Home | History | Annotate | Download | only in CodeGen
      1 //===-- ShrinkWrap.cpp - Compute safe point for prolog/epilog insertion ---===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass looks for safe point where the prologue and epilogue can be
     11 // inserted.
     12 // The safe point for the prologue (resp. epilogue) is called Save
     13 // (resp. Restore).
     14 // A point is safe for prologue (resp. epilogue) if and only if
     15 // it 1) dominates (resp. post-dominates) all the frame related operations and
     16 // between 2) two executions of the Save (resp. Restore) point there is an
     17 // execution of the Restore (resp. Save) point.
     18 //
     19 // For instance, the following points are safe:
     20 // for (int i = 0; i < 10; ++i) {
     21 //   Save
     22 //   ...
     23 //   Restore
     24 // }
     25 // Indeed, the execution looks like Save -> Restore -> Save -> Restore ...
     26 // And the following points are not:
     27 // for (int i = 0; i < 10; ++i) {
     28 //   Save
     29 //   ...
     30 // }
     31 // for (int i = 0; i < 10; ++i) {
     32 //   ...
     33 //   Restore
     34 // }
     35 // Indeed, the execution looks like Save -> Save -> ... -> Restore -> Restore.
     36 //
     37 // This pass also ensures that the safe points are 3) cheaper than the regular
     38 // entry and exits blocks.
     39 //
     40 // Property #1 is ensured via the use of MachineDominatorTree and
     41 // MachinePostDominatorTree.
     42 // Property #2 is ensured via property #1 and MachineLoopInfo, i.e., both
     43 // points must be in the same loop.
     44 // Property #3 is ensured via the MachineBlockFrequencyInfo.
     45 //
     46 // If this pass found points matching all these properties, then
     47 // MachineFrameInfo is updated with this information.
     48 //===----------------------------------------------------------------------===//
     49 #include "llvm/ADT/BitVector.h"
     50 #include "llvm/ADT/PostOrderIterator.h"
     51 #include "llvm/ADT/SetVector.h"
     52 #include "llvm/ADT/Statistic.h"
     53 // To check for profitability.
     54 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
     55 // For property #1 for Save.
     56 #include "llvm/CodeGen/MachineDominators.h"
     57 #include "llvm/CodeGen/MachineFunctionPass.h"
     58 // To record the result of the analysis.
     59 #include "llvm/CodeGen/MachineFrameInfo.h"
     60 // For property #2.
     61 #include "llvm/CodeGen/MachineLoopInfo.h"
     62 // For property #1 for Restore.
     63 #include "llvm/CodeGen/MachinePostDominators.h"
     64 #include "llvm/CodeGen/Passes.h"
     65 // To know about callee-saved.
     66 #include "llvm/CodeGen/RegisterClassInfo.h"
     67 #include "llvm/CodeGen/RegisterScavenging.h"
     68 #include "llvm/MC/MCAsmInfo.h"
     69 #include "llvm/Support/Debug.h"
     70 // To query the target about frame lowering.
     71 #include "llvm/Target/TargetFrameLowering.h"
     72 // To know about frame setup operation.
     73 #include "llvm/Target/TargetInstrInfo.h"
     74 #include "llvm/Target/TargetMachine.h"
     75 // To access TargetInstrInfo.
     76 #include "llvm/Target/TargetSubtargetInfo.h"
     77 
     78 #define DEBUG_TYPE "shrink-wrap"
     79 
     80 using namespace llvm;
     81 
     82 STATISTIC(NumFunc, "Number of functions");
     83 STATISTIC(NumCandidates, "Number of shrink-wrapping candidates");
     84 STATISTIC(NumCandidatesDropped,
     85           "Number of shrink-wrapping candidates dropped because of frequency");
     86 
     87 static cl::opt<cl::boolOrDefault>
     88     EnableShrinkWrapOpt("enable-shrink-wrap", cl::Hidden,
     89                         cl::desc("enable the shrink-wrapping pass"));
     90 
     91 namespace {
     92 /// \brief Class to determine where the safe point to insert the
     93 /// prologue and epilogue are.
