Home | History | Annotate | Download | only in IPO
      1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===//
      2 //
      3 //                      The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the SampleProfileLoader transformation. This pass
     11 // reads a profile file generated by a sampling profiler (e.g. Linux Perf -
     12 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the
     13 // profile information in the given profile.
     14 //
     15 // This pass generates branch weight annotations on the IR:
     16 //
     17 // - prof: Represents branch weights. This annotation is added to branches
     18 //      to indicate the weights of each edge coming out of the branch.
     19 //      The weight of each edge is the weight of the target block for
     20 //      that edge. The weight of a block B is computed as the maximum
     21 //      number of samples found in B.
     22 //
     23 //===----------------------------------------------------------------------===//
     24 
     25 #include "llvm/Transforms/SampleProfile.h"
     26 #include "llvm/ADT/DenseMap.h"
     27 #include "llvm/ADT/SmallPtrSet.h"
     28 #include "llvm/ADT/SmallSet.h"
     29 #include "llvm/ADT/StringRef.h"
     30 #include "llvm/Analysis/AssumptionCache.h"
     31 #include "llvm/Analysis/LoopInfo.h"
     32 #include "llvm/Analysis/PostDominators.h"
     33 #include "llvm/IR/Constants.h"
     34 #include "llvm/IR/DebugInfo.h"
     35 #include "llvm/IR/DiagnosticInfo.h"
     36 #include "llvm/IR/Dominators.h"
     37 #include "llvm/IR/Function.h"
     38 #include "llvm/IR/InstIterator.h"
     39 #include "llvm/IR/Instructions.h"
     40 #include "llvm/IR/IntrinsicInst.h"
     41 #include "llvm/IR/LLVMContext.h"
     42 #include "llvm/IR/MDBuilder.h"
     43 #include "llvm/IR/Metadata.h"
     44 #include "llvm/IR/Module.h"
     45 #include "llvm/Pass.h"
     46 #include "llvm/ProfileData/SampleProfReader.h"
     47 #include "llvm/Support/CommandLine.h"
     48 #include "llvm/Support/Debug.h"
     49 #include "llvm/Support/ErrorOr.h"
     50 #include "llvm/Support/Format.h"
     51 #include "llvm/Support/raw_ostream.h"
     52 #include "llvm/Transforms/IPO.h"
     53 #include "llvm/Transforms/Utils/Cloning.h"
     54 #include <cctype>
     55 
     56 using namespace llvm;
     57 using namespace sampleprof;
     58 
     59 #define DEBUG_TYPE "sample-profile"
     60 
     61 // Command line option to specify the file to read samples from. This is
     62 // mainly used for debugging.
     63 static cl::opt<std::string> SampleProfileFile(
     64     "sample-profile-file", cl::init(""), cl::value_desc("filename"),
     65     cl::desc("Profile file loaded by -sample-profile"), cl::Hidden);
     66 static cl::opt<unsigned> SampleProfileMaxPropagateIterations(
     67     "sample-profile-max-propagate-iterations", cl::init(100),
     68     cl::desc("Maximum number of iterations to go through when propagating "
     69              "sample block/edge weights through the CFG."));
     70 static cl::opt<unsigned> SampleProfileRecordCoverage(
     71     "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"),
     72     cl::desc("Emit a warning if less than N% of records in the input profile "
     73              "are matched to the IR."));
     74 static cl::opt<unsigned> SampleProfileSampleCoverage(
     75     "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"),
     76     cl::desc("Emit a warning if less than N% of samples in the input profile "
     77              "are matched to the IR."));
     78 static cl::opt<double> SampleProfileHotThreshold(
     79     "sample-profile-inline-hot-threshold", cl::init(0.1), cl::value_desc("N"),
     80     cl::desc("Inlined functions that account for more than N% of all samples "
     81              "collected in the parent function, will be inlined again."));
     82 
     83 namespace {
     84 typedef DenseMap<const BasicBlock *, uint64_t> BlockWeightMap;
     85 typedef DenseMap<const BasicBlock *, const BasicBlock *> EquivalenceClassMap;
     86 typedef std::pair<const BasicBlock *, const BasicBlock *> Edge;
     87 typedef DenseMap<Edge, uint64_t> EdgeWeightMap;
     88 typedef DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>
     89     BlockEdgeMap;
     90 
     91 /// \brief Sample profile pass.
