1 //===- llvm/ADT/SmallPtrSet.cpp - 'Normally small' pointer set ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SmallPtrSet class. See SmallPtrSet.h for an 11 // overview of the algorithm. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/ADT/DenseMapInfo.h" 17 #include "llvm/Support/MathExtras.h" 18 #include <algorithm> 19 #include <cstdlib> 20 21 using namespace llvm; 22 23 void SmallPtrSetImplBase::shrink_and_clear() { 24 assert(!isSmall() && "Can't shrink a small set!"); 25 free(CurArray); 26 27 // Reduce the number of buckets. 28 unsigned Size = size(); 29 CurArraySize = Size > 16 ? 1 << (Log2_32_Ceil(Size) + 1) : 32; 30 NumNonEmpty = NumTombstones = 0; 31 32 // Install the new array. Clear all the buckets to empty. 33 CurArray = (const void**)malloc(sizeof(void*) * CurArraySize); 34 assert(CurArray && "Failed to allocate memory?"); 35 memset(CurArray, -1, CurArraySize*sizeof(void*)); 36 } 37 38 std::pair<const void *const *, bool> 39 SmallPtrSetImplBase::insert_imp_big(const void *Ptr) { 40 if (LLVM_UNLIKELY(size() * 4 >= CurArraySize * 3)) { 41 // If more than 3/4 of the array is full, grow. 42 Grow(CurArraySize < 64 ? 128 : CurArraySize * 2); 43 } else if (LLVM_UNLIKELY(CurArraySize - NumNonEmpty < CurArraySize / 8)) { 44 // If fewer of 1/8 of the array is empty (meaning that many are filled with 45 // tombstones), rehash. 46 Grow(CurArraySize); 47 } 48 49 // Okay, we know we have space. Find a hash bucket. 50 const void **Bucket = const_cast<const void**>(FindBucketFor(Ptr)); 51 if (*Bucket == Ptr) 52 return std::make_pair(Bucket, false); // Already inserted, good. 53 54 // Otherwise, insert it! 55 if (*Bucket == getTombstoneMarker()) 56 --NumTombstones; 57 else 58 ++NumNonEmpty; // Track density. 59 *Bucket = Ptr; 60 return std::make_pair(Bucket, true); 61 } 62 63 bool SmallPtrSetImplBase::erase_imp(const void * Ptr) { 64 if (isSmall()) { 65 // Check to see if it is in the set. 66 for (const void **APtr = CurArray, **E = CurArray + NumNonEmpty; APtr != E; 67 ++APtr) 68 if (*APtr == Ptr) { 69 // If it is in the set, replace this element. 70 *APtr = getTombstoneMarker(); 71 ++NumTombstones; 72 return true; 73 } 74 75 return false; 76 } 77 78 // Okay, we know we have space. Find a hash bucket. 79 void **Bucket = const_cast<void**>(FindBucketFor(Ptr)); 80 if (*Bucket != Ptr) return false; // Not in the set? 81 82 // Set this as a tombstone. 83 *Bucket = getTombstoneMarker(); 84 ++NumTombstones; 85 return true; 86 } 87 88 const void * const *SmallPtrSetImplBase::FindBucketFor(const void *Ptr) const { 89 unsigned Bucket = DenseMapInfo<void *>::getHashValue(Ptr) & (CurArraySize-1); 90 unsigned ArraySize = CurArraySize; 91 unsigned ProbeAmt = 1; 92 const void *const *Array = CurArray; 93 const void *const *Tombstone = nullptr; 94 while (1) { 95 // If we found an empty bucket, the pointer doesn't exist in the set. 96 // Return a tombstone if we've seen one so far, or the empty bucket if 97 // not. 98 if (LLVM_LIKELY(Array[Bucket] == getEmptyMarker())) 99 return Tombstone ? Tombstone : Array+Bucket; 100 101 // Found Ptr's bucket? 102 if (LLVM_LIKELY(Array[Bucket] == Ptr)) 103 return Array+Bucket; 104 105 // If this is a tombstone, remember it. If Ptr ends up not in the set, we 106 // prefer to return it than something that would require more probing. 