     94 /// Unlike the paper from Fred C. Chow, PLDI'88, that introduces the
     95 /// shrink-wrapping term for prologue/epilogue placement, this pass
     96 /// does not rely on expensive data-flow analysis. Instead we use the
     97 /// dominance properties and loop information to decide which point
     98 /// are safe for such insertion.
     99 class ShrinkWrap : public MachineFunctionPass {
    100   /// Hold callee-saved information.
    101   RegisterClassInfo RCI;
    102   MachineDominatorTree *MDT;
    103   MachinePostDominatorTree *MPDT;
    104   /// Current safe point found for the prologue.
    105   /// The prologue will be inserted before the first instruction
    106   /// in this basic block.
    107   MachineBasicBlock *Save;
    108   /// Current safe point found for the epilogue.
    109   /// The epilogue will be inserted before the first terminator instruction
    110   /// in this basic block.
    111   MachineBasicBlock *Restore;
    112   /// Hold the information of the basic block frequency.
    113   /// Use to check the profitability of the new points.
    114   MachineBlockFrequencyInfo *MBFI;
    115   /// Hold the loop information. Used to determine if Save and Restore
    116   /// are in the same loop.
    117   MachineLoopInfo *MLI;
    118   /// Frequency of the Entry block.
    119   uint64_t EntryFreq;
    120   /// Current opcode for frame setup.
    121   unsigned FrameSetupOpcode;
    122   /// Current opcode for frame destroy.
    123   unsigned FrameDestroyOpcode;
    124   /// Entry block.
    125   const MachineBasicBlock *Entry;
    126   typedef SmallSetVector<unsigned, 16> SetOfRegs;
    127   /// Registers that need to be saved for the current function.
    128   mutable SetOfRegs CurrentCSRs;
    129   /// Current MachineFunction.
    130   MachineFunction *MachineFunc;
    131 
    132   /// \brief Check if \p MI uses or defines a callee-saved register or
    133   /// a frame index. If this is the case, this means \p MI must happen
    134   /// after Save and before Restore.
    135   bool useOrDefCSROrFI(const MachineInstr &MI, RegScavenger *RS) const;
    136 
    137   const SetOfRegs &getCurrentCSRs(RegScavenger *RS) const {
    138     if (CurrentCSRs.empty()) {
    139       BitVector SavedRegs;
    140       const TargetFrameLowering *TFI =
    141           MachineFunc->getSubtarget().getFrameLowering();
    142 
    143       TFI->determineCalleeSaves(*MachineFunc, SavedRegs, RS);
    144 
    145       for (int Reg = SavedRegs.find_first(); Reg != -1;
    146            Reg = SavedRegs.find_next(Reg))
    147         CurrentCSRs.insert((unsigned)Reg);
    148     }
    149     return CurrentCSRs;
    150   }
    151 
    152   /// \brief Update the Save and Restore points such that \p MBB is in
    153   /// the region that is dominated by Save and post-dominated by Restore
    154   /// and Save and Restore still match the safe point definition.
    155   /// Such point may not exist and Save and/or Restore may be null after
    156   /// this call.
    157   void updateSaveRestorePoints(MachineBasicBlock &MBB, RegScavenger *RS);
    158 
    159   /// \brief Initialize the pass for \p MF.
    160   void init(MachineFunction &MF) {
    161     RCI.runOnMachineFunction(MF);
    162     MDT = &getAnalysis<MachineDominatorTree>();
    163     MPDT = &getAnalysis<MachinePostDominatorTree>();
    164     Save = nullptr;
    165     Restore = nullptr;
    166     MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
    167     MLI = &getAnalysis<MachineLoopInfo>();
    168     EntryFreq = MBFI->getEntryFreq();
    169     const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
    170     FrameSetupOpcode = TII.getCallFrameSetupOpcode();
    171     FrameDestroyOpcode = TII.getCallFrameDestroyOpcode();
    172     Entry = &MF.front();
    173     CurrentCSRs.clear();
    174     MachineFunc = &MF;
    175 
    176     ++NumFunc;
    177   }
    178 
    179   /// Check whether or not Save and Restore points are still interesting for
    180   /// shrink-wrapping.