     92 ///
     93 /// This pass reads profile data from the file specified by
     94 /// -sample-profile-file and annotates every affected function with the
     95 /// profile information found in that file.
     96 class SampleProfileLoader {
     97 public:
     98   SampleProfileLoader(StringRef Name = SampleProfileFile)
     99       : DT(nullptr), PDT(nullptr), LI(nullptr), ACT(nullptr), Reader(),
    100         Samples(nullptr), Filename(Name), ProfileIsValid(false),
    101         TotalCollectedSamples(0) {}
    102 
    103   bool doInitialization(Module &M);
    104   bool runOnModule(Module &M);
    105   void setACT(AssumptionCacheTracker *A) { ACT = A; }
    106 
    107   void dump() { Reader->dump(); }
    108 
    109 protected:
    110   bool runOnFunction(Function &F);
    111   unsigned getFunctionLoc(Function &F);
    112   bool emitAnnotations(Function &F);
    113   ErrorOr<uint64_t> getInstWeight(const Instruction &I) const;
    114   ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB) const;
    115   const FunctionSamples *findCalleeFunctionSamples(const CallInst &I) const;
    116   const FunctionSamples *findFunctionSamples(const Instruction &I) const;
    117   bool inlineHotFunctions(Function &F);
    118   void printEdgeWeight(raw_ostream &OS, Edge E);
    119   void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const;
    120   void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB);
    121   bool computeBlockWeights(Function &F);
    122   void findEquivalenceClasses(Function &F);
    123   void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
    124                            DominatorTreeBase<BasicBlock> *DomTree);
    125   void propagateWeights(Function &F);
    126   uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
    127   void buildEdges(Function &F);
    128   bool propagateThroughEdges(Function &F);
    129   void computeDominanceAndLoopInfo(Function &F);
    130   unsigned getOffset(unsigned L, unsigned H) const;
    131   void clearFunctionData();
    132 
    133   /// \brief Map basic blocks to their computed weights.
    134   ///
    135   /// The weight of a basic block is defined to be the maximum
    136   /// of all the instruction weights in that block.
    137   BlockWeightMap BlockWeights;
    138 
    139   /// \brief Map edges to their computed weights.
    140   ///
    141   /// Edge weights are computed by propagating basic block weights in
    142   /// SampleProfile::propagateWeights.
    143   EdgeWeightMap EdgeWeights;
    144 
    145   /// \brief Set of visited blocks during propagation.
    146   SmallPtrSet<const BasicBlock *, 32> VisitedBlocks;
    147 
    148   /// \brief Set of visited edges during propagation.
    149   SmallSet<Edge, 32> VisitedEdges;
    150 
    151   /// \brief Equivalence classes for block weights.
    152   ///
    153   /// Two blocks BB1 and BB2 are in the same equivalence class if they
    154   /// dominate and post-dominate each other, and they are in the same loop
    155   /// nest. When this happens, the two blocks are guaranteed to execute
    156   /// the same number of times.
    157   EquivalenceClassMap EquivalenceClass;
    158 
    159   /// \brief Dominance, post-dominance and loop information.
    160   std::unique_ptr<DominatorTree> DT;
    161   std::unique_ptr<DominatorTreeBase<BasicBlock>> PDT;
    162   std::unique_ptr<LoopInfo> LI;
    163 
    164   AssumptionCacheTracker *ACT;
    165 
    166   /// \brief Predecessors for each basic block in the CFG.
    167   BlockEdgeMap Predecessors;
    168 
    169   /// \brief Successors for each basic block in the CFG.
    170   BlockEdgeMap Successors;
    171 
    172   /// \brief Profile reader object.
    173   std::unique_ptr<SampleProfileReader> Reader;
    174 
    175   /// \brief Samples collected for the body of this function.
    176   FunctionSamples *Samples;
    177 
    178   /// \brief Name of the profile file to load.
    179   StringRef Filename;
    180 
    181   /// \brief Flag indicating whether the profile input loaded successfully.
