Home | History | Annotate | Download | only in CodeGen
      1 //===-- StackColoring.cpp -------------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass implements the stack-coloring optimization that looks for
     11 // lifetime markers machine instructions (LIFESTART_BEGIN and LIFESTART_END),
     12 // which represent the possible lifetime of stack slots. It attempts to
     13 // merge disjoint stack slots and reduce the used stack space.
     14 // NOTE: This pass is not StackSlotColoring, which optimizes spill slots.
     15 //
     16 // TODO: In the future we plan to improve stack coloring in the following ways:
     17 // 1. Allow merging multiple small slots into a single larger slot at different
     18 //    offsets.
     19 // 2. Merge this pass with StackSlotColoring and allow merging of allocas with
     20 //    spill slots.
     21 //
     22 //===----------------------------------------------------------------------===//
     23 
     24 #include "llvm/ADT/BitVector.h"
     25 #include "llvm/ADT/DepthFirstIterator.h"
     26 #include "llvm/ADT/PostOrderIterator.h"
     27 #include "llvm/ADT/SetVector.h"
     28 #include "llvm/ADT/SmallPtrSet.h"
     29 #include "llvm/ADT/Statistic.h"
     30 #include "llvm/Analysis/ValueTracking.h"
     31 #include "llvm/CodeGen/LiveInterval.h"
     32 #include "llvm/CodeGen/MachineBasicBlock.h"
     33 #include "llvm/CodeGen/MachineFrameInfo.h"
     34 #include "llvm/CodeGen/MachineFunctionPass.h"
     35 #include "llvm/CodeGen/MachineLoopInfo.h"
     36 #include "llvm/CodeGen/MachineMemOperand.h"
     37 #include "llvm/CodeGen/MachineModuleInfo.h"
     38 #include "llvm/CodeGen/MachineRegisterInfo.h"
     39 #include "llvm/CodeGen/Passes.h"
     40 #include "llvm/CodeGen/PseudoSourceValue.h"
     41 #include "llvm/CodeGen/SlotIndexes.h"
     42 #include "llvm/CodeGen/StackProtector.h"
     43 #include "llvm/CodeGen/WinEHFuncInfo.h"
     44 #include "llvm/IR/DebugInfo.h"
     45 #include "llvm/IR/Function.h"
     46 #include "llvm/IR/Instructions.h"
     47 #include "llvm/IR/IntrinsicInst.h"
     48 #include "llvm/IR/Module.h"
     49 #include "llvm/Support/CommandLine.h"
     50 #include "llvm/Support/Debug.h"
     51 #include "llvm/Support/raw_ostream.h"
     52 #include "llvm/Target/TargetInstrInfo.h"
     53 #include "llvm/Target/TargetRegisterInfo.h"
     54 
     55 using namespace llvm;
     56 
     57 #define DEBUG_TYPE "stackcoloring"
     58 
     59 static cl::opt<bool>
     60 DisableColoring("no-stack-coloring",
     61         cl::init(false), cl::Hidden,
     62         cl::desc("Disable stack coloring"));
     63 
     64 /// The user may write code that uses allocas outside of the declared lifetime
     65 /// zone. This can happen when the user returns a reference to a local
     66 /// data-structure. We can detect these cases and decide not to optimize the
     67 /// code. If this flag is enabled, we try to save the user. This option
     68 /// is treated as overriding LifetimeStartOnFirstUse below.
     69 static cl::opt<bool>
     70 ProtectFromEscapedAllocas("protect-from-escaped-allocas",
     71                           cl::init(false), cl::Hidden,
     72                           cl::desc("Do not optimize lifetime zones that "
     73                                    "are broken"));
     74 
     75 /// Enable enhanced dataflow scheme for lifetime analysis (treat first
     76 /// use of stack slot as start of slot lifetime, as opposed to looking
     77 /// for LIFETIME_START marker). See "Implementation notes" below for
     78 /// more info.
     79 static cl::opt<bool>
     80 LifetimeStartOnFirstUse("stackcoloring-lifetime-start-on-first-use",
     81         cl::init(true), cl::Hidden,
     82         cl::desc("Treat stack lifetimes as starting on first use, not on START marker."));
     83 
     84 
     85 STATISTIC(NumMarkerSeen,  "Number of lifetime markers found.");
     86 STATISTIC(StackSpaceSaved, "Number of bytes saved due to merging slots.");
     87 STATISTIC(StackSlotMerged, "Number of stack slot merged.");
     88 STATISTIC(EscapedAllocas, "Number of allocas that escaped the lifetime region");
     89 
     90 //
     91 // Implementation Notes:
     92 // ---------------------
     93 //
     94 // Consider the following motivating example:
     95 //
     96 //     int foo() {
     97 //       char b1[1024], b2[1024];
     98 //       if (...) {
     99 //         char b3[1024];
    100 //         <uses of b1, b3>;
    101 //         return x;
    102 //       } else {
    103 //         char b4[1024], b5[1024];
    104 //         <uses of b2, b4, b5>;
    105 //         return y;
    106 //       }
    107 //     }
    108 //
    109 // In the code above, "b3" and "b4" are declared in distinct lexical
    110 // scopes, meaning that it is easy to prove that they can share the
    111 // same stack slot. Variables "b1" and "b2" are declared in the same
    112 // scope, meaning that from a lexical point of view, their lifetimes
    113 // overlap. From a control flow pointer of view, however, the two
    114 // variables are accessed in disjoint regions of the CFG, thus it
    115 // should be possible for them to share the same stack slot. An ideal
    116 // stack allocation for the function above would look like:
    117 //
    118 //     slot 0: b1, b2
    119 //     slot 1: b3, b4
    120 //     slot 2: b5
    121 //
    122 // Achieving this allocation is tricky, however, due to the way
    123 // lifetime markers are inserted. Here is a simplified view of the
    124 // control flow graph for the code above:
    125 //
    126 //                +------  block 0 -------+
    127 //               0| LIFETIME_START b1, b2 |
    128 //               1| <test 'if' condition> |
    129 //                +-----------------------+
    130 //                   ./              \.
    131 //   +------  block 1 -------+   +------  block 2 -------+
    132 //  2| LIFETIME_START b3     |  5| LIFETIME_START b4, b5 |
    133 //  3| <uses of b1, b3>      |  6| <uses of b2, b4, b5>  |
    134 //  4| LIFETIME_END b3       |  7| LIFETIME_END b4, b5   |
    135 //   +-----------------------+   +-----------------------+
    136 //                   \.              /.
