Home | History | Annotate | Download | only in MC
      1 //===- lib/MC/ELFObjectWriter.cpp - ELF File Writer -----------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements ELF object file writer information.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/MC/MCELFObjectWriter.h"
     15 #include "llvm/ADT/STLExtras.h"
     16 #include "llvm/ADT/SmallPtrSet.h"
     17 #include "llvm/ADT/SmallString.h"
     18 #include "llvm/ADT/StringMap.h"
     19 #include "llvm/MC/MCAsmBackend.h"
     20 #include "llvm/MC/MCAsmInfo.h"
     21 #include "llvm/MC/MCAsmLayout.h"
     22 #include "llvm/MC/MCAssembler.h"
     23 #include "llvm/MC/MCContext.h"
     24 #include "llvm/MC/MCExpr.h"
     25 #include "llvm/MC/MCFixupKindInfo.h"
     26 #include "llvm/MC/MCObjectWriter.h"
     27 #include "llvm/MC/MCSectionELF.h"
     28 #include "llvm/MC/MCSymbolELF.h"
     29 #include "llvm/MC/MCValue.h"
     30 #include "llvm/MC/StringTableBuilder.h"
     31 #include "llvm/Support/Compression.h"
     32 #include "llvm/Support/Debug.h"
     33 #include "llvm/Support/ELF.h"
     34 #include "llvm/Support/Endian.h"
     35 #include "llvm/Support/ErrorHandling.h"
     36 #include "llvm/Support/StringSaver.h"
     37 #include <vector>
     38 
     39 using namespace llvm;
     40 
     41 #undef  DEBUG_TYPE
     42 #define DEBUG_TYPE "reloc-info"
     43 
     44 namespace {
     45 typedef DenseMap<const MCSectionELF *, uint32_t> SectionIndexMapTy;
     46 
     47 class ELFObjectWriter;
     48 
     49 class SymbolTableWriter {
     50   ELFObjectWriter &EWriter;
     51   bool Is64Bit;
     52 
     53   // indexes we are going to write to .symtab_shndx.
     54   std::vector<uint32_t> ShndxIndexes;
     55 
     56   // The numbel of symbols written so far.
     57   unsigned NumWritten;
     58 
     59   void createSymtabShndx();
     60 
     61   template <typename T> void write(T Value);
     62 
     63 public:
     64   SymbolTableWriter(ELFObjectWriter &EWriter, bool Is64Bit);
     65 
     66   void writeSymbol(uint32_t name, uint8_t info, uint64_t value, uint64_t size,
     67                    uint8_t other, uint32_t shndx, bool Reserved);
     68 
     69   ArrayRef<uint32_t> getShndxIndexes() const { return ShndxIndexes; }
     70 };
     71 
     72 class ELFObjectWriter : public MCObjectWriter {
     73   static uint64_t SymbolValue(const MCSymbol &Sym, const MCAsmLayout &Layout);
     74   static bool isInSymtab(const MCAsmLayout &Layout, const MCSymbolELF &Symbol,
     75                          bool Used, bool Renamed);
     76 
     77   /// Helper struct for containing some precomputed information on symbols.
     78   struct ELFSymbolData {
     79     const MCSymbolELF *Symbol;
     80     uint32_t SectionIndex;
     81     StringRef Name;
     82 
     83     // Support lexicographic sorting.
     84     bool operator<(const ELFSymbolData &RHS) const {
     85       unsigned LHSType = Symbol->getType();
     86       unsigned RHSType = RHS.Symbol->getType();
     87       if (LHSType == ELF::STT_SECTION && RHSType != ELF::STT_SECTION)
     88         return false;
     89       if (LHSType != ELF::STT_SECTION && RHSType == ELF::STT_SECTION)
     90         return true;
     91       if (LHSType == ELF::STT_SECTION && RHSType == ELF::STT_SECTION)
     92         return SectionIndex < RHS.SectionIndex;
     93       return Name < RHS.Name;
     94     }
     95   };
     96 
     97   /// The target specific ELF writer instance.
     98   std::unique_ptr<MCELFObjectTargetWriter> TargetObjectWriter;
     99 
    100   DenseMap<const MCSymbolELF *, const MCSymbolELF *> Renames;
    101 
    102   llvm::DenseMap<const MCSectionELF *, std::vector<ELFRelocationEntry>>
    103       Relocations;
    104 
    105   /// @}
    106   /// @name Symbol Table Data
    107   /// @{
    108 
    109   BumpPtrAllocator Alloc;
    110   StringSaver VersionSymSaver{Alloc};
    111   StringTableBuilder StrTabBuilder{StringTableBuilder::ELF};
    112 
    113   /// @}
    114 
    115   // This holds the symbol table index of the last local symbol.
    116   unsigned LastLocalSymbolIndex;
    117   // This holds the .strtab section index.
    118   unsigned StringTableIndex;
    119   // This holds the .symtab section index.
    120   unsigned SymbolTableIndex;
    121 
    122   // Sections in the order they are to be output in the section table.
    123   std::vector<const MCSectionELF *> SectionTable;
    124   unsigned addToSectionTable(const MCSectionELF *Sec);
    125 
    126   // TargetObjectWriter wrappers.
    127   bool is64Bit() const { return TargetObjectWriter->is64Bit(); }
    128   bool hasRelocationAddend() const {
    129     return TargetObjectWriter->hasRelocationAddend();
    130   }
    131   unsigned getRelocType(MCContext &Ctx, const MCValue &Target,
    132                         const MCFixup &Fixup, bool IsPCRel) const {
    133     return TargetObjectWriter->getRelocType(Ctx, Target, Fixup, IsPCRel);
    134   }
    135 
    136   void align(unsigned Alignment);
    137 
    138   bool maybeWriteCompression(uint64_t Size,
    139                              SmallVectorImpl<char> &CompressedContents,
    140                              bool ZLibStyle, unsigned Alignment);
    141 
    142 public:
    143   ELFObjectWriter(MCELFObjectTargetWriter *MOTW, raw_pwrite_stream &OS,
    144                   bool IsLittleEndian)
    145       : MCObjectWriter(OS, IsLittleEndian), TargetObjectWriter(MOTW) {}
    146 
    147   void reset() override {
    148     Renames.clear();
    149     Relocations.clear();
    150     StrTabBuilder.clear();
    151     SectionTable.clear();
    152     MCObjectWriter::reset();
    153   }
    154 
    155   ~ELFObjectWriter() override;
    156 
    157   void WriteWord(uint64_t W) {
    158     if (is64Bit())
    159       write64(W);
    160     else
    161       write32(W);
    162   }
    163 
    164   template <typename T> void write(T Val) {
    165     if (IsLittleEndian)
    166       support::endian::Writer<support::little>(getStream()).write(Val);
    167     else
    168       support::endian::Writer<support::big>(getStream()).write(Val);
    169   }
    170 
    171   void writeHeader(const MCAssembler &Asm);
    172 
    173   void writeSymbol(SymbolTableWriter &Writer, uint32_t StringIndex,
    174                    ELFSymbolData &MSD, const MCAsmLayout &Layout);
    175 
    176   // Start and end offset of each section
    177   typedef std::map<const MCSectionELF *, std::pair<uint64_t, uint64_t>>
    178       SectionOffsetsTy;
    179 
    180   bool shouldRelocateWithSymbol(const MCAssembler &Asm,
    181                                 const MCSymbolRefExpr *RefA,
    182                                 const MCSymbol *Sym, uint64_t C,
    183                                 unsigned Type) const;
    184 
    185   void recordRelocation(MCAssembler &Asm, const MCAsmLayout &Layout,
    186                         const MCFragment *Fragment, const MCFixup &Fixup,
    187                         MCValue Target, bool &IsPCRel,
    188                         uint64_t &FixedValue) override;
    189 
    190   // Map from a signature symbol to the group section index
    191   typedef DenseMap<const MCSymbol *, unsigned> RevGroupMapTy;
    192 
    193   /// Compute the symbol table data
    194   ///
    195   /// \param Asm - The assembler.
