Home | History | Annotate | Download | only in Support
      1 //==- lib/Support/ScaledNumber.cpp - Support for scaled numbers -*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Implementation of some scaled number algorithms.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Support/ScaledNumber.h"
     15 #include "llvm/ADT/APFloat.h"
     16 #include "llvm/ADT/ArrayRef.h"
     17 #include "llvm/Support/Debug.h"
     18 #include "llvm/Support/raw_ostream.h"
     19 
     20 using namespace llvm;
     21 using namespace llvm::ScaledNumbers;
     22 
     23 std::pair<uint64_t, int16_t> ScaledNumbers::multiply64(uint64_t LHS,
     24                                                        uint64_t RHS) {
     25   // Separate into two 32-bit digits (U.L).
     26   auto getU = [](uint64_t N) { return N >> 32; };
     27   auto getL = [](uint64_t N) { return N & UINT32_MAX; };
     28   uint64_t UL = getU(LHS), LL = getL(LHS), UR = getU(RHS), LR = getL(RHS);
     29 
     30   // Compute cross products.
     31   uint64_t P1 = UL * UR, P2 = UL * LR, P3 = LL * UR, P4 = LL * LR;
     32 
     33   // Sum into two 64-bit digits.
     34   uint64_t Upper = P1, Lower = P4;
     35   auto addWithCarry = [&](uint64_t N) {
     36     uint64_t NewLower = Lower + (getL(N) << 32);
     37     Upper += getU(N) + (NewLower < Lower);
     38     Lower = NewLower;
     39   };
     40   addWithCarry(P2);
     41   addWithCarry(P3);
     42 
     43   // Check whether the upper digit is empty.
     44   if (!Upper)
     45     return std::make_pair(Lower, 0);
     46 
     47   // Shift as little as possible to maximize precision.
     48   unsigned LeadingZeros = countLeadingZeros(Upper);
     49   int Shift = 64 - LeadingZeros;
     50   if (LeadingZeros)
     51     Upper = Upper << LeadingZeros | Lower >> Shift;
     52   return getRounded(Upper, Shift,
     53                     Shift && (Lower & UINT64_C(1) << (Shift - 1)));
     54 }
     55 
     56 static uint64_t getHalf(uint64_t N) { return (N >> 1) + (N & 1); }
     57 
     58 std::pair<uint32_t, int16_t> ScaledNumbers::divide32(uint32_t Dividend,
     59                                                      uint32_t Divisor) {
     60   assert(Dividend && "expected non-zero dividend");
     61   assert(Divisor && "expected non-zero divisor");
     62 
     63   // Use 64-bit math and canonicalize the dividend to gain precision.
     64   uint64_t Dividend64 = Dividend;
     65   int Shift = 0;
     66   if (int Zeros = countLeadingZeros(Dividend64)) {
     67     Shift -= Zeros;
     68     Dividend64 <<= Zeros;
     69   }
     70   uint64_t Quotient = Dividend64 / Divisor;
     71   uint64_t Remainder = Dividend64 % Divisor;
     72 
     73   // If Quotient needs to be shifted, leave the rounding to getAdjusted().
     74   if (Quotient > UINT32_MAX)
     75     return getAdjusted<uint32_t>(Quotient, Shift);
     76 
     77   // Round based on the value of the next bit.
     78   return getRounded<uint32_t>(Quotient, Shift, Remainder >= getHalf(Divisor));
     79 }
     80 
     81 std::pair<uint64_t, int16_t> ScaledNumbers::divide64(uint64_t Dividend,
     82                                                      uint64_t Divisor) {
     83   assert(Dividend && "expected non-zero dividend");
     84   assert(Divisor && "expected non-zero divisor");
     85 
     86   // Minimize size of divisor.
     87   int Shift = 0;
     88   if (int Zeros = countTrailingZeros(Divisor)) {
     89     Shift -= Zeros;
     90     Divisor >>= Zeros;
     91   }
     92 
     93   // Check for powers of two.
     94   if (Divisor == 1)
     95     return std::make_pair(Dividend, Shift);
     96 
     97   // Maximize size of dividend.
     98   if (int Zeros = countLeadingZeros(Dividend)) {
     99     Shift -= Zeros;
    100     Dividend <<= Zeros;
    101   }
    102 
    103   // Start with the result of a divide.