    137 //                +------  block 3 -------+
    138 //               8| <cleanupcode>         |
    139 //               9| LIFETIME_END b1, b2   |
    140 //              10| return                |
    141 //                +-----------------------+
    142 //
    143 // If we create live intervals for the variables above strictly based
    144 // on the lifetime markers, we'll get the set of intervals on the
    145 // left. If we ignore the lifetime start markers and instead treat a
    146 // variable's lifetime as beginning with the first reference to the
    147 // var, then we get the intervals on the right.
    148 //
    149 //            LIFETIME_START      First Use
    150 //     b1:    [0,9]               [3,4] [8,9]
    151 //     b2:    [0,9]               [6,9]
    152 //     b3:    [2,4]               [3,4]
    153 //     b4:    [5,7]               [6,7]
    154 //     b5:    [5,7]               [6,7]
    155 //
    156 // For the intervals on the left, the best we can do is overlap two
    157 // variables (b3 and b4, for example); this gives us a stack size of
    158 // 4*1024 bytes, not ideal. When treating first-use as the start of a
    159 // lifetime, we can additionally overlap b1 and b5, giving us a 3*1024
    160 // byte stack (better).
    161 //
    162 // Relying entirely on first-use of stack slots is problematic,
    163 // however, due to the fact that optimizations can sometimes migrate
    164 // uses of a variable outside of its lifetime start/end region. Here
    165 // is an example:
    166 //
    167 //     int bar() {
    168 //       char b1[1024], b2[1024];
    169 //       if (...) {
    170 //         <uses of b2>
    171 //         return y;
    172 //       } else {
    173 //         <uses of b1>
    174 //         while (...) {
    175 //           char b3[1024];
    176 //           <uses of b3>
    177 //         }
    178 //       }
    179 //     }
    180 //
    181 // Before optimization, the control flow graph for the code above
    182 // might look like the following:
    183 //
    184 //                +------  block 0 -------+
    185 //               0| LIFETIME_START b1, b2 |
    186 //               1| <test 'if' condition> |
    187 //                +-----------------------+
    188 //                   ./              \.
    189 //   +------  block 1 -------+    +------- block 2 -------+
    190 //  2| <uses of b2>          |   3| <uses of b1>          |
    191 //   +-----------------------+    +-----------------------+
    192 //              |                            |
    193 //              |                 +------- block 3 -------+ <-\.
    194 //              |                4| <while condition>     |    |
    195 //              |                 +-----------------------+    |
    196 //              |               /          |                   |
    197 //              |              /  +------- block 4 -------+
    198 //              \             /  5| LIFETIME_START b3     |    |
    199 //               \           /   6| <uses of b3>          |    |
    200 //                \         /    7| LIFETIME_END b3       |    |
    201 //                 \        |    +------------------------+    |
    202 //                  \       |                 \                /
    203 //                +------  block 5 -----+      \---------------
    204 //               8| <cleanupcode>       |
    205 //               9| LIFETIME_END b1, b2 |
    206 //              10| return              |
    207 //                +---------------------+
    208 //
    209 // During optimization, however, it can happen that an instruction
    210 // computing an address in "b3" (for example, a loop-invariant GEP) is
    211 // hoisted up out of the loop from block 4 to block 2.  [Note that
    212 // this is not an actual load from the stack, only an instruction that
    213 // computes the address to be loaded]. If this happens, there is now a
    214 // path leading from the first use of b3 to the return instruction
    215 // that does not encounter the b3 LIFETIME_END, hence b3's lifetime is
    216 // now larger than if we were computing live intervals strictly based
    217 // on lifetime markers. In the example above, this lengthened lifetime
    218 // would mean that it would appear illegal to overlap b3 with b2.
    219 //
    220 // To deal with this such cases, the code in ::collectMarkers() below
    221 // tries to identify "degenerate" slots -- those slots where on a single
    222 // forward pass through the CFG we encounter a first reference to slot
    223 // K before we hit the slot K lifetime start marker. For such slots,
    224 // we fall back on using the lifetime start marker as the beginning of
    225 // the variable's lifetime.  NB: with this implementation, slots can
    226 // appear degenerate in cases where there is unstructured control flow:
    227 //
    228 //    if (q) goto mid;
    229 //    if (x > 9) {
    230 //         int b[100];
    231 //         memcpy(&b[0], ...);
    232 //    mid: b[k] = ...;
    233 //         abc(&b);
    234 //    }
    235 //
    236 // If in RPO ordering chosen to walk the CFG  we happen to visit the b[k]
    237 // before visiting the memcpy block (which will contain the lifetime start
    238 // for "b" then it will appear that 'b' has a degenerate lifetime.
    239 //
    240 
    241 //===----------------------------------------------------------------------===//
    242 //                           StackColoring Pass
    243 //===----------------------------------------------------------------------===//
    244 
    245 namespace {
    246 /// StackColoring - A machine pass for merging disjoint stack allocations,
    247 /// marked by the LIFETIME_START and LIFETIME_END pseudo instructions.
    248 class StackColoring : public MachineFunctionPass {
    249   MachineFrameInfo *MFI;
    250   MachineFunction *MF;
    251 
    252   /// A class representing liveness information for a single basic block.
    253   /// Each bit in the BitVector represents the liveness property
    254   /// for a different stack slot.
    255   struct BlockLifetimeInfo {
    256     /// Which slots BEGINs in each basic block.
    257     BitVector Begin;
    258     /// Which slots ENDs in each basic block.
    259     BitVector End;
    260     /// Which slots are marked as LIVE_IN, coming into each basic block.
    261     BitVector LiveIn;
    262     /// Which slots are marked as LIVE_OUT, coming out of each basic block.
    263     BitVector LiveOut;
    264   };
    265 
    266   /// Maps active slots (per bit) for each basic block.
    267   typedef DenseMap<const MachineBasicBlock*, BlockLifetimeInfo> LivenessMap;
    268   LivenessMap BlockLiveness;
    269 
    270   /// Maps serial numbers to basic blocks.
    271   DenseMap<const MachineBasicBlock*, int> BasicBlocks;
    272   /// Maps basic blocks to a serial number.
    273   SmallVector<const MachineBasicBlock*, 8> BasicBlockNumbering;
    274 
    275   /// Maps liveness intervals for each slot.