    196   /// \param SectionIndexMap - Maps a section to its index.
    197   /// \param RevGroupMap - Maps a signature symbol to the group section.
    198   void computeSymbolTable(MCAssembler &Asm, const MCAsmLayout &Layout,
    199                           const SectionIndexMapTy &SectionIndexMap,
    200                           const RevGroupMapTy &RevGroupMap,
    201                           SectionOffsetsTy &SectionOffsets);
    202 
    203   MCSectionELF *createRelocationSection(MCContext &Ctx,
    204                                         const MCSectionELF &Sec);
    205 
    206   const MCSectionELF *createStringTable(MCContext &Ctx);
    207 
    208   void executePostLayoutBinding(MCAssembler &Asm,
    209                                 const MCAsmLayout &Layout) override;
    210 
    211   void writeSectionHeader(const MCAsmLayout &Layout,
    212                           const SectionIndexMapTy &SectionIndexMap,
    213                           const SectionOffsetsTy &SectionOffsets);
    214 
    215   void writeSectionData(const MCAssembler &Asm, MCSection &Sec,
    216                         const MCAsmLayout &Layout);
    217 
    218   void WriteSecHdrEntry(uint32_t Name, uint32_t Type, uint64_t Flags,
    219                         uint64_t Address, uint64_t Offset, uint64_t Size,
    220                         uint32_t Link, uint32_t Info, uint64_t Alignment,
    221                         uint64_t EntrySize);
    222 
    223   void writeRelocations(const MCAssembler &Asm, const MCSectionELF &Sec);
    224 
    225   bool isSymbolRefDifferenceFullyResolvedImpl(const MCAssembler &Asm,
    226                                               const MCSymbol &SymA,
    227                                               const MCFragment &FB, bool InSet,
    228                                               bool IsPCRel) const override;
    229 
    230   bool isWeak(const MCSymbol &Sym) const override;
    231 
    232   void writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override;
    233   void writeSection(const SectionIndexMapTy &SectionIndexMap,
    234                     uint32_t GroupSymbolIndex, uint64_t Offset, uint64_t Size,
    235                     const MCSectionELF &Section);
    236 };
    237 } // end anonymous namespace
    238 
    239 void ELFObjectWriter::align(unsigned Alignment) {
    240   uint64_t Padding = OffsetToAlignment(getStream().tell(), Alignment);
    241   WriteZeros(Padding);
    242 }
    243 
    244 unsigned ELFObjectWriter::addToSectionTable(const MCSectionELF *Sec) {
    245   SectionTable.push_back(Sec);
    246   StrTabBuilder.add(Sec->getSectionName());
    247   return SectionTable.size();
    248 }
    249 
    250 void SymbolTableWriter::createSymtabShndx() {
    251   if (!ShndxIndexes.empty())
    252     return;
    253 
    254   ShndxIndexes.resize(NumWritten);
    255 }
    256 
    257 template <typename T> void SymbolTableWriter::write(T Value) {
    258   EWriter.write(Value);
    259 }
    260 
    261 SymbolTableWriter::SymbolTableWriter(ELFObjectWriter &EWriter, bool Is64Bit)
    262     : EWriter(EWriter), Is64Bit(Is64Bit), NumWritten(0) {}
    263 
    264 void SymbolTableWriter::writeSymbol(uint32_t name, uint8_t info, uint64_t value,
    265                                     uint64_t size, uint8_t other,
    266                                     uint32_t shndx, bool Reserved) {
    267   bool LargeIndex = shndx >= ELF::SHN_LORESERVE && !Reserved;
    268 
    269   if (LargeIndex)
    270     createSymtabShndx();
    271 
    272   if (!ShndxIndexes.empty()) {
    273     if (LargeIndex)
    274       ShndxIndexes.push_back(shndx);
    275     else
    276       ShndxIndexes.push_back(0);
    277   }
    278 
    279   uint16_t Index = LargeIndex ? uint16_t(ELF::SHN_XINDEX) : shndx;
    280 
    281   if (Is64Bit) {
    282     write(name);  // st_name
    283     write(info);  // st_info
    284     write(other); // st_other
    285     write(Index); // st_shndx
    286     write(value); // st_value
    287     write(size);  // st_size
    288   } else {
    289     write(name);            // st_name
    290     write(uint32_t(value)); // st_value
    291     write(uint32_t(size));  // st_size
    292     write(info);            // st_info
    293     write(other);           // st_other
    294     write(Index);           // st_shndx
    295   }
    296 
    297   ++NumWritten;
    298 }
    299 
    300 ELFObjectWriter::~ELFObjectWriter()
    301 {}
    302 
    303 // Emit the ELF header.
    304 void ELFObjectWriter::writeHeader(const MCAssembler &Asm) {
    305   // ELF Header
    306   // ----------
    307   //
    308   // Note
    309   // ----
    310   // emitWord method behaves differently for ELF32 and ELF64, writing
    311   // 4 bytes in the former and 8 in the latter.
    312 
    313   writeBytes(ELF::ElfMagic); // e_ident[EI_MAG0] to e_ident[EI_MAG3]
    314 
    315   write8(is64Bit() ? ELF::ELFCLASS64 : ELF::ELFCLASS32); // e_ident[EI_CLASS]
    316 
    317   // e_ident[EI_DATA]
    318   write8(isLittleEndian() ? ELF::ELFDATA2LSB : ELF::ELFDATA2MSB);
    319 
    320   write8(ELF::EV_CURRENT);        // e_ident[EI_VERSION]
    321   // e_ident[EI_OSABI]
    322   write8(TargetObjectWriter->getOSABI());
    323   write8(0);                  // e_ident[EI_ABIVERSION]
    324 
    325   WriteZeros(ELF::EI_NIDENT - ELF::EI_PAD);
    326 
    327   write16(ELF::ET_REL);             // e_type
    328 
    329   write16(TargetObjectWriter->getEMachine()); // e_machine = target
    330 
    331   write32(ELF::EV_CURRENT);         // e_version
    332   WriteWord(0);                    // e_entry, no entry point in .o file
    333   WriteWord(0);                    // e_phoff, no program header for .o
    334   WriteWord(0);                     // e_shoff = sec hdr table off in bytes
    335 
    336   // e_flags = whatever the target wants
    337   write32(Asm.getELFHeaderEFlags());
    338 
    339   // e_ehsize = ELF header size
    340   write16(is64Bit() ? sizeof(ELF::Elf64_Ehdr) : sizeof(ELF::Elf32_Ehdr));
    341 
    342   write16(0);                  // e_phentsize = prog header entry size
    343   write16(0);                  // e_phnum = # prog header entries = 0
    344 
    345   // e_shentsize = Section header entry size
    346   write16(is64Bit() ? sizeof(ELF::Elf64_Shdr) : sizeof(ELF::Elf32_Shdr));
    347 
    348   // e_shnum     = # of section header ents
    349   write16(0);
    350 
    351   // e_shstrndx  = Section # of '.shstrtab'
    352   assert(StringTableIndex < ELF::SHN_LORESERVE);
    353   write16(StringTableIndex);
    354 }
    355 
    356 uint64_t ELFObjectWriter::SymbolValue(const MCSymbol &Sym,
    357                                       const MCAsmLayout &Layout) {
    358   if (Sym.isCommon() && Sym.isExternal())
    359     return Sym.getCommonAlignment();
    360 
    361   uint64_t Res;
    362   if (!Layout.getSymbolOffset(Sym, Res))
    363     return 0;
    364 
    365   if (Layout.getAssembler().isThumbFunc(&Sym))
    366     Res |= 1;
    367 
    368   return Res;
    369 }
    370 
    371 void ELFObjectWriter::executePostLayoutBinding(MCAssembler &Asm,
    372                                                const MCAsmLayout &Layout) {
    373   // Section symbols are used as definitions for undefined symbols with matching
    374   // names. If there are multiple sections with the same name, the first one is
    375   // used.