    182   bool ProfileIsValid;
    183 
    184   /// \brief Total number of samples collected in this profile.
    185   ///
    186   /// This is the sum of all the samples collected in all the functions executed
    187   /// at runtime.
    188   uint64_t TotalCollectedSamples;
    189 };
    190 
    191 class SampleProfileLoaderLegacyPass : public ModulePass {
    192 public:
    193   // Class identification, replacement for typeinfo
    194   static char ID;
    195 
    196   SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile)
    197       : ModulePass(ID), SampleLoader(Name) {
    198     initializeSampleProfileLoaderLegacyPassPass(
    199         *PassRegistry::getPassRegistry());
    200   }
    201 
    202   void dump() { SampleLoader.dump(); }
    203 
    204   bool doInitialization(Module &M) override {
    205     return SampleLoader.doInitialization(M);
    206   }
    207   const char *getPassName() const override { return "Sample profile pass"; }
    208   bool runOnModule(Module &M) override;
    209 
    210   void getAnalysisUsage(AnalysisUsage &AU) const override {
    211     AU.addRequired<AssumptionCacheTracker>();
    212   }
    213 private:
    214   SampleProfileLoader SampleLoader;
    215 };
    216 
    217 class SampleCoverageTracker {
    218 public:
    219   SampleCoverageTracker() : SampleCoverage(), TotalUsedSamples(0) {}
    220 
    221   bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset,
    222                        uint32_t Discriminator, uint64_t Samples);
    223   unsigned computeCoverage(unsigned Used, unsigned Total) const;
    224   unsigned countUsedRecords(const FunctionSamples *FS) const;
    225   unsigned countBodyRecords(const FunctionSamples *FS) const;
    226   uint64_t getTotalUsedSamples() const { return TotalUsedSamples; }
    227   uint64_t countBodySamples(const FunctionSamples *FS) const;
    228   void clear() {
    229     SampleCoverage.clear();
    230     TotalUsedSamples = 0;
    231   }
    232 
    233 private:
    234   typedef std::map<LineLocation, unsigned> BodySampleCoverageMap;
    235   typedef DenseMap<const FunctionSamples *, BodySampleCoverageMap>
    236       FunctionSamplesCoverageMap;
    237 
    238   /// Coverage map for sampling records.
    239   ///
    240   /// This map keeps a record of sampling records that have been matched to
    241   /// an IR instruction. This is used to detect some form of staleness in
    242   /// profiles (see flag -sample-profile-check-coverage).
    243   ///
    244   /// Each entry in the map corresponds to a FunctionSamples instance.  This is
    245   /// another map that counts how many times the sample record at the
    246   /// given location has been used.
    247   FunctionSamplesCoverageMap SampleCoverage;
    248 
    249   /// Number of samples used from the profile.
    250   ///
    251   /// When a sampling record is used for the first time, the samples from
    252   /// that record are added to this accumulator.  Coverage is later computed
    253   /// based on the total number of samples available in this function and
    254   /// its callsites.
    255   ///
    256   /// Note that this accumulator tracks samples used from a single function
    257   /// and all the inlined callsites. Strictly, we should have a map of counters
    258   /// keyed by FunctionSamples pointers, but these stats are cleared after
    259   /// every function, so we just need to keep a single counter.
    260   uint64_t TotalUsedSamples;
    261 };
    262 
    263 SampleCoverageTracker CoverageTracker;
    264 
    265 /// Return true if the given callsite is hot wrt to its caller.
    266 ///
    267 /// Functions that were inlined in the original binary will be represented
    268 /// in the inline stack in the sample profile. If the profile shows that
    269 /// the original inline decision was "good" (i.e., the callsite is executed
    270 /// frequently), then we will recreate the inline decision and apply the
    271 /// profile from the inlined callsite.
    272 ///
    273 /// To decide whether an inlined callsite is hot, we compute the fraction
    274 /// of samples used by the callsite with respect to the total number of samples
    275 /// collected in the caller.
    276 ///
    277 /// If that fraction is larger than the default given by
    278 /// SampleProfileHotThreshold, the callsite will be inlined again.