    276   SmallVector<std::unique_ptr<LiveInterval>, 16> Intervals;
    277   /// VNInfo is used for the construction of LiveIntervals.
    278   VNInfo::Allocator VNInfoAllocator;
    279   /// SlotIndex analysis object.
    280   SlotIndexes *Indexes;
    281   /// The stack protector object.
    282   StackProtector *SP;
    283 
    284   /// The list of lifetime markers found. These markers are to be removed
    285   /// once the coloring is done.
    286   SmallVector<MachineInstr*, 8> Markers;
    287 
    288   /// Record the FI slots for which we have seen some sort of
    289   /// lifetime marker (either start or end).
    290   BitVector InterestingSlots;
    291 
    292   /// FI slots that need to be handled conservatively (for these
    293   /// slots lifetime-start-on-first-use is disabled).
    294   BitVector ConservativeSlots;
    295 
    296   /// Number of iterations taken during data flow analysis.
    297   unsigned NumIterations;
    298 
    299 public:
    300   static char ID;
    301   StackColoring() : MachineFunctionPass(ID) {
    302     initializeStackColoringPass(*PassRegistry::getPassRegistry());
    303   }
    304   void getAnalysisUsage(AnalysisUsage &AU) const override;
    305   bool runOnMachineFunction(MachineFunction &MF) override;
    306 
    307 private:
    308   /// Debug.
    309   void dump() const;
    310   void dumpIntervals() const;
    311   void dumpBB(MachineBasicBlock *MBB) const;
    312   void dumpBV(const char *tag, const BitVector &BV) const;
    313 
    314   /// Removes all of the lifetime marker instructions from the function.
    315   /// \returns true if any markers were removed.
    316   bool removeAllMarkers();
    317 
    318   /// Scan the machine function and find all of the lifetime markers.
    319   /// Record the findings in the BEGIN and END vectors.
    320   /// \returns the number of markers found.
    321   unsigned collectMarkers(unsigned NumSlot);
    322 
    323   /// Perform the dataflow calculation and calculate the lifetime for each of
    324   /// the slots, based on the BEGIN/END vectors. Set the LifetimeLIVE_IN and
    325   /// LifetimeLIVE_OUT maps that represent which stack slots are live coming
    326   /// in and out blocks.
    327   void calculateLocalLiveness();
    328 
    329   /// Returns TRUE if we're using the first-use-begins-lifetime method for
    330   /// this slot (if FALSE, then the start marker is treated as start of lifetime).
    331   bool applyFirstUse(int Slot) {
    332     if (!LifetimeStartOnFirstUse || ProtectFromEscapedAllocas)
    333       return false;
    334     if (ConservativeSlots.test(Slot))
    335       return false;
    336     return true;
    337   }
    338 
    339   /// Examines the specified instruction and returns TRUE if the instruction
    340   /// represents the start or end of an interesting lifetime. The slot or slots
    341   /// starting or ending are added to the vector "slots" and "isStart" is set
    342   /// accordingly.
    343   /// \returns True if inst contains a lifetime start or end
    344   bool isLifetimeStartOrEnd(const MachineInstr &MI,
    345                             SmallVector<int, 4> &slots,
    346                             bool &isStart);
    347 
    348   /// Construct the LiveIntervals for the slots.
    349   void calculateLiveIntervals(unsigned NumSlots);
    350 
    351   /// Go over the machine function and change instructions which use stack
    352   /// slots to use the joint slots.
    353   void remapInstructions(DenseMap<int, int> &SlotRemap);
    354 
    355   /// The input program may contain instructions which are not inside lifetime
    356   /// markers. This can happen due to a bug in the compiler or due to a bug in
    357   /// user code (for example, returning a reference to a local variable).
    358   /// This procedure checks all of the instructions in the function and
    359   /// invalidates lifetime ranges which do not contain all of the instructions
    360   /// which access that frame slot.
    361   void removeInvalidSlotRanges();
    362 
    363   /// Map entries which point to other entries to their destination.
    364   ///   A->B->C becomes A->C.
    365   void expungeSlotMap(DenseMap<int, int> &SlotRemap, unsigned NumSlots);
    366 
    367   /// Used in collectMarkers
    368   typedef DenseMap<const MachineBasicBlock*, BitVector> BlockBitVecMap;
    369 };
    370 } // end anonymous namespace
    371 
    372 char StackColoring::ID = 0;
    373 char &llvm::StackColoringID = StackColoring::ID;
    374 
    375 INITIALIZE_PASS_BEGIN(StackColoring,
    376                    "stack-coloring", "Merge disjoint stack slots", false, false)
    377 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
    378 INITIALIZE_PASS_DEPENDENCY(StackProtector)
    379 INITIALIZE_PASS_END(StackColoring,
    380                    "stack-coloring", "Merge disjoint stack slots", false, false)
    381 
    382 void StackColoring::getAnalysisUsage(AnalysisUsage &AU) const {
    383   AU.addRequired<SlotIndexes>();
    384   AU.addRequired<StackProtector>();
    385   MachineFunctionPass::getAnalysisUsage(AU);
    386 }
    387 
    388 #ifndef NDEBUG
    389 
    390 LLVM_DUMP_METHOD void StackColoring::dumpBV(const char *tag,
    391                                             const BitVector &BV) const {
    392   DEBUG(dbgs() << tag << " : { ");
    393   for (unsigned I = 0, E = BV.size(); I != E; ++I)
    394     DEBUG(dbgs() << BV.test(I) << " ");
    395   DEBUG(dbgs() << "}\n");
    396 }
    397 
    398 LLVM_DUMP_METHOD void StackColoring::dumpBB(MachineBasicBlock *MBB) const {
    399   LivenessMap::const_iterator BI = BlockLiveness.find(MBB);
    400   assert(BI != BlockLiveness.end() && "Block not found");
    401   const BlockLifetimeInfo &BlockInfo = BI->second;
    402 
    403   dumpBV("BEGIN", BlockInfo.Begin);
    404   dumpBV("END", BlockInfo.End);
    405   dumpBV("LIVE_IN", BlockInfo.LiveIn);
    406   dumpBV("LIVE_OUT", BlockInfo.LiveOut);
    407 }
    408 
    409 LLVM_DUMP_METHOD void StackColoring::dump() const {
    410   for (MachineBasicBlock *MBB : depth_first(MF)) {
    411     DEBUG(dbgs() << "Inspecting block #" << MBB->getNumber() << " ["
    412                  << MBB->getName() << "]\n");
    413     DEBUG(dumpBB(MBB));
    414   }
    415 }
    416 
    417 LLVM_DUMP_METHOD void StackColoring::dumpIntervals() const {
    418   for (unsigned I = 0, E = Intervals.size(); I != E; ++I) {
    419     DEBUG(dbgs() << "Interval[" << I << "]:\n");
    420     DEBUG(Intervals[I]->dump());
    421   }
    422 }
    423 
    424 #endif // not NDEBUG
    425 
    426 static inline int getStartOrEndSlot(const MachineInstr &MI)
    427 {
    428   assert((MI.getOpcode() == TargetOpcode::LIFETIME_START ||
    429           MI.getOpcode() == TargetOpcode::LIFETIME_END) &&
    430          "Expected LIFETIME_START or LIFETIME_END op");
    431   const MachineOperand &MO = MI.getOperand(0);
    432   int Slot = MO.getIndex();
    433   if (Slot >= 0)
    434     return Slot;
    435   return -1;
    436 }
    437 
    438 //
    439 // At the moment the only way to end a variable lifetime is with
    440 // a VARIABLE_LIFETIME op (which can't contain a start). If things
    441 // change and the IR allows for a single inst that both begins
    442 // and ends lifetime(s), this interface will need to be reworked.