    376   for (const MCSection &Sec : Asm) {
    377     const MCSymbol *Begin = Sec.getBeginSymbol();
    378     if (!Begin)
    379       continue;
    380 
    381     const MCSymbol *Alias = Asm.getContext().lookupSymbol(Begin->getName());
    382     if (!Alias || !Alias->isUndefined())
    383       continue;
    384 
    385     Renames.insert(
    386         std::make_pair(cast<MCSymbolELF>(Alias), cast<MCSymbolELF>(Begin)));
    387   }
    388 
    389   // The presence of symbol versions causes undefined symbols and
    390   // versions declared with @@@ to be renamed.
    391   for (const MCSymbol &A : Asm.symbols()) {
    392     const auto &Alias = cast<MCSymbolELF>(A);
    393     // Not an alias.
    394     if (!Alias.isVariable())
    395       continue;
    396     auto *Ref = dyn_cast<MCSymbolRefExpr>(Alias.getVariableValue());
    397     if (!Ref)
    398       continue;
    399     const auto &Symbol = cast<MCSymbolELF>(Ref->getSymbol());
    400 
    401     StringRef AliasName = Alias.getName();
    402     size_t Pos = AliasName.find('@');
    403     if (Pos == StringRef::npos)
    404       continue;
    405 
    406     // Aliases defined with .symvar copy the binding from the symbol they alias.
    407     // This is the first place we are able to copy this information.
    408     Alias.setExternal(Symbol.isExternal());
    409     Alias.setBinding(Symbol.getBinding());
    410 
    411     StringRef Rest = AliasName.substr(Pos);
    412     if (!Symbol.isUndefined() && !Rest.startswith("@@@"))
    413       continue;
    414 
    415     // FIXME: produce a better error message.
    416     if (Symbol.isUndefined() && Rest.startswith("@@") &&
    417         !Rest.startswith("@@@"))
    418       report_fatal_error("A @@ version cannot be undefined");
    419 
    420     Renames.insert(std::make_pair(&Symbol, &Alias));
    421   }
    422 }
    423 
    424 static uint8_t mergeTypeForSet(uint8_t origType, uint8_t newType) {
    425   uint8_t Type = newType;
    426 
    427   // Propagation rules:
    428   // IFUNC > FUNC > OBJECT > NOTYPE
    429   // TLS_OBJECT > OBJECT > NOTYPE
    430   //
    431   // dont let the new type degrade the old type
    432   switch (origType) {
    433   default:
    434     break;
    435   case ELF::STT_GNU_IFUNC:
    436     if (Type == ELF::STT_FUNC || Type == ELF::STT_OBJECT ||
    437         Type == ELF::STT_NOTYPE || Type == ELF::STT_TLS)
    438       Type = ELF::STT_GNU_IFUNC;
    439     break;
    440   case ELF::STT_FUNC:
    441     if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE ||
    442         Type == ELF::STT_TLS)
    443       Type = ELF::STT_FUNC;
    444     break;
    445   case ELF::STT_OBJECT:
    446     if (Type == ELF::STT_NOTYPE)
    447       Type = ELF::STT_OBJECT;
    448     break;
    449   case ELF::STT_TLS:
    450     if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE ||
    451         Type == ELF::STT_GNU_IFUNC || Type == ELF::STT_FUNC)
    452       Type = ELF::STT_TLS;
    453     break;
    454   }
    455 
    456   return Type;
    457 }
    458 
    459 void ELFObjectWriter::writeSymbol(SymbolTableWriter &Writer,
    460                                   uint32_t StringIndex, ELFSymbolData &MSD,
    461                                   const MCAsmLayout &Layout) {
    462   const auto &Symbol = cast<MCSymbolELF>(*MSD.Symbol);
    463   const MCSymbolELF *Base =
    464       cast_or_null<MCSymbolELF>(Layout.getBaseSymbol(Symbol));
    465 
    466   // This has to be in sync with when computeSymbolTable uses SHN_ABS or
    467   // SHN_COMMON.
    468   bool IsReserved = !Base || Symbol.isCommon();
    469 
    470   // Binding and Type share the same byte as upper and lower nibbles
    471   uint8_t Binding = Symbol.getBinding();
    472   uint8_t Type = Symbol.getType();
    473   if (Base) {
    474     Type = mergeTypeForSet(Type, Base->getType());
    475   }
    476   uint8_t Info = (Binding << 4) | Type;
    477 
    478   // Other and Visibility share the same byte with Visibility using the lower
    479   // 2 bits
    480   uint8_t Visibility = Symbol.getVisibility();
    481   uint8_t Other = Symbol.getOther() | Visibility;
    482 
    483   uint64_t Value = SymbolValue(*MSD.Symbol, Layout);
    484   uint64_t Size = 0;
    485 
    486   const MCExpr *ESize = MSD.Symbol->getSize();
    487   if (!ESize && Base)
    488     ESize = Base->getSize();
    489 
    490   if (ESize) {
    491     int64_t Res;
    492     if (!ESize->evaluateKnownAbsolute(Res, Layout))
    493       report_fatal_error("Size expression must be absolute.");
    494     Size = Res;
    495   }
    496 
    497   // Write out the symbol table entry
    498   Writer.writeSymbol(StringIndex, Info, Value, Size, Other, MSD.SectionIndex,
    499                      IsReserved);
    500 }
    501 
    502 // It is always valid to create a relocation with a symbol. It is preferable
    503 // to use a relocation with a section if that is possible. Using the section
    504 // allows us to omit some local symbols from the symbol table.
    505 bool ELFObjectWriter::shouldRelocateWithSymbol(const MCAssembler &Asm,
    506                                                const MCSymbolRefExpr *RefA,
    507                                                const MCSymbol *S, uint64_t C,
    508                                                unsigned Type) const {
    509   const auto *Sym = cast_or_null<MCSymbolELF>(S);
    510   // A PCRel relocation to an absolute value has no symbol (or section). We
    511   // represent that with a relocation to a null section.
    512   if (!RefA)
    513     return false;
    514 
    515   MCSymbolRefExpr::VariantKind Kind = RefA->getKind();
    516   switch (Kind) {
    517   default:
    518     break;
    519   // The .odp creation emits a relocation against the symbol ".TOC." which
    520   // create a R_PPC64_TOC relocation. However the relocation symbol name
    521   // in final object creation should be NULL, since the symbol does not
    522   // really exist, it is just the reference to TOC base for the current
    523   // object file. Since the symbol is undefined, returning false results
    524   // in a relocation with a null section which is the desired result.
    525   case MCSymbolRefExpr::VK_PPC_TOCBASE:
    526     return false;
    527 
    528   // These VariantKind cause the relocation to refer to something other than
    529   // the symbol itself, like a linker generated table. Since the address of
    530   // symbol is not relevant, we cannot replace the symbol with the
    531   // section and patch the difference in the addend.
    532   case MCSymbolRefExpr::VK_GOT:
    533   case MCSymbolRefExpr::VK_PLT:
    534   case MCSymbolRefExpr::VK_GOTPCREL:
    535   case MCSymbolRefExpr::VK_PPC_GOT_LO:
    536   case MCSymbolRefExpr::VK_PPC_GOT_HI:
    537   case MCSymbolRefExpr::VK_PPC_GOT_HA:
    538     return true;
    539   }
    540 
    541   // An undefined symbol is not in any section, so the relocation has to point
    542   // to the symbol itself.