    104   uint64_t Quotient = Dividend / Divisor;
    105   Dividend %= Divisor;
    106 
    107   // Continue building the quotient with long division.
    108   while (!(Quotient >> 63) && Dividend) {
    109     // Shift Dividend and check for overflow.
    110     bool IsOverflow = Dividend >> 63;
    111     Dividend <<= 1;
    112     --Shift;
    113 
    114     // Get the next bit of Quotient.
    115     Quotient <<= 1;
    116     if (IsOverflow || Divisor <= Dividend) {
    117       Quotient |= 1;
    118       Dividend -= Divisor;
    119     }
    120   }
    121 
    122   return getRounded(Quotient, Shift, Dividend >= getHalf(Divisor));
    123 }
    124 
    125 int ScaledNumbers::compareImpl(uint64_t L, uint64_t R, int ScaleDiff) {
    126   assert(ScaleDiff >= 0 && "wrong argument order");
    127   assert(ScaleDiff < 64 && "numbers too far apart");
    128 
    129   uint64_t L_adjusted = L >> ScaleDiff;
    130   if (L_adjusted < R)
    131     return -1;
    132   if (L_adjusted > R)
    133     return 1;
    134 
    135   return L > L_adjusted << ScaleDiff ? 1 : 0;
    136 }
    137 
    138 static void appendDigit(std::string &Str, unsigned D) {
    139   assert(D < 10);
    140   Str += '0' + D % 10;
    141 }
    142 
    143 static void appendNumber(std::string &Str, uint64_t N) {
    144   while (N) {
    145     appendDigit(Str, N % 10);
    146     N /= 10;
    147   }
    148 }
    149 
    150 static bool doesRoundUp(char Digit) {
    151   switch (Digit) {
    152   case '5':
    153   case '6':
    154   case '7':
    155   case '8':
    156   case '9':
    157     return true;
    158   default:
    159     return false;
    160   }
    161 }
    162 
    163 static std::string toStringAPFloat(uint64_t D, int E, unsigned Precision) {
    164   assert(E >= ScaledNumbers::MinScale);
    165   assert(E <= ScaledNumbers::MaxScale);
    166 
    167   // Find a new E, but don't let it increase past MaxScale.
    168   int LeadingZeros = ScaledNumberBase::countLeadingZeros64(D);
    169   int NewE = std::min(ScaledNumbers::MaxScale, E + 63 - LeadingZeros);
    170   int Shift = 63 - (NewE - E);
    171   assert(Shift <= LeadingZeros);
    172   assert(Shift == LeadingZeros || NewE == ScaledNumbers::MaxScale);
    173   assert(Shift >= 0 && Shift < 64 && "undefined behavior");
    174   D <<= Shift;
    175   E = NewE;
    176 
    177   // Check for a denormal.
    178   unsigned AdjustedE = E + 16383;
    179   if (!(D >> 63)) {
    180     assert(E == ScaledNumbers::MaxScale);
    181     AdjustedE = 0;
    182   }
    183 
    184   // Build the float and print it.
    185   uint64_t RawBits[2] = {D, AdjustedE};
    186   APFloat Float(APFloat::x87DoubleExtended, APInt(80, RawBits));
    187   SmallVector<char, 24> Chars;
    188   Float.toString(Chars, Precision, 0);
    189   return std::string(Chars.begin(), Chars.end());
    190 }
    191 
    192 static std::string stripTrailingZeros(const std::string &Float) {
    193   size_t NonZero = Float.find_last_not_of('0');
    194   assert(NonZero != std::string::npos && "no . in floating point string");
    195 
    196   if (Float[NonZero] == '.')
    197     ++NonZero;
    198 
    199   return Float.substr(0, NonZero + 1);
    200 }
    201 
    202 std::string ScaledNumberBase::toString(uint64_t D, int16_t E, int Width,
    203                                        unsigned Precision) {
    204   if (!D)
    205     return "0.0";
    206 
    207   // Canonicalize exponent and digits.