    443 //
    444 bool StackColoring::isLifetimeStartOrEnd(const MachineInstr &MI,
    445                                          SmallVector<int, 4> &slots,
    446                                          bool &isStart)
    447 {
    448   if (MI.getOpcode() == TargetOpcode::LIFETIME_START ||
    449       MI.getOpcode() == TargetOpcode::LIFETIME_END) {
    450     int Slot = getStartOrEndSlot(MI);
    451     if (Slot < 0)
    452       return false;
    453     if (!InterestingSlots.test(Slot))
    454       return false;
    455     slots.push_back(Slot);
    456     if (MI.getOpcode() == TargetOpcode::LIFETIME_END) {
    457       isStart = false;
    458       return true;
    459     }
    460     if (! applyFirstUse(Slot)) {
    461       isStart = true;
    462       return true;
    463     }
    464   } else if (LifetimeStartOnFirstUse && !ProtectFromEscapedAllocas) {
    465     if (! MI.isDebugValue()) {
    466       bool found = false;
    467       for (const MachineOperand &MO : MI.operands()) {
    468         if (!MO.isFI())
    469           continue;
    470         int Slot = MO.getIndex();
    471         if (Slot<0)
    472           continue;
    473         if (InterestingSlots.test(Slot) && applyFirstUse(Slot)) {
    474           slots.push_back(Slot);
    475           found = true;
    476         }
    477       }
    478       if (found) {
    479         isStart = true;
    480         return true;
    481       }
    482     }
    483   }
    484   return false;
    485 }
    486 
    487 unsigned StackColoring::collectMarkers(unsigned NumSlot)
    488 {
    489   unsigned MarkersFound = 0;
    490   BlockBitVecMap SeenStartMap;
    491   InterestingSlots.clear();
    492   InterestingSlots.resize(NumSlot);
    493   ConservativeSlots.clear();
    494   ConservativeSlots.resize(NumSlot);
    495 
    496   // number of start and end lifetime ops for each slot
    497   SmallVector<int, 8> NumStartLifetimes(NumSlot, 0);
    498   SmallVector<int, 8> NumEndLifetimes(NumSlot, 0);
    499 
    500   // Step 1: collect markers and populate the "InterestingSlots"
    501   // and "ConservativeSlots" sets.
    502   for (MachineBasicBlock *MBB : depth_first(MF)) {
    503 
    504     // Compute the set of slots for which we've seen a START marker but have
    505     // not yet seen an END marker at this point in the walk (e.g. on entry
    506     // to this bb).
    507     BitVector BetweenStartEnd;
    508     BetweenStartEnd.resize(NumSlot);
    509     for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
    510              PE = MBB->pred_end(); PI != PE; ++PI) {
    511       BlockBitVecMap::const_iterator I = SeenStartMap.find(*PI);
    512       if (I != SeenStartMap.end()) {
    513         BetweenStartEnd |= I->second;
    514       }
    515     }
    516 
    517     // Walk the instructions in the block to look for start/end ops.
    518     for (MachineInstr &MI : *MBB) {
    519       if (MI.getOpcode() == TargetOpcode::LIFETIME_START ||
    520           MI.getOpcode() == TargetOpcode::LIFETIME_END) {
    521         int Slot = getStartOrEndSlot(MI);
    522         if (Slot < 0)
    523           continue;
    524         InterestingSlots.set(Slot);
    525         if (MI.getOpcode() == TargetOpcode::LIFETIME_START) {
    526           BetweenStartEnd.set(Slot);
    527           NumStartLifetimes[Slot] += 1;
    528         } else {
    529           BetweenStartEnd.reset(Slot);
    530           NumEndLifetimes[Slot] += 1;
    531         }
    532         const AllocaInst *Allocation = MFI->getObjectAllocation(Slot);
    533         if (Allocation) {
    534           DEBUG(dbgs() << "Found a lifetime ");
    535           DEBUG(dbgs() << (MI.getOpcode() == TargetOpcode::LIFETIME_START
    536                                ? "start"
    537                                : "end"));
    538           DEBUG(dbgs() << " marker for slot #" << Slot);
    539           DEBUG(dbgs() << " with allocation: " << Allocation->getName()
    540                        << "\n");
    541         }
    542         Markers.push_back(&MI);
    543         MarkersFound += 1;
    544       } else {
    545         for (const MachineOperand &MO : MI.operands()) {
    546           if (!MO.isFI())
    547             continue;
    548           int Slot = MO.getIndex();
    549           if (Slot < 0)
    550             continue;
    551           if (! BetweenStartEnd.test(Slot)) {
    552             ConservativeSlots.set(Slot);
    553           }
    554         }
    555       }
    556     }
    557     BitVector &SeenStart = SeenStartMap[MBB];
    558     SeenStart |= BetweenStartEnd;
    559   }
    560   if (!MarkersFound) {
    561     return 0;
    562   }
    563 
    564   // PR27903: slots with multiple start or end lifetime ops are not
    565   // safe to enable for "lifetime-start-on-first-use".