    181   bool ArePointsInteresting() const { return Save != Entry && Save && Restore; }
    182 
    183   /// \brief Check if shrink wrapping is enabled for this target and function.
    184   static bool isShrinkWrapEnabled(const MachineFunction &MF);
    185 
    186 public:
    187   static char ID;
    188 
    189   ShrinkWrap() : MachineFunctionPass(ID) {
    190     initializeShrinkWrapPass(*PassRegistry::getPassRegistry());
    191   }
    192 
    193   void getAnalysisUsage(AnalysisUsage &AU) const override {
    194     AU.setPreservesAll();
    195     AU.addRequired<MachineBlockFrequencyInfo>();
    196     AU.addRequired<MachineDominatorTree>();
    197     AU.addRequired<MachinePostDominatorTree>();
    198     AU.addRequired<MachineLoopInfo>();
    199     MachineFunctionPass::getAnalysisUsage(AU);
    200   }
    201 
    202   const char *getPassName() const override {
    203     return "Shrink Wrapping analysis";
    204   }
    205 
    206   /// \brief Perform the shrink-wrapping analysis and update
    207   /// the MachineFrameInfo attached to \p MF with the results.
    208   bool runOnMachineFunction(MachineFunction &MF) override;
    209 };
    210 } // End anonymous namespace.
    211 
    212 char ShrinkWrap::ID = 0;
    213 char &llvm::ShrinkWrapID = ShrinkWrap::ID;
    214 
    215 INITIALIZE_PASS_BEGIN(ShrinkWrap, "shrink-wrap", "Shrink Wrap Pass", false,
    216                       false)
    217 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
    218 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
    219 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
    220 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
    221 INITIALIZE_PASS_END(ShrinkWrap, "shrink-wrap", "Shrink Wrap Pass", false, false)
    222 
    223 bool ShrinkWrap::useOrDefCSROrFI(const MachineInstr &MI,
    224                                  RegScavenger *RS) const {
    225   if (MI.getOpcode() == FrameSetupOpcode ||
    226       MI.getOpcode() == FrameDestroyOpcode) {
    227     DEBUG(dbgs() << "Frame instruction: " << MI << '\n');
    228     return true;
    229   }
    230   for (const MachineOperand &MO : MI.operands()) {
    231     bool UseOrDefCSR = false;
    232     if (MO.isReg()) {
    233       unsigned PhysReg = MO.getReg();
    234       if (!PhysReg)
    235         continue;
    236       assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) &&
    237              "Unallocated register?!");
    238       UseOrDefCSR = RCI.getLastCalleeSavedAlias(PhysReg);
    239     } else if (MO.isRegMask()) {
    240       // Check if this regmask clobbers any of the CSRs.
    241       for (unsigned Reg : getCurrentCSRs(RS)) {
    242         if (MO.clobbersPhysReg(Reg)) {
    243           UseOrDefCSR = true;
    244           break;
    245         }
    246       }
    247     }
    248     if (UseOrDefCSR || MO.isFI()) {
    249       DEBUG(dbgs() << "Use or define CSR(" << UseOrDefCSR << ") or FI("
    250                    << MO.isFI() << "): " << MI << '\n');
    251       return true;
    252     }
    253   }
    254   return false;
    255 }
    256 
    257 /// \brief Helper function to find the immediate (post) dominator.
    258 template <typename ListOfBBs, typename DominanceAnalysis>
    259 MachineBasicBlock *FindIDom(MachineBasicBlock &Block, ListOfBBs BBs,
    260                             DominanceAnalysis &Dom) {
    261   MachineBasicBlock *IDom = &Block;
    262   for (MachineBasicBlock *BB : BBs) {
    263     IDom = Dom.findNearestCommonDominator(IDom, BB);
    264     if (!IDom)
    265       break;
    266   }
    267   if (IDom == &Block)
    268     return nullptr;
    269   return IDom;
    270 }
    271 
    272 void ShrinkWrap::updateSaveRestorePoints(MachineBasicBlock &MBB,
    273                                          RegScavenger *RS) {
    274   // Get rid of the easy cases first.