107 if (Array[Bucket] == getTombstoneMarker() && !Tombstone) 108 Tombstone = Array+Bucket; // Remember the first tombstone found. 109 110 // It's a hash collision or a tombstone. Reprobe. 111 Bucket = (Bucket + ProbeAmt++) & (ArraySize-1); 112 } 113 } 114 115 /// Grow - Allocate a larger backing store for the buckets and move it over. 116 /// 117 void SmallPtrSetImplBase::Grow(unsigned NewSize) { 118 const void **OldBuckets = CurArray; 119 const void **OldEnd = EndPointer(); 120 bool WasSmall = isSmall(); 121 122 // Install the new array. Clear all the buckets to empty. 123 CurArray = (const void**)malloc(sizeof(void*) * NewSize); 124 assert(CurArray && "Failed to allocate memory?"); 125 CurArraySize = NewSize; 126 memset(CurArray, -1, NewSize*sizeof(void*)); 127 128 // Copy over all valid entries. 129 for (const void **BucketPtr = OldBuckets; BucketPtr != OldEnd; ++BucketPtr) { 130 // Copy over the element if it is valid. 131 const void *Elt = *BucketPtr; 132 if (Elt != getTombstoneMarker() && Elt != getEmptyMarker()) 133 *const_cast<void**>(FindBucketFor(Elt)) = const_cast<void*>(Elt); 134 } 135 136 if (!WasSmall) 137 free(OldBuckets); 138 NumNonEmpty -= NumTombstones; 139 NumTombstones = 0; 140 } 141 142 SmallPtrSetImplBase::SmallPtrSetImplBase(const void **SmallStorage, 143 const SmallPtrSetImplBase &that) { 144 SmallArray = SmallStorage; 145 146 // If we're becoming small, prepare to insert into our stack space 147 if (that.isSmall()) { 148 CurArray = SmallArray; 149 // Otherwise, allocate new heap space (unless we were the same size) 150 } else { 151 CurArray = (const void**)malloc(sizeof(void*) * that.CurArraySize); 152 assert(CurArray && "Failed to allocate memory?"); 153 } 154 155 // Copy over the that array. 156 CopyHelper(that); 157 } 158 159 SmallPtrSetImplBase::SmallPtrSetImplBase(const void **SmallStorage, 160 unsigned SmallSize, 161 SmallPtrSetImplBase &&that) { 162 SmallArray = SmallStorage; 163 MoveHelper(SmallSize, std::move(that)); 164 } 165 166 void SmallPtrSetImplBase::CopyFrom(const SmallPtrSetImplBase &RHS) { 167 assert(&RHS != this && "Self-copy should be handled by the caller."); 168 169 if (isSmall() && RHS.isSmall()) 170 assert(CurArraySize == RHS.CurArraySize && 171 "Cannot assign sets with different small sizes"); 172 173 // If we're becoming small, prepare to insert into our stack space 174 if (RHS.isSmall()) { 175 if (!isSmall()) 176 free(CurArray); 177 CurArray = SmallArray; 178 // Otherwise, allocate new heap space (unless we were the same size) 179 } else if (CurArraySize != RHS.CurArraySize) { 180 if (isSmall()) 181 CurArray = (const void**)malloc(sizeof(void*) * RHS.CurArraySize); 182 else { 183 const void **T = (const void**)realloc(CurArray, 184 sizeof(void*) * RHS.CurArraySize); 185 if (!T) 186 free(CurArray); 187 CurArray = T; 188 } 189 assert(CurArray && "Failed to allocate memory?"); 190 } 191 192 CopyHelper(RHS); 193 } 194 195 void SmallPtrSetImplBase::CopyHelper(const SmallPtrSetImplBase &RHS) { 196 // Copy over the new array size 197 CurArraySize = RHS.CurArraySize; 198 199 // Copy over the contents from the other set 200 std::copy(RHS.CurArray, RHS.EndPointer(), CurArray); 201 202 NumNonEmpty = RHS.NumNonEmpty; 203 NumTombstones = RHS.NumTombstones; 204 } 205 206 void SmallPtrSetImplBase::MoveFrom(unsigned SmallSize, 207 SmallPtrSetImplBase &&RHS) { 208 if (!isSmall()) 209 free(CurArray); 210 MoveHelper(SmallSize, std::move(RHS)); 211 } 212 213 void SmallPtrSetImplBase::MoveHelper(unsigned SmallSize, 214 SmallPtrSetImplBase &&RHS) { 215 assert(&RHS != this && "Self-move should be handled by the caller."); 216 217 if (RHS.isSmall()) { 218 // Copy a small RHS rather than moving. 