    566   for (unsigned slot = 0; slot < NumSlot; ++slot)
    567     if (NumStartLifetimes[slot] > 1 || NumEndLifetimes[slot] > 1)
    568       ConservativeSlots.set(slot);
    569   DEBUG(dumpBV("Conservative slots", ConservativeSlots));
    570 
    571   // Step 2: compute begin/end sets for each block
    572 
    573   // NOTE: We use a reverse-post-order iteration to ensure that we obtain a
    574   // deterministic numbering, and because we'll need a post-order iteration
    575   // later for solving the liveness dataflow problem.
    576   for (MachineBasicBlock *MBB : depth_first(MF)) {
    577 
    578     // Assign a serial number to this basic block.
    579     BasicBlocks[MBB] = BasicBlockNumbering.size();
    580     BasicBlockNumbering.push_back(MBB);
    581 
    582     // Keep a reference to avoid repeated lookups.
    583     BlockLifetimeInfo &BlockInfo = BlockLiveness[MBB];
    584 
    585     BlockInfo.Begin.resize(NumSlot);
    586     BlockInfo.End.resize(NumSlot);
    587 
    588     SmallVector<int, 4> slots;
    589     for (MachineInstr &MI : *MBB) {
    590       bool isStart = false;
    591       slots.clear();
    592       if (isLifetimeStartOrEnd(MI, slots, isStart)) {
    593         if (!isStart) {
    594           assert(slots.size() == 1 && "unexpected: MI ends multiple slots");
    595           int Slot = slots[0];
    596           if (BlockInfo.Begin.test(Slot)) {
    597             BlockInfo.Begin.reset(Slot);
    598           }
    599           BlockInfo.End.set(Slot);
    600         } else {
    601           for (auto Slot : slots) {
    602             DEBUG(dbgs() << "Found a use of slot #" << Slot);
    603             DEBUG(dbgs() << " at BB#" << MBB->getNumber() << " index ");
    604             DEBUG(Indexes->getInstructionIndex(MI).print(dbgs()));
    605             const AllocaInst *Allocation = MFI->getObjectAllocation(Slot);
    606             if (Allocation) {
    607               DEBUG(dbgs() << " with allocation: "<< Allocation->getName());
    608             }
    609             DEBUG(dbgs() << "\n");
    610             if (BlockInfo.End.test(Slot)) {
    611               BlockInfo.End.reset(Slot);
    612             }
    613             BlockInfo.Begin.set(Slot);
    614           }
    615         }
    616       }
    617     }
    618   }
    619 
    620   // Update statistics.
    621   NumMarkerSeen += MarkersFound;
    622   return MarkersFound;
    623 }
    624 
    625 void StackColoring::calculateLocalLiveness()
    626 {
    627   unsigned NumIters = 0;
    628   bool changed = true;
    629   while (changed) {
    630     changed = false;
    631     ++NumIters;
    632 
    633     for (const MachineBasicBlock *BB : BasicBlockNumbering) {
    634 
    635       // Use an iterator to avoid repeated lookups.
    636       LivenessMap::iterator BI = BlockLiveness.find(BB);
    637       assert(BI != BlockLiveness.end() && "Block not found");
    638       BlockLifetimeInfo &BlockInfo = BI->second;
    639 
    640       // Compute LiveIn by unioning together the LiveOut sets of all preds.
    641       BitVector LocalLiveIn;
    642       for (MachineBasicBlock::const_pred_iterator PI = BB->pred_begin(),
    643            PE = BB->pred_end(); PI != PE; ++PI) {
    644         LivenessMap::const_iterator I = BlockLiveness.find(*PI);
    645         assert(I != BlockLiveness.end() && "Predecessor not found");
    646         LocalLiveIn |= I->second.LiveOut;
    647       }
    648 
    649       // Compute LiveOut by subtracting out lifetimes that end in this
    650       // block, then adding in lifetimes that begin in this block.  If
    651       // we have both BEGIN and END markers in the same basic block
    652       // then we know that the BEGIN marker comes after the END,
    653       // because we already handle the case where the BEGIN comes
    654       // before the END when collecting the markers (and building the
    655       // BEGIN/END vectors).
    656       BitVector LocalLiveOut = LocalLiveIn;
    657       LocalLiveOut.reset(BlockInfo.End);
    658       LocalLiveOut |= BlockInfo.Begin;
    659 
    660       // Update block LiveIn set, noting whether it has changed.
    661       if (LocalLiveIn.test(BlockInfo.LiveIn)) {
    662         changed = true;
    663         BlockInfo.LiveIn |= LocalLiveIn;
    664       }
    665 
    666       // Update block LiveOut set, noting whether it has changed.
    667       if (LocalLiveOut.test(BlockInfo.LiveOut)) {
    668         changed = true;
    669         BlockInfo.LiveOut |= LocalLiveOut;
    670       }
    671     }
    672   }// while changed.
    673 
    674   NumIterations = NumIters;
    675 }
    676 
    677 void StackColoring::calculateLiveIntervals(unsigned NumSlots) {
    678   SmallVector<SlotIndex, 16> Starts;
    679   SmallVector<SlotIndex, 16> Finishes;
    680 
    681   // For each block, find which slots are active within this block
    682   // and update the live intervals.
    683   for (const MachineBasicBlock &MBB : *MF) {
    684     Starts.clear();
    685     Starts.resize(NumSlots);
    686     Finishes.clear();
    687     Finishes.resize(NumSlots);
    688 
    689     // Create the interval for the basic blocks containing lifetime begin/end.
    690     for (const MachineInstr &MI : MBB) {
    691 
    692       SmallVector<int, 4> slots;
    693       bool IsStart = false;
    694       if (!isLifetimeStartOrEnd(MI, slots, IsStart))
    695         continue;
    696       SlotIndex ThisIndex = Indexes->getInstructionIndex(MI);
    697       for (auto Slot : slots) {
    698         if (IsStart) {
    699           if (!Starts[Slot].isValid() || Starts[Slot] > ThisIndex)
    700             Starts[Slot] = ThisIndex;
    701         } else {
    702           if (!Finishes[Slot].isValid() || Finishes[Slot] < ThisIndex)
    703             Finishes[Slot] = ThisIndex;
    704         }
    705       }
    706     }
    707 
    708     // Create the interval of the blocks that we previously found to be 'alive'.