    279 bool callsiteIsHot(const FunctionSamples *CallerFS,
    280                    const FunctionSamples *CallsiteFS) {
    281   if (!CallsiteFS)
    282     return false; // The callsite was not inlined in the original binary.
    283 
    284   uint64_t ParentTotalSamples = CallerFS->getTotalSamples();
    285   if (ParentTotalSamples == 0)
    286     return false; // Avoid division by zero.
    287 
    288   uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples();
    289   if (CallsiteTotalSamples == 0)
    290     return false; // Callsite is trivially cold.
    291 
    292   double PercentSamples =
    293       (double)CallsiteTotalSamples / (double)ParentTotalSamples * 100.0;
    294   return PercentSamples >= SampleProfileHotThreshold;
    295 }
    296 }
    297 
    298 /// Mark as used the sample record for the given function samples at
    299 /// (LineOffset, Discriminator).
    300 ///
    301 /// \returns true if this is the first time we mark the given record.
    302 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS,
    303                                             uint32_t LineOffset,
    304                                             uint32_t Discriminator,
    305                                             uint64_t Samples) {
    306   LineLocation Loc(LineOffset, Discriminator);
    307   unsigned &Count = SampleCoverage[FS][Loc];
    308   bool FirstTime = (++Count == 1);
    309   if (FirstTime)
    310     TotalUsedSamples += Samples;
    311   return FirstTime;
    312 }
    313 
    314 /// Return the number of sample records that were applied from this profile.
    315 ///
    316 /// This count does not include records from cold inlined callsites.
    317 unsigned
    318 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS) const {
    319   auto I = SampleCoverage.find(FS);
    320 
    321   // The size of the coverage map for FS represents the number of records
    322   // that were marked used at least once.
    323   unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0;
    324 
    325   // If there are inlined callsites in this function, count the samples found
    326   // in the respective bodies. However, do not bother counting callees with 0
    327   // total samples, these are callees that were never invoked at runtime.
    328   for (const auto &I : FS->getCallsiteSamples()) {
    329     const FunctionSamples *CalleeSamples = &I.second;
    330     if (callsiteIsHot(FS, CalleeSamples))
    331       Count += countUsedRecords(CalleeSamples);
    332   }
    333 
    334   return Count;
    335 }
    336 
    337 /// Return the number of sample records in the body of this profile.
    338 ///
    339 /// This count does not include records from cold inlined callsites.
    340 unsigned
    341 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS) const {
    342   unsigned Count = FS->getBodySamples().size();
    343 
    344   // Only count records in hot callsites.
    345   for (const auto &I : FS->getCallsiteSamples()) {
    346     const FunctionSamples *CalleeSamples = &I.second;
    347     if (callsiteIsHot(FS, CalleeSamples))
    348       Count += countBodyRecords(CalleeSamples);
    349   }
    350 
    351   return Count;
    352 }
    353 
    354 /// Return the number of samples collected in the body of this profile.
    355 ///
    356 /// This count does not include samples from cold inlined callsites.
    357 uint64_t
    358 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS) const {
    359   uint64_t Total = 0;
    360   for (const auto &I : FS->getBodySamples())
    361     Total += I.second.getSamples();
    362 
    363   // Only count samples in hot callsites.
    364   for (const auto &I : FS->getCallsiteSamples()) {
    365     const FunctionSamples *CalleeSamples = &I.second;
    366     if (callsiteIsHot(FS, CalleeSamples))
    367       Total += countBodySamples(CalleeSamples);
    368   }
    369 
    370   return Total;
    371 }
    372 
    373 /// Return the fraction of sample records used in this profile.
    374 ///
    375 /// The returned value is an unsigned integer in the range 0-100 indicating
    376 /// the percentage of sample records that were used while applying this
    377 /// profile to the associated function.
    378 unsigned SampleCoverageTracker::computeCoverage(unsigned Used,
    379                                                 unsigned Total) const {
    380   assert(Used <= Total &&
    381          "number of used records cannot exceed the total number of records");
    382   return Total > 0 ? Used * 100 / Total : 100;
    383 }
    384 
    385 /// Clear all the per-function data used to load samples and propagate weights.