    543   assert(Sym && "Expected a symbol");
    544   if (Sym->isUndefined())
    545     return true;
    546 
    547   unsigned Binding = Sym->getBinding();
    548   switch(Binding) {
    549   default:
    550     llvm_unreachable("Invalid Binding");
    551   case ELF::STB_LOCAL:
    552     break;
    553   case ELF::STB_WEAK:
    554     // If the symbol is weak, it might be overridden by a symbol in another
    555     // file. The relocation has to point to the symbol so that the linker
    556     // can update it.
    557     return true;
    558   case ELF::STB_GLOBAL:
    559     // Global ELF symbols can be preempted by the dynamic linker. The relocation
    560     // has to point to the symbol for a reason analogous to the STB_WEAK case.
    561     return true;
    562   }
    563 
    564   // If a relocation points to a mergeable section, we have to be careful.
    565   // If the offset is zero, a relocation with the section will encode the
    566   // same information. With a non-zero offset, the situation is different.
    567   // For example, a relocation can point 42 bytes past the end of a string.
    568   // If we change such a relocation to use the section, the linker would think
    569   // that it pointed to another string and subtracting 42 at runtime will
    570   // produce the wrong value.
    571   auto &Sec = cast<MCSectionELF>(Sym->getSection());
    572   unsigned Flags = Sec.getFlags();
    573   if (Flags & ELF::SHF_MERGE) {
    574     if (C != 0)
    575       return true;
    576 
    577     // It looks like gold has a bug (http://sourceware.org/PR16794) and can
    578     // only handle section relocations to mergeable sections if using RELA.
    579     if (!hasRelocationAddend())
    580       return true;
    581   }
    582 
    583   // Most TLS relocations use a got, so they need the symbol. Even those that
    584   // are just an offset (@tpoff), require a symbol in gold versions before
    585   // 5efeedf61e4fe720fd3e9a08e6c91c10abb66d42 (2014-09-26) which fixed
    586   // http://sourceware.org/PR16773.
    587   if (Flags & ELF::SHF_TLS)
    588     return true;
    589 
    590   // If the symbol is a thumb function the final relocation must set the lowest
    591   // bit. With a symbol that is done by just having the symbol have that bit
    592   // set, so we would lose the bit if we relocated with the section.
    593   // FIXME: We could use the section but add the bit to the relocation value.
    594   if (Asm.isThumbFunc(Sym))
    595     return true;
    596 
    597   if (TargetObjectWriter->needsRelocateWithSymbol(*Sym, Type))
    598     return true;
    599   return false;
    600 }
    601 
    602 // True if the assembler knows nothing about the final value of the symbol.
    603 // This doesn't cover the comdat issues, since in those cases the assembler
    604 // can at least know that all symbols in the section will move together.
    605 static bool isWeak(const MCSymbolELF &Sym) {
    606   if (Sym.getType() == ELF::STT_GNU_IFUNC)
    607     return true;
    608 
    609   switch (Sym.getBinding()) {
    610   default:
    611     llvm_unreachable("Unknown binding");
    612   case ELF::STB_LOCAL:
    613     return false;
    614   case ELF::STB_GLOBAL:
    615     return false;
    616   case ELF::STB_WEAK:
    617   case ELF::STB_GNU_UNIQUE:
    618     return true;
    619   }
    620 }
    621 
    622 void ELFObjectWriter::recordRelocation(MCAssembler &Asm,
    623                                        const MCAsmLayout &Layout,
    624                                        const MCFragment *Fragment,
    625                                        const MCFixup &Fixup, MCValue Target,
    626                                        bool &IsPCRel, uint64_t &FixedValue) {
    627   const MCSectionELF &FixupSection = cast<MCSectionELF>(*Fragment->getParent());
    628   uint64_t C = Target.getConstant();
    629   uint64_t FixupOffset = Layout.getFragmentOffset(Fragment) + Fixup.getOffset();
    630   MCContext &Ctx = Asm.getContext();
    631 
    632   if (const MCSymbolRefExpr *RefB = Target.getSymB()) {
    633     assert(RefB->getKind() == MCSymbolRefExpr::VK_None &&
    634            "Should not have constructed this");
    635 
    636     // Let A, B and C being the components of Target and R be the location of
    637     // the fixup. If the fixup is not pcrel, we want to compute (A - B + C).
    638     // If it is pcrel, we want to compute (A - B + C - R).
    639 
    640     // In general, ELF has no relocations for -B. It can only represent (A + C)
    641     // or (A + C - R). If B = R + K and the relocation is not pcrel, we can
    642     // replace B to implement it: (A - R - K + C)
    643     if (IsPCRel) {
    644       Ctx.reportError(
    645           Fixup.getLoc(),
    646           "No relocation available to represent this relative expression");
    647       return;
    648     }
    649 
    650     const auto &SymB = cast<MCSymbolELF>(RefB->getSymbol());
    651 
    652     if (SymB.isUndefined()) {
    653       Ctx.reportError(Fixup.getLoc(),
    654                       Twine("symbol '") + SymB.getName() +
    655                           "' can not be undefined in a subtraction expression");
    656       return;
    657     }
    658 
    659     assert(!SymB.isAbsolute() && "Should have been folded");
    660     const MCSection &SecB = SymB.getSection();
    661     if (&SecB != &FixupSection) {
    662       Ctx.reportError(Fixup.getLoc(),
    663                       "Cannot represent a difference across sections");
    664       return;
    665     }
    666 
    667     uint64_t SymBOffset = Layout.getSymbolOffset(SymB);
    668     uint64_t K = SymBOffset - FixupOffset;
    669     IsPCRel = true;
    670     C -= K;
    671   }
    672 
    673   // We either rejected the fixup or folded B into C at this point.
    674   const MCSymbolRefExpr *RefA = Target.getSymA();
    675   const auto *SymA = RefA ? cast<MCSymbolELF>(&RefA->getSymbol()) : nullptr;
    676 
    677   bool ViaWeakRef = false;
    678   if (SymA && SymA->isVariable()) {
    679     const MCExpr *Expr = SymA->getVariableValue();
    680     if (const auto *Inner = dyn_cast<MCSymbolRefExpr>(Expr)) {
    681       if (Inner->getKind() == MCSymbolRefExpr::VK_WEAKREF) {
    682         SymA = cast<MCSymbolELF>(&Inner->getSymbol());
    683         ViaWeakRef = true;
    684       }
    685     }
    686   }
    687 
    688   unsigned Type = getRelocType(Ctx, Target, Fixup, IsPCRel);
    689   uint64_t OriginalC = C;
    690   bool RelocateWithSymbol = shouldRelocateWithSymbol(Asm, RefA, SymA, C, Type);
    691   if (!RelocateWithSymbol && SymA && !SymA->isUndefined())
    692     C += Layout.getSymbolOffset(*SymA);
    693 
    694   uint64_t Addend = 0;
    695   if (hasRelocationAddend()) {
    696     Addend = C;
    697     C = 0;
    698   }
    699 
    700   FixedValue = C;
    701 
    702   if (!RelocateWithSymbol) {
    703     const MCSection *SecA =
    704         (SymA && !SymA->isUndefined()) ? &SymA->getSection() : nullptr;
    705     auto *ELFSec = cast_or_null<MCSectionELF>(SecA);
    706     const auto *SectionSymbol =
    707         ELFSec ? cast<MCSymbolELF>(ELFSec->getBeginSymbol()) : nullptr;
    708     if (SectionSymbol)
    709       SectionSymbol->setUsedInReloc();
    710     ELFRelocationEntry Rec(FixupOffset, SectionSymbol, Type, Addend, SymA,
    711                            OriginalC);
    712     Relocations[&FixupSection].push_back(Rec);
    713     return;
    714   }
    715 
    716   const auto *RenamedSymA = SymA;
    717   if (SymA) {
    718     if (const MCSymbolELF *R = Renames.lookup(SymA))
    719       RenamedSymA = R;
    720 
    721     if (ViaWeakRef)
    722       RenamedSymA->setIsWeakrefUsedInReloc();
    723     else
    724       RenamedSymA->setUsedInReloc();
    725   }
    726   ELFRelocationEntry Rec(FixupOffset, RenamedSymA, Type, Addend, SymA,
    727                          OriginalC);
    728   Relocations[&FixupSection].push_back(Rec);
    729 }
    730 
    731 bool ELFObjectWriter::isInSymtab(const MCAsmLayout &Layout,
    732                                  const MCSymbolELF &Symbol, bool Used,
    733                                  bool Renamed) {
    734   if (Symbol.isVariable()) {
    735     const MCExpr *Expr = Symbol.getVariableValue();
    736     if (const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(Expr)) {
    737       if (Ref->getKind() == MCSymbolRefExpr::VK_WEAKREF)
    738         return false;
    739     }
    740   }
    741 
    742   if (Used)
    743     return true;
    744 
    745   if (Renamed)
    746     return false;
    747 
    748   if (Symbol.isVariable() && Symbol.isUndefined()) {
    749     // FIXME: this is here just to diagnose the case of a var = commmon_sym.