    275   if (!Save)
    276     Save = &MBB;
    277   else
    278     Save = MDT->findNearestCommonDominator(Save, &MBB);
    279 
    280   if (!Save) {
    281     DEBUG(dbgs() << "Found a block that is not reachable from Entry\n");
    282     return;
    283   }
    284 
    285   if (!Restore)
    286     Restore = &MBB;
    287   else
    288     Restore = MPDT->findNearestCommonDominator(Restore, &MBB);
    289 
    290   // Make sure we would be able to insert the restore code before the
    291   // terminator.
    292   if (Restore == &MBB) {
    293     for (const MachineInstr &Terminator : MBB.terminators()) {
    294       if (!useOrDefCSROrFI(Terminator, RS))
    295         continue;
    296       // One of the terminator needs to happen before the restore point.
    297       if (MBB.succ_empty()) {
    298         Restore = nullptr;
    299         break;
    300       }
    301       // Look for a restore point that post-dominates all the successors.
    302       // The immediate post-dominator is what we are looking for.
    303       Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT);
    304       break;
    305     }
    306   }
    307 
    308   if (!Restore) {
    309     DEBUG(dbgs() << "Restore point needs to be spanned on several blocks\n");
    310     return;
    311   }
    312 
    313   // Make sure Save and Restore are suitable for shrink-wrapping:
    314   // 1. all path from Save needs to lead to Restore before exiting.
    315   // 2. all path to Restore needs to go through Save from Entry.
    316   // We achieve that by making sure that:
    317   // A. Save dominates Restore.
    318   // B. Restore post-dominates Save.
    319   // C. Save and Restore are in the same loop.
    320   bool SaveDominatesRestore = false;
    321   bool RestorePostDominatesSave = false;
    322   while (Save && Restore &&
    323          (!(SaveDominatesRestore = MDT->dominates(Save, Restore)) ||
    324           !(RestorePostDominatesSave = MPDT->dominates(Restore, Save)) ||
    325           // Post-dominance is not enough in loops to ensure that all uses/defs
    326           // are after the prologue and before the epilogue at runtime.
    327           // E.g.,
    328           // while(1) {
    329           //  Save
    330           //  Restore
    331           //   if (...)
    332           //     break;
    333           //  use/def CSRs
    334           // }
    335           // All the uses/defs of CSRs are dominated by Save and post-dominated
    336           // by Restore. However, the CSRs uses are still reachable after
    337           // Restore and before Save are executed.
    338           //
    339           // For now, just push the restore/save points outside of loops.
    340           // FIXME: Refine the criteria to still find interesting cases
    341           // for loops.
    342           MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) {
    343     // Fix (A).
    344     if (!SaveDominatesRestore) {
    345       Save = MDT->findNearestCommonDominator(Save, Restore);
    346       continue;
    347     }
    348     // Fix (B).
    349     if (!RestorePostDominatesSave)
    350       Restore = MPDT->findNearestCommonDominator(Restore, Save);
    351 
    352     // Fix (C).
    353     if (Save && Restore &&
    354         (MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) {
    355       if (MLI->getLoopDepth(Save) > MLI->getLoopDepth(Restore)) {
    356         // Push Save outside of this loop if immediate dominator is different
    357         // from save block. If immediate dominator is not different, bail out.
    358         Save = FindIDom<>(*Save, Save->predecessors(), *MDT);
    359         if (!Save)
    360           break;
    361       } else {
    362         // If the loop does not exit, there is no point in looking
    363         // for a post-dominator outside the loop.
    364         SmallVector<MachineBasicBlock*, 4> ExitBlocks;
    365         MLI->getLoopFor(Restore)->getExitingBlocks(ExitBlocks);
    366         // Push Restore outside of this loop.
    367         // Look for the immediate post-dominator of the loop exits.
    368         MachineBasicBlock *IPdom = Restore;
    369         for (MachineBasicBlock *LoopExitBB: ExitBlocks) {
    370           IPdom = FindIDom<>(*IPdom, LoopExitBB->successors(), *MPDT);
    371           if (!IPdom)
    372             break;
    373         }
    374         // If the immediate post-dominator is not in a less nested loop,
    375         // then we are stuck in a program with an infinite loop.
    376         // In that case, we will not find a safe point, hence, bail out.