    386 void SampleProfileLoader::clearFunctionData() {
    387   BlockWeights.clear();
    388   EdgeWeights.clear();
    389   VisitedBlocks.clear();
    390   VisitedEdges.clear();
    391   EquivalenceClass.clear();
    392   DT = nullptr;
    393   PDT = nullptr;
    394   LI = nullptr;
    395   Predecessors.clear();
    396   Successors.clear();
    397   CoverageTracker.clear();
    398 }
    399 
    400 /// \brief Returns the offset of lineno \p L to head_lineno \p H
    401 ///
    402 /// \param L  Lineno
    403 /// \param H  Header lineno of the function
    404 ///
    405 /// \returns offset to the header lineno. 16 bits are used to represent offset.
    406 /// We assume that a single function will not exceed 65535 LOC.
    407 unsigned SampleProfileLoader::getOffset(unsigned L, unsigned H) const {
    408   return (L - H) & 0xffff;
    409 }
    410 
    411 /// \brief Print the weight of edge \p E on stream \p OS.
    412 ///
    413 /// \param OS  Stream to emit the output to.
    414 /// \param E  Edge to print.
    415 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) {
    416   OS << "weight[" << E.first->getName() << "->" << E.second->getName()
    417      << "]: " << EdgeWeights[E] << "\n";
    418 }
    419 
    420 /// \brief Print the equivalence class of block \p BB on stream \p OS.
    421 ///
    422 /// \param OS  Stream to emit the output to.
    423 /// \param BB  Block to print.
    424 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS,
    425                                                 const BasicBlock *BB) {
    426   const BasicBlock *Equiv = EquivalenceClass[BB];
    427   OS << "equivalence[" << BB->getName()
    428      << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
    429 }
    430 
    431 /// \brief Print the weight of block \p BB on stream \p OS.
    432 ///
    433 /// \param OS  Stream to emit the output to.
    434 /// \param BB  Block to print.
    435 void SampleProfileLoader::printBlockWeight(raw_ostream &OS,
    436                                            const BasicBlock *BB) const {
    437   const auto &I = BlockWeights.find(BB);
    438   uint64_t W = (I == BlockWeights.end() ? 0 : I->second);
    439   OS << "weight[" << BB->getName() << "]: " << W << "\n";
    440 }
    441 
    442 /// \brief Get the weight for an instruction.
    443 ///
    444 /// The "weight" of an instruction \p Inst is the number of samples
    445 /// collected on that instruction at runtime. To retrieve it, we
    446 /// need to compute the line number of \p Inst relative to the start of its
    447 /// function. We use HeaderLineno to compute the offset. We then
    448 /// look up the samples collected for \p Inst using BodySamples.
    449 ///
    450 /// \param Inst Instruction to query.
    451 ///
    452 /// \returns the weight of \p Inst.
    453 ErrorOr<uint64_t>
    454 SampleProfileLoader::getInstWeight(const Instruction &Inst) const {
    455   const DebugLoc &DLoc = Inst.getDebugLoc();
    456   if (!DLoc)
    457     return std::error_code();
    458 
    459   const FunctionSamples *FS = findFunctionSamples(Inst);
    460   if (!FS)
    461     return std::error_code();
    462 
    463   // Ignore all dbg_value intrinsics.
    464   const IntrinsicInst *II = dyn_cast<IntrinsicInst>(&Inst);
    465   if (II && II->getIntrinsicID() == Intrinsic::dbg_value)
    466     return std::error_code();
    467 
    468   const DILocation *DIL = DLoc;
    469   unsigned Lineno = DLoc.getLine();
    470   unsigned HeaderLineno = DIL->getScope()->getSubprogram()->getLine();
    471 
    472   uint32_t LineOffset = getOffset(Lineno, HeaderLineno);
    473   uint32_t Discriminator = DIL->getDiscriminator();
    474   ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator);
    475   if (R) {
    476     bool FirstMark =
    477         CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get());
    478     if (FirstMark) {
    479       const Function *F = Inst.getParent()->getParent();
    480       LLVMContext &Ctx = F->getContext();
    481       emitOptimizationRemark(
    482           Ctx, DEBUG_TYPE, *F, DLoc,
    483           Twine("Applied ") + Twine(*R) + " samples from profile (offset: " +
    484               Twine(LineOffset) +
    485               ((Discriminator) ? Twine(".") + Twine(Discriminator) : "") + ")");
    486     }
    487     DEBUG(dbgs() << "    " << Lineno << "." << DIL->getDiscriminator() << ":"
    488                  << Inst << " (line offset: " << Lineno - HeaderLineno << "."