    750     Layout.getBaseSymbol(Symbol);
    751     return false;
    752   }
    753 
    754   if (Symbol.isUndefined() && !Symbol.isBindingSet())
    755     return false;
    756 
    757   if (Symbol.isTemporary())
    758     return false;
    759 
    760   if (Symbol.getType() == ELF::STT_SECTION)
    761     return false;
    762 
    763   return true;
    764 }
    765 
    766 void ELFObjectWriter::computeSymbolTable(
    767     MCAssembler &Asm, const MCAsmLayout &Layout,
    768     const SectionIndexMapTy &SectionIndexMap, const RevGroupMapTy &RevGroupMap,
    769     SectionOffsetsTy &SectionOffsets) {
    770   MCContext &Ctx = Asm.getContext();
    771   SymbolTableWriter Writer(*this, is64Bit());
    772 
    773   // Symbol table
    774   unsigned EntrySize = is64Bit() ? ELF::SYMENTRY_SIZE64 : ELF::SYMENTRY_SIZE32;
    775   MCSectionELF *SymtabSection =
    776       Ctx.getELFSection(".symtab", ELF::SHT_SYMTAB, 0, EntrySize, "");
    777   SymtabSection->setAlignment(is64Bit() ? 8 : 4);
    778   SymbolTableIndex = addToSectionTable(SymtabSection);
    779 
    780   align(SymtabSection->getAlignment());
    781   uint64_t SecStart = getStream().tell();
    782 
    783   // The first entry is the undefined symbol entry.
    784   Writer.writeSymbol(0, 0, 0, 0, 0, 0, false);
    785 
    786   std::vector<ELFSymbolData> LocalSymbolData;
    787   std::vector<ELFSymbolData> ExternalSymbolData;
    788 
    789   // Add the data for the symbols.
    790   bool HasLargeSectionIndex = false;
    791   for (const MCSymbol &S : Asm.symbols()) {
    792     const auto &Symbol = cast<MCSymbolELF>(S);
    793     bool Used = Symbol.isUsedInReloc();
    794     bool WeakrefUsed = Symbol.isWeakrefUsedInReloc();
    795     bool isSignature = Symbol.isSignature();
    796 
    797     if (!isInSymtab(Layout, Symbol, Used || WeakrefUsed || isSignature,
    798                     Renames.count(&Symbol)))
    799       continue;
    800 
    801     if (Symbol.isTemporary() && Symbol.isUndefined()) {
    802       Ctx.reportError(SMLoc(), "Undefined temporary symbol");
    803       continue;
    804     }
    805 
    806     ELFSymbolData MSD;
    807     MSD.Symbol = cast<MCSymbolELF>(&Symbol);
    808 
    809     bool Local = Symbol.getBinding() == ELF::STB_LOCAL;
    810     assert(Local || !Symbol.isTemporary());
    811 
    812     if (Symbol.isAbsolute()) {
    813       MSD.SectionIndex = ELF::SHN_ABS;
    814     } else if (Symbol.isCommon()) {
    815       assert(!Local);
    816       MSD.SectionIndex = ELF::SHN_COMMON;
    817     } else if (Symbol.isUndefined()) {
    818       if (isSignature && !Used) {
    819         MSD.SectionIndex = RevGroupMap.lookup(&Symbol);
    820         if (MSD.SectionIndex >= ELF::SHN_LORESERVE)
    821           HasLargeSectionIndex = true;
    822       } else {
    823         MSD.SectionIndex = ELF::SHN_UNDEF;
    824       }
    825     } else {
    826       const MCSectionELF &Section =
    827           static_cast<const MCSectionELF &>(Symbol.getSection());
    828       MSD.SectionIndex = SectionIndexMap.lookup(&Section);
    829       assert(MSD.SectionIndex && "Invalid section index!");
    830       if (MSD.SectionIndex >= ELF::SHN_LORESERVE)
    831         HasLargeSectionIndex = true;
    832     }
    833 
    834     // The @@@ in symbol version is replaced with @ in undefined symbols and @@
    835     // in defined ones.
    836     //
    837     // FIXME: All name handling should be done before we get to the writer,
    838     // including dealing with GNU-style version suffixes.  Fixing this isn't
    839     // trivial.
    840     //
    841     // We thus have to be careful to not perform the symbol version replacement
    842     // blindly:
    843     //
    844     // The ELF format is used on Windows by the MCJIT engine.  Thus, on
    845     // Windows, the ELFObjectWriter can encounter symbols mangled using the MS
    846     // Visual Studio C++ name mangling scheme. Symbols mangled using the MSVC
    847     // C++ name mangling can legally have "@@@" as a sub-string. In that case,
    848     // the EFLObjectWriter should not interpret the "@@@" sub-string as
    849     // specifying GNU-style symbol versioning. The ELFObjectWriter therefore
    850     // checks for the MSVC C++ name mangling prefix which is either "?", "@?",
    851     // "__imp_?" or "__imp_@?".
    852     //
    853     // It would have been interesting to perform the MS mangling prefix check
    854     // only when the target triple is of the form *-pc-windows-elf. But, it
    855     // seems that this information is not easily accessible from the
    856     // ELFObjectWriter.
    857     StringRef Name = Symbol.getName();
    858     SmallString<32> Buf;
    859     if (!Name.startswith("?") && !Name.startswith("@?") &&
    860         !Name.startswith("__imp_?") && !Name.startswith("__imp_@?")) {
    861       // This symbol isn't following the MSVC C++ name mangling convention. We
    862       // can thus safely interpret the @@@ in symbol names as specifying symbol
    863       // versioning.
    864       size_t Pos = Name.find("@@@");
    865       if (Pos != StringRef::npos) {
    866         Buf += Name.substr(0, Pos);
    867         unsigned Skip = MSD.SectionIndex == ELF::SHN_UNDEF ? 2 : 1;
    868         Buf += Name.substr(Pos + Skip);
    869         Name = VersionSymSaver.save(Buf.c_str());
    870       }
    871     }
    872 
    873     // Sections have their own string table
    874     if (Symbol.getType() != ELF::STT_SECTION) {
    875       MSD.Name = Name;
    876       StrTabBuilder.add(Name);
    877     }
    878 
    879     if (Local)
    880       LocalSymbolData.push_back(MSD);
    881     else
    882       ExternalSymbolData.push_back(MSD);
    883   }
    884 
    885   // This holds the .symtab_shndx section index.