    709     BlockLifetimeInfo &MBBLiveness = BlockLiveness[&MBB];
    710     for (int pos = MBBLiveness.LiveIn.find_first(); pos != -1;
    711          pos = MBBLiveness.LiveIn.find_next(pos)) {
    712       Starts[pos] = Indexes->getMBBStartIdx(&MBB);
    713     }
    714     for (int pos = MBBLiveness.LiveOut.find_first(); pos != -1;
    715          pos = MBBLiveness.LiveOut.find_next(pos)) {
    716       Finishes[pos] = Indexes->getMBBEndIdx(&MBB);
    717     }
    718 
    719     for (unsigned i = 0; i < NumSlots; ++i) {
    720       //
    721       // When LifetimeStartOnFirstUse is turned on, data flow analysis
    722       // is forward (from starts to ends), not bidirectional. A
    723       // consequence of this is that we can wind up in situations
    724       // where Starts[i] is invalid but Finishes[i] is valid and vice
    725       // versa. Example:
    726       //
    727       //     LIFETIME_START x
    728       //     if (...) {
    729       //       <use of x>
    730       //       throw ...;
    731       //     }
    732       //     LIFETIME_END x
    733       //     return 2;
    734       //
    735       //
    736       // Here the slot for "x" will not be live into the block
    737       // containing the "return 2" (since lifetimes start with first
    738       // use, not at the dominating LIFETIME_START marker).
    739       //
    740       if (Starts[i].isValid() && !Finishes[i].isValid()) {
    741         Finishes[i] = Indexes->getMBBEndIdx(&MBB);
    742       }
    743       if (!Starts[i].isValid())
    744         continue;
    745 
    746       assert(Starts[i] && Finishes[i] && "Invalid interval");
    747       VNInfo *ValNum = Intervals[i]->getValNumInfo(0);
    748       SlotIndex S = Starts[i];
    749       SlotIndex F = Finishes[i];
    750       if (S < F) {
    751         // We have a single consecutive region.
    752         Intervals[i]->addSegment(LiveInterval::Segment(S, F, ValNum));
    753       } else {
    754         // We have two non-consecutive regions. This happens when
    755         // LIFETIME_START appears after the LIFETIME_END marker.
    756         SlotIndex NewStart = Indexes->getMBBStartIdx(&MBB);
    757         SlotIndex NewFin = Indexes->getMBBEndIdx(&MBB);
    758         Intervals[i]->addSegment(LiveInterval::Segment(NewStart, F, ValNum));
    759         Intervals[i]->addSegment(LiveInterval::Segment(S, NewFin, ValNum));
    760       }
    761     }
    762   }
    763 }
    764 
    765 bool StackColoring::removeAllMarkers() {
    766   unsigned Count = 0;
    767   for (MachineInstr *MI : Markers) {
    768     MI->eraseFromParent();
    769     Count++;
    770   }
    771   Markers.clear();
    772 
    773   DEBUG(dbgs()<<"Removed "<<Count<<" markers.\n");
    774   return Count;
    775 }
    776 
    777 void StackColoring::remapInstructions(DenseMap<int, int> &SlotRemap) {
    778   unsigned FixedInstr = 0;
    779   unsigned FixedMemOp = 0;
    780   unsigned FixedDbg = 0;
    781   MachineModuleInfo *MMI = &MF->getMMI();
    782 
    783   // Remap debug information that refers to stack slots.
    784   for (auto &VI : MMI->getVariableDbgInfo()) {
    785     if (!VI.Var)
    786       continue;
    787     if (SlotRemap.count(VI.Slot)) {
    788       DEBUG(dbgs() << "Remapping debug info for ["
    789                    << cast<DILocalVariable>(VI.Var)->getName() << "].\n");
    790       VI.Slot = SlotRemap[VI.Slot];
    791       FixedDbg++;
    792     }
    793   }
    794 
    795   // Keep a list of *allocas* which need to be remapped.
    796   DenseMap<const AllocaInst*, const AllocaInst*> Allocas;
    797   for (const std::pair<int, int> &SI : SlotRemap) {
    798     const AllocaInst *From = MFI->getObjectAllocation(SI.first);
    799     const AllocaInst *To = MFI->getObjectAllocation(SI.second);
    800     assert(To && From && "Invalid allocation object");
    801     Allocas[From] = To;
    802 
    803     // AA might be used later for instruction scheduling, and we need it to be
    804     // able to deduce the correct aliasing releationships between pointers
    805     // derived from the alloca being remapped and the target of that remapping.
    806     // The only safe way, without directly informing AA about the remapping
    807     // somehow, is to directly update the IR to reflect the change being made
    808     // here.
    809     Instruction *Inst = const_cast<AllocaInst *>(To);
    810     if (From->getType() != To->getType()) {
    811       BitCastInst *Cast = new BitCastInst(Inst, From->getType());
    812       Cast->insertAfter(Inst);
    813       Inst = Cast;
    814     }
    815 
    816     // Allow the stack protector to adjust its value map to account for the
    817     // upcoming replacement.
    818     SP->adjustForColoring(From, To);
    819 
    820     // The new alloca might not be valid in a llvm.dbg.declare for this
    821     // variable, so undef out the use to make the verifier happy.
    822     AllocaInst *FromAI = const_cast<AllocaInst *>(From);
    823     if (FromAI->isUsedByMetadata())
    824       ValueAsMetadata::handleRAUW(FromAI, UndefValue::get(FromAI->getType()));
    825     for (auto &Use : FromAI->uses()) {
    826       if (BitCastInst *BCI = dyn_cast<BitCastInst>(Use.get()))
    827         if (BCI->isUsedByMetadata())
    828           ValueAsMetadata::handleRAUW(BCI, UndefValue::get(BCI->getType()));
    829     }
    830 
    831     // Note that this will not replace uses in MMOs (which we'll update below),
    832     // or anywhere else (which is why we won't delete the original
    833     // instruction).
    834     FromAI->replaceAllUsesWith(Inst);
    835   }
    836 
    837   // Remap all instructions to the new stack slots.
    838   for (MachineBasicBlock &BB : *MF)
    839     for (MachineInstr &I : BB) {
    840       // Skip lifetime markers. We'll remove them soon.
    841       if (I.getOpcode() == TargetOpcode::LIFETIME_START ||
    842           I.getOpcode() == TargetOpcode::LIFETIME_END)
    843         continue;
    844 
    845       // Update the MachineMemOperand to use the new alloca.