    489                  << DIL->getDiscriminator() << " - weight: " << R.get()
    490                  << ")\n");
    491   } else {
    492     // If a call instruction is inlined in profile, but not inlined here,
    493     // it means that the inlined callsite has no sample, thus the call
    494     // instruction should have 0 count.
    495     const CallInst *CI = dyn_cast<CallInst>(&Inst);
    496     if (CI && findCalleeFunctionSamples(*CI))
    497       R = 0;
    498   }
    499   return R;
    500 }
    501 
    502 /// \brief Compute the weight of a basic block.
    503 ///
    504 /// The weight of basic block \p BB is the maximum weight of all the
    505 /// instructions in BB.
    506 ///
    507 /// \param BB The basic block to query.
    508 ///
    509 /// \returns the weight for \p BB.
    510 ErrorOr<uint64_t>
    511 SampleProfileLoader::getBlockWeight(const BasicBlock *BB) const {
    512   DenseMap<uint64_t, uint64_t> CM;
    513   for (auto &I : BB->getInstList()) {
    514     const ErrorOr<uint64_t> &R = getInstWeight(I);
    515     if (R) CM[R.get()]++;
    516   }
    517   if (CM.size() == 0) return std::error_code();
    518   uint64_t W = 0, C = 0;
    519   for (const auto &C_W : CM) {
    520     if (C_W.second == W) {
    521       C = std::max(C, C_W.first);
    522     } else if (C_W.second > W) {
    523       C = C_W.first;
    524       W = C_W.second;
    525     }
    526   }
    527   return C;
    528 }
    529 
    530 /// \brief Compute and store the weights of every basic block.
    531 ///
    532 /// This populates the BlockWeights map by computing
    533 /// the weights of every basic block in the CFG.
    534 ///
    535 /// \param F The function to query.
    536 bool SampleProfileLoader::computeBlockWeights(Function &F) {
    537   bool Changed = false;
    538   DEBUG(dbgs() << "Block weights\n");
    539   for (const auto &BB : F) {
    540     ErrorOr<uint64_t> Weight = getBlockWeight(&BB);
    541     if (Weight) {
    542       BlockWeights[&BB] = Weight.get();
    543       VisitedBlocks.insert(&BB);
    544       Changed = true;
    545     }
    546     DEBUG(printBlockWeight(dbgs(), &BB));
    547   }
    548 
    549   return Changed;
    550 }
    551 
    552 /// \brief Get the FunctionSamples for a call instruction.
    553 ///
    554 /// The FunctionSamples of a call instruction \p Inst is the inlined
    555 /// instance in which that call instruction is calling to. It contains
    556 /// all samples that resides in the inlined instance. We first find the
    557 /// inlined instance in which the call instruction is from, then we
    558 /// traverse its children to find the callsite with the matching
    559 /// location and callee function name.
    560 ///
    561 /// \param Inst Call instruction to query.
    562 ///
    563 /// \returns The FunctionSamples pointer to the inlined instance.
    564 const FunctionSamples *
    565 SampleProfileLoader::findCalleeFunctionSamples(const CallInst &Inst) const {
    566   const DILocation *DIL = Inst.getDebugLoc();
    567   if (!DIL) {
    568     return nullptr;
    569   }
    570   DISubprogram *SP = DIL->getScope()->getSubprogram();
    571   if (!SP)
    572     return nullptr;
    573 
    574   const FunctionSamples *FS = findFunctionSamples(Inst);
    575   if (FS == nullptr)
    576     return nullptr;
    577 
    578   return FS->findFunctionSamplesAt(LineLocation(
    579       getOffset(DIL->getLine(), SP->getLine()), DIL->getDiscriminator()));
    580 }
    581 
    582 /// \brief Get the FunctionSamples for an instruction.