    886   unsigned SymtabShndxSectionIndex = 0;
    887 
    888   if (HasLargeSectionIndex) {
    889     MCSectionELF *SymtabShndxSection =
    890         Ctx.getELFSection(".symtab_shndxr", ELF::SHT_SYMTAB_SHNDX, 0, 4, "");
    891     SymtabShndxSectionIndex = addToSectionTable(SymtabShndxSection);
    892     SymtabShndxSection->setAlignment(4);
    893   }
    894 
    895   ArrayRef<std::string> FileNames = Asm.getFileNames();
    896   for (const std::string &Name : FileNames)
    897     StrTabBuilder.add(Name);
    898 
    899   StrTabBuilder.finalize();
    900 
    901   for (const std::string &Name : FileNames)
    902     Writer.writeSymbol(StrTabBuilder.getOffset(Name),
    903                        ELF::STT_FILE | ELF::STB_LOCAL, 0, 0, ELF::STV_DEFAULT,
    904                        ELF::SHN_ABS, true);
    905 
    906   // Symbols are required to be in lexicographic order.
    907   array_pod_sort(LocalSymbolData.begin(), LocalSymbolData.end());
    908   array_pod_sort(ExternalSymbolData.begin(), ExternalSymbolData.end());
    909 
    910   // Set the symbol indices. Local symbols must come before all other
    911   // symbols with non-local bindings.
    912   unsigned Index = FileNames.size() + 1;
    913 
    914   for (ELFSymbolData &MSD : LocalSymbolData) {
    915     unsigned StringIndex = MSD.Symbol->getType() == ELF::STT_SECTION
    916                                ? 0
    917                                : StrTabBuilder.getOffset(MSD.Name);
    918     MSD.Symbol->setIndex(Index++);
    919     writeSymbol(Writer, StringIndex, MSD, Layout);
    920   }
    921 
    922   // Write the symbol table entries.
    923   LastLocalSymbolIndex = Index;
    924 
    925   for (ELFSymbolData &MSD : ExternalSymbolData) {
    926     unsigned StringIndex = StrTabBuilder.getOffset(MSD.Name);
    927     MSD.Symbol->setIndex(Index++);
    928     writeSymbol(Writer, StringIndex, MSD, Layout);
    929     assert(MSD.Symbol->getBinding() != ELF::STB_LOCAL);
    930   }
    931 
    932   uint64_t SecEnd = getStream().tell();
    933   SectionOffsets[SymtabSection] = std::make_pair(SecStart, SecEnd);
    934 
    935   ArrayRef<uint32_t> ShndxIndexes = Writer.getShndxIndexes();
    936   if (ShndxIndexes.empty()) {
    937     assert(SymtabShndxSectionIndex == 0);
    938     return;
    939   }
    940   assert(SymtabShndxSectionIndex != 0);
    941 
    942   SecStart = getStream().tell();
    943   const MCSectionELF *SymtabShndxSection =
    944       SectionTable[SymtabShndxSectionIndex - 1];
    945   for (uint32_t Index : ShndxIndexes)
    946     write(Index);
    947   SecEnd = getStream().tell();
    948   SectionOffsets[SymtabShndxSection] = std::make_pair(SecStart, SecEnd);
    949 }
    950 
    951 MCSectionELF *
    952 ELFObjectWriter::createRelocationSection(MCContext &Ctx,
    953                                          const MCSectionELF &Sec) {
    954   if (Relocations[&Sec].empty())
    955     return nullptr;
    956 
    957   const StringRef SectionName = Sec.getSectionName();
    958   std::string RelaSectionName = hasRelocationAddend() ? ".rela" : ".rel";
    959   RelaSectionName += SectionName;
    960 
    961   unsigned EntrySize;
    962   if (hasRelocationAddend())
    963     EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rela) : sizeof(ELF::Elf32_Rela);
    964   else
    965     EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rel) : sizeof(ELF::Elf32_Rel);
    966 
    967   unsigned Flags = 0;
    968   if (Sec.getFlags() & ELF::SHF_GROUP)
    969     Flags = ELF::SHF_GROUP;
    970 
    971   MCSectionELF *RelaSection = Ctx.createELFRelSection(
    972       RelaSectionName, hasRelocationAddend() ? ELF::SHT_RELA : ELF::SHT_REL,
    973       Flags, EntrySize, Sec.getGroup(), &Sec);
    974   RelaSection->setAlignment(is64Bit() ? 8 : 4);
    975   return RelaSection;
    976 }
    977 
    978 // Include the debug info compression header.
    979 bool ELFObjectWriter::maybeWriteCompression(
    980     uint64_t Size, SmallVectorImpl<char> &CompressedContents, bool ZLibStyle,
    981     unsigned Alignment) {
    982   if (ZLibStyle) {
    983     uint64_t HdrSize =
    984         is64Bit() ? sizeof(ELF::Elf32_Chdr) : sizeof(ELF::Elf64_Chdr);
    985     if (Size <= HdrSize + CompressedContents.size())
    986       return false;
    987     // Platform specific header is followed by compressed data.
    988     if (is64Bit()) {
    989       // Write Elf64_Chdr header.
    990       write(static_cast<ELF::Elf64_Word>(ELF::ELFCOMPRESS_ZLIB));
    991       write(static_cast<ELF::Elf64_Word>(0)); // ch_reserved field.
    992       write(static_cast<ELF::Elf64_Xword>(Size));
    993       write(static_cast<ELF::Elf64_Xword>(Alignment));
    994     } else {
    995       // Write Elf32_Chdr header otherwise.
    996       write(static_cast<ELF::Elf32_Word>(ELF::ELFCOMPRESS_ZLIB));
    997       write(static_cast<ELF::Elf32_Word>(Size));
    998       write(static_cast<ELF::Elf32_Word>(Alignment));
    999     }
   1000     return true;
   1001   }
   1002 
   1003   // "ZLIB" followed by 8 bytes representing the uncompressed size of the section,
   1004   // useful for consumers to preallocate a buffer to decompress into.
   1005   const StringRef Magic = "ZLIB";
   1006   if (Size <= Magic.size() + sizeof(Size) + CompressedContents.size())
   1007     return false;
   1008   write(ArrayRef<char>(Magic.begin(), Magic.size()));
   1009   writeBE64(Size);
   1010   return true;
   1011 }
   1012 
   1013 void ELFObjectWriter::writeSectionData(const MCAssembler &Asm, MCSection &Sec,
   1014                                        const MCAsmLayout &Layout) {
   1015   MCSectionELF &Section = static_cast<MCSectionELF &>(Sec);
   1016   StringRef SectionName = Section.getSectionName();
   1017 
   1018   // Compressing debug_frame requires handling alignment fragments which is
   1019   // more work (possibly generalizing MCAssembler.cpp:writeFragment to allow
   1020   // for writing to arbitrary buffers) for little benefit.
   1021   bool CompressionEnabled =
   1022       Asm.getContext().getAsmInfo()->compressDebugSections() !=
   1023       DebugCompressionType::DCT_None;
   1024   if (!CompressionEnabled || !SectionName.startswith(".debug_") ||
   1025       SectionName == ".debug_frame") {
   1026     Asm.writeSectionData(&Section, Layout);
   1027     return;
   1028   }
   1029 
   1030   SmallVector<char, 128> UncompressedData;
   1031   raw_svector_ostream VecOS(UncompressedData);
   1032   raw_pwrite_stream &OldStream = getStream();
   1033   setStream(VecOS);
   1034   Asm.writeSectionData(&Section, Layout);
   1035   setStream(OldStream);
   1036 
   1037   SmallVector<char, 128> CompressedContents;
   1038   zlib::Status Success = zlib::compress(
   1039       StringRef(UncompressedData.data(), UncompressedData.size()),
   1040       CompressedContents);
   1041   if (Success != zlib::StatusOK) {
   1042     getStream() << UncompressedData;
   1043     return;
   1044   }
   1045 
   1046   bool ZlibStyle = Asm.getContext().getAsmInfo()->compressDebugSections() ==
   1047                    DebugCompressionType::DCT_Zlib;
   1048   if (!maybeWriteCompression(UncompressedData.size(), CompressedContents,
   1049                              ZlibStyle, Sec.getAlignment())) {
   1050     getStream() << UncompressedData;
   1051     return;
   1052   }
   1053 
   1054   if (ZlibStyle)
   1055     // Set the compressed flag. That is zlib style.
