExit->CreateStore(SavedHead, Head);
    456   }
    457 
    458   // Delete the original allocas (which are no longer used) and the intrinsic
    459   // calls (which are no longer valid). Doing this last avoids invalidating
    460   // iterators.
    461   for (unsigned I = 0, E = Roots.size(); I != E; ++I) {
    462     Roots[I].first->eraseFromParent();
    463     Roots[I].second->eraseFromParent();
    464   }
    465 
    466   Roots.clear();
    467   return true;
    468 }
    469