    846       for (MachineMemOperand *MMO : I.memoperands()) {
    847         // FIXME: In order to enable the use of TBAA when using AA in CodeGen,
    848         // we'll also need to update the TBAA nodes in MMOs with values
    849         // derived from the merged allocas. When doing this, we'll need to use
    850         // the same variant of GetUnderlyingObjects that is used by the
    851         // instruction scheduler (that can look through ptrtoint/inttoptr
    852         // pairs).
    853 
    854         // We've replaced IR-level uses of the remapped allocas, so we only
    855         // need to replace direct uses here.
    856         const AllocaInst *AI = dyn_cast_or_null<AllocaInst>(MMO->getValue());
    857         if (!AI)
    858           continue;
    859 
    860         if (!Allocas.count(AI))
    861           continue;
    862 
    863         MMO->setValue(Allocas[AI]);
    864         FixedMemOp++;
    865       }
    866 
    867       // Update all of the machine instruction operands.
    868       for (MachineOperand &MO : I.operands()) {
    869         if (!MO.isFI())
    870           continue;
    871         int FromSlot = MO.getIndex();
    872 
    873         // Don't touch arguments.
    874         if (FromSlot<0)
    875           continue;
    876 
    877         // Only look at mapped slots.
    878         if (!SlotRemap.count(FromSlot))
    879           continue;
    880 
    881         // In a debug build, check that the instruction that we are modifying is
    882         // inside the expected live range. If the instruction is not inside
    883         // the calculated range then it means that the alloca usage moved
    884         // outside of the lifetime markers, or that the user has a bug.
    885         // NOTE: Alloca address calculations which happen outside the lifetime
    886         // zone are are okay, despite the fact that we don't have a good way
    887         // for validating all of the usages of the calculation.
    888 #ifndef NDEBUG
    889         bool TouchesMemory = I.mayLoad() || I.mayStore();
    890         // If we *don't* protect the user from escaped allocas, don't bother
    891         // validating the instructions.
    892         if (!I.isDebugValue() && TouchesMemory && ProtectFromEscapedAllocas) {
    893           SlotIndex Index = Indexes->getInstructionIndex(I);
    894           const LiveInterval *Interval = &*Intervals[FromSlot];
    895           assert(Interval->find(Index) != Interval->end() &&
    896                  "Found instruction usage outside of live range.");
    897         }
    898 #endif
    899 
    900         // Fix the machine instructions.
    901         int ToSlot = SlotRemap[FromSlot];
    902         MO.setIndex(ToSlot);
    903         FixedInstr++;
    904       }
    905     }
    906 
    907   // Update the location of C++ catch objects for the MSVC personality routine.
    908   if (WinEHFuncInfo *EHInfo = MF->getWinEHFuncInfo())
    909     for (WinEHTryBlockMapEntry &TBME : EHInfo->TryBlockMap)
    910       for (WinEHHandlerType &H : TBME.HandlerArray)
    911         if (H.CatchObj.FrameIndex != INT_MAX &&
    912             SlotRemap.count(H.CatchObj.FrameIndex))
    913           H.CatchObj.FrameIndex = SlotRemap[H.CatchObj.FrameIndex];
    914 
    915   DEBUG(dbgs()<<"Fixed "<<FixedMemOp<<" machine memory operands.\n");
    916   DEBUG(dbgs()<<"Fixed "<<FixedDbg<<" debug locations.\n");
    917   DEBUG(dbgs()<<"Fixed "<<FixedInstr<<" machine instructions.\n");
    918 }
    919 
    920 void StackColoring::removeInvalidSlotRanges() {
    921   for (MachineBasicBlock &BB : *MF)
    922     for (MachineInstr &I : BB) {
    923       if (I.getOpcode() == TargetOpcode::LIFETIME_START ||
    924           I.getOpcode() == TargetOpcode::LIFETIME_END || I.isDebugValue())
    925         continue;
    926 
    927       // Some intervals are suspicious! In some cases we find address
    928       // calculations outside of the lifetime zone, but not actual memory
    929       // read or write. Memory accesses outside of the lifetime zone are a clear
    930       // violation, but address calculations are okay. This can happen when
    931       // GEPs are hoisted outside of the lifetime zone.
    932       // So, in here we only check instructions which can read or write memory.
    933       if (!I.mayLoad() && !I.mayStore())
    934         continue;
    935 
    936       // Check all of the machine operands.
    937       for (const MachineOperand &MO : I.operands()) {
    938         if (!MO.isFI())
    939           continue;
    940 
    941         int Slot = MO.getIndex();
    942 
    943         if (Slot<0)
    944           continue;
    945 
    946         if (Intervals[Slot]->empty())
    947           continue;
    948 
    949         // Check that the used slot is inside the calculated lifetime range.
    950         // If it is not, warn about it and invalidate the range.
    951         LiveInterval *Interval = &*Intervals[Slot];
    952         SlotIndex Index = Indexes->getInstructionIndex(I);
    953         if (Interval->find(Index) == Interval->end()) {
    954           Interval->clear();
    955           DEBUG(dbgs()<<"Invalidating range #"<<Slot<<"\n");
    956           EscapedAllocas++;
    957         }
    958       }
    959     }
    960 }
    961 
    962 void StackColoring::expungeSlotMap(DenseMap<int, int> &SlotRemap,
    963                                    unsigned NumSlots) {
    964   // Expunge slot remap map.
    965   for (unsigned i=0; i < NumSlots; ++i) {
    966     // If we are remapping i
    967     if (SlotRemap.count(i)) {
    968       int Target = SlotRemap[i];
    969       // As long as our target is mapped to something else, follow it.
    970       while (SlotRemap.count(Target)) {
    971         Target = SlotRemap[Target];
    972         SlotRemap[i] = Target;
    973       }
    974     }
    975   }
    976 }
    977 
    978 bool StackColoring::runOnMachineFunction(MachineFunction &Func) {
    979   DEBUG(dbgs() << "********** Stack Coloring **********\n"
    980                << "********** Function: "
    981                << ((const Value*)Func.getFunction())->getName() << '\n');
    982   MF = &Func;
    983   MFI = MF->getFrameInfo();
    984   Indexes = &getAnalysis<SlotIndexes>();
    985   SP = &getAnalysis<StackProtector>();
    986   BlockLiveness.clear();
    987   BasicBlocks.clear();
    988   BasicBlockNumbering.clear();
    989   Markers.clear();
    990   Intervals.clear();
    991   VNInfoAllocator.Reset();
    992 
    993   unsigned NumSlots = MFI->getObjectIndexEnd();
    994 
    995   // If there are no stack slots then there are no markers to remove.