   1056     Section.setFlags(Section.getFlags() | ELF::SHF_COMPRESSED);
   1057   else
   1058     // Add "z" prefix to section name. This is zlib-gnu style.
   1059     Asm.getContext().renameELFSection(&Section,
   1060                                       (".z" + SectionName.drop_front(1)).str());
   1061   getStream() << CompressedContents;
   1062 }
   1063 
   1064 void ELFObjectWriter::WriteSecHdrEntry(uint32_t Name, uint32_t Type,
   1065                                        uint64_t Flags, uint64_t Address,
   1066                                        uint64_t Offset, uint64_t Size,
   1067                                        uint32_t Link, uint32_t Info,
   1068                                        uint64_t Alignment,
   1069                                        uint64_t EntrySize) {
   1070   write32(Name);        // sh_name: index into string table
   1071   write32(Type);        // sh_type
   1072   WriteWord(Flags);     // sh_flags
   1073   WriteWord(Address);   // sh_addr
   1074   WriteWord(Offset);    // sh_offset
   1075   WriteWord(Size);      // sh_size
   1076   write32(Link);        // sh_link
   1077   write32(Info);        // sh_info
   1078   WriteWord(Alignment); // sh_addralign
   1079   WriteWord(EntrySize); // sh_entsize
   1080 }
   1081 
   1082 void ELFObjectWriter::writeRelocations(const MCAssembler &Asm,
   1083                                        const MCSectionELF &Sec) {
   1084   std::vector<ELFRelocationEntry> &Relocs = Relocations[&Sec];
   1085 
   1086   // We record relocations by pushing to the end of a vector. Reverse the vector
   1087   // to get the relocations in the order they were created.
   1088   // In most cases that is not important, but it can be for special sections
   1089   // (.eh_frame) or specific relocations (TLS optimizations on SystemZ).
   1090   std::reverse(Relocs.begin(), Relocs.end());
   1091 
   1092   // Sort the relocation entries. MIPS needs this.
   1093   TargetObjectWriter->sortRelocs(Asm, Relocs);
   1094 
   1095   for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
   1096     const ELFRelocationEntry &Entry = Relocs[e - i - 1];
   1097     unsigned Index = Entry.Symbol ? Entry.Symbol->getIndex() : 0;
   1098 
   1099     if (is64Bit()) {
   1100       write(Entry.Offset);
   1101       if (TargetObjectWriter->isN64()) {
   1102         write(uint32_t(Index));
   1103 
   1104         write(TargetObjectWriter->getRSsym(Entry.Type));
   1105         write(TargetObjectWriter->getRType3(Entry.Type));
   1106         write(TargetObjectWriter->getRType2(Entry.Type));
   1107         write(TargetObjectWriter->getRType(Entry.Type));
   1108       } else {
   1109         struct ELF::Elf64_Rela ERE64;
   1110         ERE64.setSymbolAndType(Index, Entry.Type);
   1111         write(ERE64.r_info);
   1112       }
   1113       if (hasRelocationAddend())
   1114         write(Entry.Addend);
   1115     } else {
   1116       write(uint32_t(Entry.Offset));
   1117 
   1118       struct ELF::Elf32_Rela ERE32;
   1119       ERE32.setSymbolAndType(Index, Entry.Type);
   1120       write(ERE32.r_info);
   1121 
   1122       if (hasRelocationAddend())
   1123         write(uint32_t(Entry.Addend));
   1124     }
   1125   }
   1126 }
   1127 
   1128 const MCSectionELF *ELFObjectWriter::createStringTable(MCContext &Ctx) {
   1129   const MCSectionELF *StrtabSection = SectionTable[StringTableIndex - 1];
   1130   getStream() << StrTabBuilder.data();
   1131   return StrtabSection;
   1132 }
   1133 
   1134 void ELFObjectWriter::writeSection(const SectionIndexMapTy &SectionIndexMap,
   1135                                    uint32_t GroupSymbolIndex, uint64_t Offset,
   1136                                    uint64_t Size, const MCSectionELF &Section) {
   1137   uint64_t sh_link = 0;
   1138   uint64_t sh_info = 0;
   1139 
   1140   switch(Section.getType()) {
   1141   default:
   1142     // Nothing to do.
   1143     break;
   1144 
   1145   case ELF::SHT_DYNAMIC:
   1146     llvm_unreachable("SHT_DYNAMIC in a relocatable object");
   1147 
   1148   case ELF::SHT_REL:
   1149   case ELF::SHT_RELA: {
   1150     sh_link = SymbolTableIndex;
   1151     assert(sh_link && ".symtab not found");
   1152     const MCSectionELF *InfoSection = Section.getAssociatedSection();
   1153     sh_info = SectionIndexMap.lookup(InfoSection);
   1154     break;
   1155   }
   1156 
   1157   case ELF::SHT_SYMTAB:
   1158   case ELF::SHT_DYNSYM:
   1159     sh_link = StringTableIndex;
   1160     sh_info = LastLocalSymbolIndex;
   1161     break;
   1162 
   1163   case ELF::SHT_SYMTAB_SHNDX:
   1164     sh_link = SymbolTableIndex;
   1165     break;
   1166 
   1167   case ELF::SHT_GROUP:
   1168     sh_link = SymbolTableIndex;
   1169     sh_info = GroupSymbolIndex;
   1170     break;
   1171   }
   1172 
   1173   if (TargetObjectWriter->getEMachine() == ELF::EM_ARM &&
   1174       Section.getType() == ELF::SHT_ARM_EXIDX)
   1175     sh_link = SectionIndexMap.lookup(Section.getAssociatedSection());
   1176 
   1177   WriteSecHdrEntry(StrTabBuilder.getOffset(Section.getSectionName()),
   1178                    Section.getType(), Section.getFlags(), 0, Offset, Size,
   1179                    sh_link, sh_info, Section.getAlignment(),
   1180                    Section.getEntrySize());
   1181 }
   1182 
   1183 void ELFObjectWriter::writeSectionHeader(
   1184     const MCAsmLayout &Layout, const SectionIndexMapTy &SectionIndexMap,
   1185     const SectionOffsetsTy &SectionOffsets) {
   1186   const unsigned NumSections = SectionTable.size();
   1187 
   1188   // Null section first.
   1189   uint64_t FirstSectionSize =
   1190       (NumSections + 1) >= ELF::SHN_LORESERVE ? NumSections + 1 : 0;
   1191   WriteSecHdrEntry(0, 0, 0, 0, 0, FirstSectionSize, 0, 0, 0, 0);
   1192 
   1193   for (const MCSectionELF *Section : SectionTable) {
   1194     uint32_t GroupSymbolIndex;
   1195     unsigned Type = Section->getType();
   1196     if (Type != ELF::SHT_GROUP)
   1197       GroupSymbolIndex = 0;
   1198     else
   1199       GroupSymbolIndex = Section->getGroup()->getIndex();
   1200 
   1201     const std::pair<uint64_t, uint64_t> &Offsets =
   1202         SectionOffsets.find(Section)->second;
   1203     uint64_t Size;
   1204     if (Type == ELF::SHT_NOBITS)
   1205       Size = Layout.getSectionAddressSize(Section);
   1206     else
   1207       Size = Offsets.second - Offsets.first;
   1208 
   1209     writeSection(SectionIndexMap, GroupSymbolIndex, Offsets.first, Size,
   1210                  *Section);
   1211   }
   1212 }
   1213 
   1214 void ELFObjectWriter::writeObject(MCAssembler &Asm,
   1215                                   const MCAsmLayout &Layout) {
   1216   MCContext &Ctx = Asm.getContext();
   1217   MCSectionELF *StrtabSection =
   1218       Ctx.getELFSection(".strtab", ELF::SHT_STRTAB, 0);
   1219   StringTableIndex = addToSectionTable(StrtabSection);
   1220 
   1221   RevGroupMapTy RevGroupMap;
   1222   SectionIndexMapTy SectionIndexMap;
   1223 
   1224   std::map<const MCSymbol *, std::vector<const MCSectionELF *>> GroupMembers;
   1225 
   1226   // Write out the ELF header ...