    208   uint64_t Above0 = 0;
    209   uint64_t Below0 = 0;
    210   uint64_t Extra = 0;
    211   int ExtraShift = 0;
    212   if (E == 0) {
    213     Above0 = D;
    214   } else if (E > 0) {
    215     if (int Shift = std::min(int16_t(countLeadingZeros64(D)), E)) {
    216       D <<= Shift;
    217       E -= Shift;
    218 
    219       if (!E)
    220         Above0 = D;
    221     }
    222   } else if (E > -64) {
    223     Above0 = D >> -E;
    224     Below0 = D << (64 + E);
    225   } else if (E == -64) {
    226     // Special case: shift by 64 bits is undefined behavior.
    227     Below0 = D;
    228   } else if (E > -120) {
    229     Below0 = D >> (-E - 64);
    230     Extra = D << (128 + E);
    231     ExtraShift = -64 - E;
    232   }
    233 
    234   // Fall back on APFloat for very small and very large numbers.
    235   if (!Above0 && !Below0)
    236     return toStringAPFloat(D, E, Precision);
    237 
    238   // Append the digits before the decimal.
    239   std::string Str;
    240   size_t DigitsOut = 0;
    241   if (Above0) {
    242     appendNumber(Str, Above0);
    243     DigitsOut = Str.size();
    244   } else
    245     appendDigit(Str, 0);
    246   std::reverse(Str.begin(), Str.end());
    247 
    248   // Return early if there's nothing after the decimal.
    249   if (!Below0)
    250     return Str + ".0";
    251 
    252   // Append the decimal and beyond.
    253   Str += '.';
    254   uint64_t Error = UINT64_C(1) << (64 - Width);
    255 
    256   // We need to shift Below0 to the right to make space for calculating
    257   // digits.  Save the precision we're losing in Extra.
    258   Extra = (Below0 & 0xf) << 56 | (Extra >> 8);
    259   Below0 >>= 4;
    260   size_t SinceDot = 0;
    261   size_t AfterDot = Str.size();
    262   do {
    263     if (ExtraShift) {
    264       --ExtraShift;
    265       Error *= 5;
    266     } else
    267       Error *= 10;
    268 
    269     Below0 *= 10;
    270     Extra *= 10;
    271     Below0 += (Extra >> 60);
    272     Extra = Extra & (UINT64_MAX >> 4);
    273     appendDigit(Str, Below0 >> 60);
    274     Below0 = Below0 & (UINT64_MAX >> 4);
    275     if (DigitsOut || Str.back() != '0')
    276       ++DigitsOut;
    277     ++SinceDot;
    278   } while (Error && (Below0 << 4 | Extra >> 60) >= Error / 2 &&
    279            (!Precision || DigitsOut <= Precision || SinceDot < 2));
    280 
    281   // Return early for maximum precision.
    282   if (!Precision || DigitsOut <= Precision)
    283     return stripTrailingZeros(Str);
    284 
    285   // Find where to truncate.
    286   size_t Truncate =
    287       std::max(Str.size() - (DigitsOut - Precision), AfterDot + 1);
    288 
    289   // Check if there's anything to truncate.
    290   if (Truncate >= Str.size())
    291     return stripTrailingZeros(Str);
    292 
    293   bool Carry = doesRoundUp(Str[Truncate]);
    294   if (!Carry)
    295     return stripTrailingZeros(Str.substr(0, Truncate));
    296 
    297   // Round with the first truncated digit.
    298   for (std::string::reverse_iterator I(Str.begin() + Truncate), E = Str.rend();
    299        I != E; ++I) {
    300     if (*I == '.')
    301       continue;
    302     if (*I == '9') {
    303       *I = '0';
    304       continue;
    305     }
    306 
    307     ++*I;
    308     Carry = false;
    309     break;
    310   }
    311 
    312   // Add "1" in front if we still need to carry.
    313   return stripTrailingZeros(std::string(Carry, '1') + Str.substr(0, Truncate));
    314 }
    315 
    316 raw_ostream &ScaledNumberBase::print(raw_ostream &OS, uint64_t D, int16_t E,
    317                                      int Width, unsigned Precision) {
    318   return OS << toString(D, E, Width, Precision);
    319 }
    320 
    321 void ScaledNumberBase::dump(uint64_t D, int16_t E, int Width) {
    322   print(dbgs(), D, E, Width, 0) << "[" << Width << ":" << D << "*2^" << E
    323                                 << "]";
    324 }
    325