219 CurArray = SmallArray; 220 std::copy(RHS.CurArray, RHS.CurArray + RHS.NumNonEmpty, CurArray); 221 } else { 222 CurArray = RHS.CurArray; 223 RHS.CurArray = RHS.SmallArray; 224 } 225 226 // Copy the rest of the trivial members. 227 CurArraySize = RHS.CurArraySize; 228 NumNonEmpty = RHS.NumNonEmpty; 229 NumTombstones = RHS.NumTombstones; 230 231 // Make the RHS small and empty. 232 RHS.CurArraySize = SmallSize; 233 assert(RHS.CurArray == RHS.SmallArray); 234 RHS.NumNonEmpty = 0; 235 RHS.NumTombstones = 0; 236 } 237 238 void SmallPtrSetImplBase::swap(SmallPtrSetImplBase &RHS) { 239 if (this == &RHS) return; 240 241 // We can only avoid copying elements if neither set is small. 242 if (!this->isSmall() && !RHS.isSmall()) { 243 std::swap(this->CurArray, RHS.CurArray); 244 std::swap(this->CurArraySize, RHS.CurArraySize); 245 std::swap(this->NumNonEmpty, RHS.NumNonEmpty); 246 std::swap(this->NumTombstones, RHS.NumTombstones); 247 return; 248 } 249 250 // FIXME: From here on we assume that both sets have the same small size. 251 252 // If only RHS is small, copy the small elements into LHS and move the pointer 253 // from LHS to RHS. 254 if (!this->isSmall() && RHS.isSmall()) { 255 assert(RHS.CurArray == RHS.SmallArray); 256 std::copy(RHS.CurArray, RHS.CurArray + RHS.NumNonEmpty, this->SmallArray); 257 std::swap(RHS.CurArraySize, this->CurArraySize); 258 std::swap(this->NumNonEmpty, RHS.NumNonEmpty); 259 std::swap(this->NumTombstones, RHS.NumTombstones); 260 RHS.CurArray = this->CurArray; 261 this->CurArray = this->SmallArray; 262 return; 263 } 264 265 // If only LHS is small, copy the small elements into RHS and move the pointer 266 // from RHS to LHS. 267 if (this->isSmall() && !RHS.isSmall()) { 268 assert(this->CurArray == this->SmallArray); 269 std::copy(this->CurArray, this->CurArray + this->NumNonEmpty, 270 RHS.SmallArray); 271 std::swap(RHS.CurArraySize, this->CurArraySize); 272 std::swap(RHS.NumNonEmpty, this->NumNonEmpty); 273 std::swap(RHS.NumTombstones, this->NumTombstones); 274 this->CurArray = RHS.CurArray; 275 RHS.CurArray = RHS.SmallArray; 276 return; 277 } 278 279 // Both a small, just swap the small elements. 280 assert(this->isSmall() && RHS.isSmall()); 281 unsigned MinNonEmpty = std::min(this->NumNonEmpty, RHS.NumNonEmpty); 282 std::swap_ranges(this->SmallArray, this->SmallArray + MinNonEmpty, 283 RHS.SmallArray); 284 if (this->NumNonEmpty > MinNonEmpty) { 285 std::copy(this->SmallArray + MinNonEmpty, 286 this->SmallArray + this->NumNonEmpty, 287 RHS.SmallArray + MinNonEmpty); 288 } else { 289 std::copy(RHS.SmallArray + MinNonEmpty, RHS.SmallArray + RHS.NumNonEmpty, 290 this->SmallArray + MinNonEmpty); 291 } 292 assert(this->CurArraySize == RHS.CurArraySize); 293 std::swap(this->NumNonEmpty, RHS.NumNonEmpty); 294 std::swap(this->NumTombstones, RHS.NumTombstones); 295 } 296