   1227   writeHeader(Asm);
   1228 
   1229   // ... then the sections ...
   1230   SectionOffsetsTy SectionOffsets;
   1231   std::vector<MCSectionELF *> Groups;
   1232   std::vector<MCSectionELF *> Relocations;
   1233   for (MCSection &Sec : Asm) {
   1234     MCSectionELF &Section = static_cast<MCSectionELF &>(Sec);
   1235 
   1236     align(Section.getAlignment());
   1237 
   1238     // Remember the offset into the file for this section.
   1239     uint64_t SecStart = getStream().tell();
   1240 
   1241     const MCSymbolELF *SignatureSymbol = Section.getGroup();
   1242     writeSectionData(Asm, Section, Layout);
   1243 
   1244     uint64_t SecEnd = getStream().tell();
   1245     SectionOffsets[&Section] = std::make_pair(SecStart, SecEnd);
   1246 
   1247     MCSectionELF *RelSection = createRelocationSection(Ctx, Section);
   1248 
   1249     if (SignatureSymbol) {
   1250       Asm.registerSymbol(*SignatureSymbol);
   1251       unsigned &GroupIdx = RevGroupMap[SignatureSymbol];
   1252       if (!GroupIdx) {
   1253         MCSectionELF *Group = Ctx.createELFGroupSection(SignatureSymbol);
   1254         GroupIdx = addToSectionTable(Group);
   1255         Group->setAlignment(4);
   1256         Groups.push_back(Group);
   1257       }
   1258       std::vector<const MCSectionELF *> &Members =
   1259           GroupMembers[SignatureSymbol];
   1260       Members.push_back(&Section);
   1261       if (RelSection)
   1262         Members.push_back(RelSection);
   1263     }
   1264 
   1265     SectionIndexMap[&Section] = addToSectionTable(&Section);
   1266     if (RelSection) {
   1267       SectionIndexMap[RelSection] = addToSectionTable(RelSection);
   1268       Relocations.push_back(RelSection);
   1269     }
   1270   }
   1271 
   1272   for (MCSectionELF *Group : Groups) {
   1273     align(Group->getAlignment());
   1274 
   1275     // Remember the offset into the file for this section.
   1276     uint64_t SecStart = getStream().tell();
   1277 
   1278     const MCSymbol *SignatureSymbol = Group->getGroup();
   1279     assert(SignatureSymbol);
   1280     write(uint32_t(ELF::GRP_COMDAT));
   1281     for (const MCSectionELF *Member : GroupMembers[SignatureSymbol]) {
   1282       uint32_t SecIndex = SectionIndexMap.lookup(Member);
   1283       write(SecIndex);
   1284     }
   1285 
   1286     uint64_t SecEnd = getStream().tell();
   1287     SectionOffsets[Group] = std::make_pair(SecStart, SecEnd);
   1288   }
   1289 
   1290   // Compute symbol table information.
   1291   computeSymbolTable(Asm, Layout, SectionIndexMap, RevGroupMap, SectionOffsets);
   1292 
   1293   for (MCSectionELF *RelSection : Relocations) {
   1294     align(RelSection->getAlignment());
   1295 
   1296     // Remember the offset into the file for this section.
   1297     uint64_t SecStart = getStream().tell();
   1298 
   1299     writeRelocations(Asm, *RelSection->getAssociatedSection());
   1300 
   1301     uint64_t SecEnd = getStream().tell();
   1302     SectionOffsets[RelSection] = std::make_pair(SecStart, SecEnd);
   1303   }
   1304 
   1305   {
   1306     uint64_t SecStart = getStream().tell();
   1307     const MCSectionELF *Sec = createStringTable(Ctx);
   1308     uint64_t SecEnd = getStream().tell();
   1309     SectionOffsets[Sec] = std::make_pair(SecStart, SecEnd);
   1310   }
   1311 
   1312   uint64_t NaturalAlignment = is64Bit() ? 8 : 4;
   1313   align(NaturalAlignment);
   1314 
   1315   const uint64_t SectionHeaderOffset = getStream().tell();
   1316 
   1317   // ... then the section header table ...
   1318   writeSectionHeader(Layout, SectionIndexMap, SectionOffsets);
   1319 
   1320   uint16_t NumSections = (SectionTable.size() + 1 >= ELF::SHN_LORESERVE)
   1321                              ? (uint16_t)ELF::SHN_UNDEF
   1322                              : SectionTable.size() + 1;
   1323   if (sys::IsLittleEndianHost != IsLittleEndian)
   1324     sys::swapByteOrder(NumSections);
   1325   unsigned NumSectionsOffset;
   1326 
   1327   if (is64Bit()) {
   1328     uint64_t Val = SectionHeaderOffset;
   1329     if (sys::IsLittleEndianHost != IsLittleEndian)
   1330       sys::swapByteOrder(Val);
   1331     getStream().pwrite(reinterpret_cast<char *>(&Val), sizeof(Val),
   1332                        offsetof(ELF::Elf64_Ehdr, e_shoff));
   1333     NumSectionsOffset = offsetof(ELF::Elf64_Ehdr, e_shnum);
   1334   } else {
   1335     uint32_t Val = SectionHeaderOffset;
   1336     if (sys::IsLittleEndianHost != IsLittleEndian)
   1337       sys::swapByteOrder(Val);
   1338     getStream().pwrite(reinterpret_cast<char *>(&Val), sizeof(Val),
   1339                        offsetof(ELF::Elf32_Ehdr, e_shoff));
   1340     NumSectionsOffset = offsetof(ELF::Elf32_Ehdr, e_shnum);
   1341   }
   1342   getStream().pwrite(reinterpret_cast<char *>(&NumSections),
   1343                      sizeof(NumSections), NumSectionsOffset);
   1344 }
   1345 
   1346 bool ELFObjectWriter::isSymbolRefDifferenceFullyResolvedImpl(
   1347     const MCAssembler &Asm, const MCSymbol &SA, const MCFragment &FB,
   1348     bool InSet, bool IsPCRel) const {
   1349   const auto &SymA = cast<MCSymbolELF>(SA);
   1350   if (IsPCRel) {
   1351     assert(!InSet);
   1352     if (::isWeak(SymA))
   1353       return false;
   1354   }
   1355   return MCObjectWriter::isSymbolRefDifferenceFullyResolvedImpl(Asm, SymA, FB,
   1356                                                                 InSet, IsPCRel);
   1357 }
   1358 
   1359 bool ELFObjectWriter::isWeak(const MCSymbol &S) const {
   1360   const auto &Sym = cast<MCSymbolELF>(S);
   1361   if (::isWeak(Sym))
   1362     return true;
   1363 
   1364   // It is invalid to replace a reference to a global in a comdat
   1365   // with a reference to a local since out of comdat references
   1366   // to a local are forbidden.
   1367   // We could try to return false for more cases, like the reference
   1368   // being in the same comdat or Sym being an alias to another global,
   1369   // but it is not clear if it is worth the effort.
   1370   if (Sym.getBinding() != ELF::STB_GLOBAL)
   1371     return false;
   1372 
   1373   if (!Sym.isInSection())
   1374     return false;
   1375 
   1376   const auto &Sec = cast<MCSectionELF>(Sym.getSection());
   1377   return Sec.getGroup();
   1378 }
   1379 
   1380 MCObjectWriter *llvm::createELFObjectWriter(MCELFObjectTargetWriter *MOTW,
   1381                                             raw_pwrite_stream &OS,
   1382                                             bool IsLittleEndian) {
   1383   return new ELFObjectWriter(MOTW, OS, IsLittleEndian);
   1384 }
   1385