    996   if (!NumSlots)
    997     return false;
    998 
    999   SmallVector<int, 8> SortedSlots;
   1000   SortedSlots.reserve(NumSlots);
   1001   Intervals.reserve(NumSlots);
   1002 
   1003   unsigned NumMarkers = collectMarkers(NumSlots);
   1004 
   1005   unsigned TotalSize = 0;
   1006   DEBUG(dbgs()<<"Found "<<NumMarkers<<" markers and "<<NumSlots<<" slots\n");
   1007   DEBUG(dbgs()<<"Slot structure:\n");
   1008 
   1009   for (int i=0; i < MFI->getObjectIndexEnd(); ++i) {
   1010     DEBUG(dbgs()<<"Slot #"<<i<<" - "<<MFI->getObjectSize(i)<<" bytes.\n");
   1011     TotalSize += MFI->getObjectSize(i);
   1012   }
   1013 
   1014   DEBUG(dbgs()<<"Total Stack size: "<<TotalSize<<" bytes\n\n");
   1015 
   1016   // Don't continue because there are not enough lifetime markers, or the
   1017   // stack is too small, or we are told not to optimize the slots.
   1018   if (NumMarkers < 2 || TotalSize < 16 || DisableColoring ||
   1019       skipFunction(*Func.getFunction())) {
   1020     DEBUG(dbgs()<<"Will not try to merge slots.\n");
   1021     return removeAllMarkers();
   1022   }
   1023 
   1024   for (unsigned i=0; i < NumSlots; ++i) {
   1025     std::unique_ptr<LiveInterval> LI(new LiveInterval(i, 0));
   1026     LI->getNextValue(Indexes->getZeroIndex(), VNInfoAllocator);
   1027     Intervals.push_back(std::move(LI));
   1028     SortedSlots.push_back(i);
   1029   }
   1030 
   1031   // Calculate the liveness of each block.
   1032   calculateLocalLiveness();
   1033   DEBUG(dbgs() << "Dataflow iterations: " << NumIterations << "\n");
   1034   DEBUG(dump());
   1035 
   1036   // Propagate the liveness information.
   1037   calculateLiveIntervals(NumSlots);
   1038   DEBUG(dumpIntervals());
   1039 
   1040   // Search for allocas which are used outside of the declared lifetime
   1041   // markers.
   1042   if (ProtectFromEscapedAllocas)
   1043     removeInvalidSlotRanges();
   1044 
   1045   // Maps old slots to new slots.
   1046   DenseMap<int, int> SlotRemap;
   1047   unsigned RemovedSlots = 0;
   1048   unsigned ReducedSize = 0;
   1049 
   1050   // Do not bother looking at empty intervals.
   1051   for (unsigned I = 0; I < NumSlots; ++I) {
   1052     if (Intervals[SortedSlots[I]]->empty())
   1053       SortedSlots[I] = -1;
   1054   }
   1055 
   1056   // This is a simple greedy algorithm for merging allocas. First, sort the
   1057   // slots, placing the largest slots first. Next, perform an n^2 scan and look
   1058   // for disjoint slots. When you find disjoint slots, merge the samller one
   1059   // into the bigger one and update the live interval. Remove the small alloca
   1060   // and continue.
   1061 
   1062   // Sort the slots according to their size. Place unused slots at the end.
   1063   // Use stable sort to guarantee deterministic code generation.
   1064   std::stable_sort(SortedSlots.begin(), SortedSlots.end(),
   1065                    [this](int LHS, int RHS) {
   1066     // We use -1 to denote a uninteresting slot. Place these slots at the end.
   1067     if (LHS == -1) return false;
   1068     if (RHS == -1) return true;
   1069     // Sort according to size.
   1070     return MFI->getObjectSize(LHS) > MFI->getObjectSize(RHS);
   1071   });
   1072 
   1073   bool Changed = true;
   1074   while (Changed) {
   1075     Changed = false;
   1076     for (unsigned I = 0; I < NumSlots; ++I) {
   1077       if (SortedSlots[I] == -1)
   1078         continue;
   1079 
   1080       for (unsigned J=I+1; J < NumSlots; ++J) {
   1081         if (SortedSlots[J] == -1)
   1082           continue;
   1083 
   1084         int FirstSlot = SortedSlots[I];
   1085         int SecondSlot = SortedSlots[J];
   1086         LiveInterval *First = &*Intervals[FirstSlot];
   1087         LiveInterval *Second = &*Intervals[SecondSlot];
   1088         assert (!First->empty() && !Second->empty() && "Found an empty range");
   1089 
   1090         // Merge disjoint slots.
   1091         if (!First->overlaps(*Second)) {
   1092           Changed = true;
   1093           First->MergeSegmentsInAsValue(*Second, First->getValNumInfo(0));
   1094           SlotRemap[SecondSlot] = FirstSlot;
   1095           SortedSlots[J] = -1;
   1096           DEBUG(dbgs()<<"Merging #"<<FirstSlot<<" and slots #"<<
   1097                 SecondSlot<<" together.\n");
   1098           unsigned MaxAlignment = std::max(MFI->getObjectAlignment(FirstSlot),
   1099                                            MFI->getObjectAlignment(SecondSlot));
   1100 
   1101           assert(MFI->getObjectSize(FirstSlot) >=
   1102                  MFI->getObjectSize(SecondSlot) &&
   1103                  "Merging a small object into a larger one");
   1104 
   1105           RemovedSlots+=1;
   1106           ReducedSize += MFI->getObjectSize(SecondSlot);
   1107           MFI->setObjectAlignment(FirstSlot, MaxAlignment);
   1108           MFI->RemoveStackObject(SecondSlot);
   1109         }
   1110       }
   1111     }
   1112   }// While changed.
   1113 
   1114   // Record statistics.
   1115   StackSpaceSaved += ReducedSize;
   1116   StackSlotMerged += RemovedSlots;
   1117   DEBUG(dbgs()<<"Merge "<<RemovedSlots<<" slots. Saved "<<
   1118         ReducedSize<<" bytes\n");
   1119 
   1120   // Scan the entire function and update all machine operands that use frame
   1121   // indices to use the remapped frame index.
   1122   expungeSlotMap(SlotRemap, NumSlots);
   1123   remapInstructions(SlotRemap);
   1124 
   1125   return removeAllMarkers();
   1126 }
   1127