    377         if (IPdom && MLI->getLoopDepth(IPdom) < MLI->getLoopDepth(Restore))
    378           Restore = IPdom;
    379         else {
    380           Restore = nullptr;
    381           break;
    382         }
    383       }
    384     }
    385   }
    386 }
    387 
    388 /// Check whether the edge (\p SrcBB, \p DestBB) is a backedge according to MLI.
    389 /// I.e., check if it exists a loop that contains SrcBB and where DestBB is the
    390 /// loop header.
    391 static bool isProperBackedge(const MachineLoopInfo &MLI,
    392                              const MachineBasicBlock *SrcBB,
    393                              const MachineBasicBlock *DestBB) {
    394   for (const MachineLoop *Loop = MLI.getLoopFor(SrcBB); Loop;
    395        Loop = Loop->getParentLoop()) {
    396     if (Loop->getHeader() == DestBB)
    397       return true;
    398   }
    399   return false;
    400 }
    401 
    402 /// Check if the CFG of \p MF is irreducible.
    403 static bool isIrreducibleCFG(const MachineFunction &MF,
    404                              const MachineLoopInfo &MLI) {
    405   const MachineBasicBlock *Entry = &*MF.begin();
    406   ReversePostOrderTraversal<const MachineBasicBlock *> RPOT(Entry);
    407   BitVector VisitedBB(MF.getNumBlockIDs());
    408   for (const MachineBasicBlock *MBB : RPOT) {
    409     VisitedBB.set(MBB->getNumber());
    410     for (const MachineBasicBlock *SuccBB : MBB->successors()) {
    411       if (!VisitedBB.test(SuccBB->getNumber()))
    412         continue;
    413       // We already visited SuccBB, thus MBB->SuccBB must be a backedge.
    414       // Check that the head matches what we have in the loop information.
    415       // Otherwise, we have an irreducible graph.
    416       if (!isProperBackedge(MLI, MBB, SuccBB))
    417         return true;
    418     }
    419   }
    420   return false;
    421 }
    422 
    423 bool ShrinkWrap::runOnMachineFunction(MachineFunction &MF) {
    424   if (MF.empty() || !isShrinkWrapEnabled(MF))
    425     return false;
    426 
    427   DEBUG(dbgs() << "**** Analysing " << MF.getName() << '\n');
    428 
    429   init(MF);
    430 
    431   if (isIrreducibleCFG(MF, *MLI)) {
    432     // If MF is irreducible, a block may be in a loop without
    433     // MachineLoopInfo reporting it. I.e., we may use the
    434     // post-dominance property in loops, which lead to incorrect
    435     // results. Moreover, we may miss that the prologue and
    436     // epilogue are not in the same loop, leading to unbalanced
    437     // construction/deconstruction of the stack frame.
    438     DEBUG(dbgs() << "Irreducible CFGs are not supported yet\n");
    439     return false;
    440   }
    441 
    442   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
    443   std::unique_ptr<RegScavenger> RS(
    444       TRI->requiresRegisterScavenging(MF) ? new RegScavenger() : nullptr);
    445 
    446   for (MachineBasicBlock &MBB : MF) {
    447     DEBUG(dbgs() << "Look into: " << MBB.getNumber() << ' ' << MBB.getName()
    448                  << '\n');
    449 
    450     if (MBB.isEHFuncletEntry()) {
    451       DEBUG(dbgs() << "EH Funclets are not supported yet.\n");
    452       return false;
    453     }
    454 
    455     for (const MachineInstr &MI : MBB) {
    456       if (!useOrDefCSROrFI(MI, RS.get()))
    457         continue;
    458       // Save (resp. restore) point must dominate (resp. post dominate)
    459       // MI. Look for the proper basic block for those.
    460       updateSaveRestorePoints(MBB, RS.get());
    461       // If we are at a point where we cannot improve the placement of
    462       // save/restore instructions, just give up.
    463       if (!ArePointsInteresting()) {
    464         DEBUG(dbgs() << "No Shrink wrap candidate found\n");
    465         return false;
    466       }
    467       // No need to look for other instructions, this basic block
    468       // will already be part of the handled region.
    469       break;
    470     }
    471   }
    472   if (!ArePointsInteresting()) {
    473     // If the points are not interesting at this point, then they must be null
    474     // because it means we did not encounter any frame/CSR related code.
    475     // Otherwise, we would have returned from the previous loop.
    476     assert(!Save && !Restore && "We miss a shrink-wrap opportunity?!");
    477     DEBUG(dbgs() << "Nothing to shrink-wrap\n");
    478     return false;
    479   }
    480 
    481   DEBUG(dbgs() << "\n ** Results **\nFrequency of the Entry: " << EntryFreq
    482                << '\n');
    483 
    484   const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
    485   do {
    486     DEBUG(dbgs() << "Shrink wrap candidates (#, Name, Freq):\nSave: "
    487                  << Save->getNumber() << ' ' << Save->getName() << ' '
    488                  << MBFI->getBlockFreq(Save).getFrequency() << "\nRestore: "
    489                  << Restore->getNumber() << ' ' << Restore->getName() << ' '
    490                  << MBFI->getBlockFreq(Restore).getFrequency() << '\n');
    491 
    492     bool IsSaveCheap, TargetCanUseSaveAsPrologue = false;
    493     if (((IsSaveCheap = EntryFreq >= MBFI->getBlockFreq(Save).getFrequency()) &&
    494          EntryFreq >= MBFI->getBlockFreq(Restore).getFrequency()) &&
    495         ((TargetCanUseSaveAsPrologue = TFI->canUseAsPrologue(*Save)) &&
    496          TFI->canUseAsEpilogue(*Restore)))
    497       break;
    498     DEBUG(dbgs() << "New points are too expensive or invalid for the target\n");
    499     MachineBasicBlock *NewBB;
    500     if (!IsSaveCheap || !TargetCanUseSaveAsPrologue) {
    501       Save = FindIDom<>(*Save, Save->predecessors(), *MDT);
    502       if (!Save)
    503         break;
    504       NewBB = Save;
    505     } else {
    506       // Restore is expensive.
    507       Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT);
    508       if (!Restore)
    509         break;
    510       NewBB = Restore;
    511     }
    512     updateSaveRestorePoints(*NewBB, RS.get());
    513   } while (Save && Restore);
    514 
    515   if (!ArePointsInteresting()) {
    516     ++NumCandidatesDropped;
    517     return false;
    518   }
    519 
    520   DEBUG(dbgs() << "Final shrink wrap candidates:\nSave: " << Save->getNumber()
    521                << ' ' << Save->getName() << "\nRestore: "
    522                << Restore->getNumber() << ' ' << Restore->getName() << '\n');
    523 
    524   MachineFrameInfo *MFI = MF.getFrameInfo();
    525   MFI->setSavePoint(Save);
    526   MFI->setRestorePoint(Restore);
    527   ++NumCandidates;
    528   return false;
    529 }
    530 
    531 bool ShrinkWrap::isShrinkWrapEnabled(const MachineFunction &MF) {
    532   const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
    533 
    534   switch (EnableShrinkWrapOpt) {
    535   case cl::BOU_UNSET:
    536     return TFI->enableShrinkWrapping(MF) &&
    537       // Windows with CFI has some limitations that make it impossible
    538       // to use shrink-wrapping.
    539       !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() &&
    540       // Sanitizers look at the value of the stack at the location
    541       // of the crash. Since a crash can happen anywhere, the
    542       // frame must be lowered before anything else happen for the
    543       // sanitizers to be able to get a correct stack frame.
    544       !(MF.getFunction()->hasFnAttribute(Attribute::SanitizeAddress) ||
    545         MF.getFunction()->hasFnAttribute(Attribute::SanitizeThread) ||
    546         MF.getFunction()->hasFnAttribute(Attribute::SanitizeMemory));
    547   // If EnableShrinkWrap is set, it takes precedence on whatever the
    548   // target sets. The rational is that we assume we want to test
    549   // something related to shrink-wrapping.
    550   case cl::BOU_TRUE:
    551     return true;
    552   case cl::BOU_FALSE:
    553     return false;
    554   }
    555   llvm_unreachable("Invalid shrink-wrapping state");
    556 }
    557