    583 ///
    584 /// The FunctionSamples of an instruction \p Inst is the inlined instance
    585 /// in which that instruction is coming from. We traverse the inline stack
    586 /// of that instruction, and match it with the tree nodes in the profile.
    587 ///
    588 /// \param Inst Instruction to query.
    589 ///
    590 /// \returns the FunctionSamples pointer to the inlined instance.
    591 const FunctionSamples *
    592 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const {
    593   SmallVector<LineLocation, 10> S;
    594   const DILocation *DIL = Inst.getDebugLoc();
    595   if (!DIL) {
    596     return Samples;
    597   }
    598   for (DIL = DIL->getInlinedAt(); DIL; DIL = DIL->getInlinedAt()) {
    599     DISubprogram *SP = DIL->getScope()->getSubprogram();
    600     if (!SP)
    601       return nullptr;
    602     S.push_back(LineLocation(getOffset(DIL->getLine(), SP->getLine()),
    603                              DIL->getDiscriminator()));
    604   }
    605   if (S.size() == 0)
    606     return Samples;
    607   const FunctionSamples *FS = Samples;
    608   for (int i = S.size() - 1; i >= 0 && FS != nullptr; i--) {
    609     FS = FS->findFunctionSamplesAt(S[i]);
    610   }
    611   return FS;
    612 }
    613 
    614 
    615 /// \brief Iteratively inline hot callsites of a function.
    616 ///
    617 /// Iteratively traverse all callsites of the function \p F, and find if
    618 /// the corresponding inlined instance exists and is hot in profile. If
    619 /// it is hot enough, inline the callsites and adds new callsites of the
    620 /// callee into the caller.
    621 ///
    622 /// TODO: investigate the possibility of not invoking InlineFunction directly.
    623 ///
    624 /// \param F function to perform iterative inlining.
    625 ///
    626 /// \returns True if there is any inline happened.
    627 bool SampleProfileLoader::inlineHotFunctions(Function &F) {
    628   bool Changed = false;
    629   LLVMContext &Ctx = F.getContext();
    630   while (true) {
    631     bool LocalChanged = false;
    632     SmallVector<CallInst *, 10> CIS;
    633     for (auto &BB : F) {
    634       for (auto &I : BB.getInstList()) {
    635         CallInst *CI = dyn_cast<CallInst>(&I);
    636         if (CI && callsiteIsHot(Samples, findCalleeFunctionSamples(*CI)))
    637           CIS.push_back(CI);
    638       }
    639     }
    640     for (auto CI : CIS) {
    641       InlineFunctionInfo IFI(nullptr, ACT);
    642       Function *CalledFunction = CI->getCalledFunction();
    643       DebugLoc DLoc = CI->getDebugLoc();
    644       uint64_t NumSamples = findCalleeFunctionSamples(*CI)->getTotalSamples();
    645       if (InlineFunction(CI, IFI)) {
    646         LocalChanged = true;
    647         emitOptimizationRemark(Ctx, DEBUG_TYPE, F, DLoc,
    648                                Twine("inlined hot callee '") +
    649                                    CalledFunction->getName() + "' with " +
    650                                    Twine(NumSamples) + " samples into '" +
    651                                    F.getName() + "'");
    652       }
    653     }
    654     if (LocalChanged) {
    655       Changed = true;
    656     } else {
    657       break;
    658     }
    659   }
    660   return Changed;
    661 }
    662 
    663 /// \brief Find equivalence classes for the given block.
    664 ///
    665 /// This finds all the blocks that are guaranteed to execute the same
    666 /// number of times as \p BB1. To do this, it traverses all the
    667 /// descendants of \p BB1 in the dominator or post-dominator tree.
    668 ///
    669 /// A block BB2 will be in the same equivalence class as \p BB1 if
    670 /// the following holds:
    671 ///
    672 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
    673 ///    is a descendant of \p BB1 in the dominator tree, then BB2 should
    674 ///    dominate BB1 in the post-dominator tree.
    675 ///
    676 /// 2- Both BB2 and \p BB1 must be in the same loop.
    677 ///
    678 /// For every block BB2 that meets those two requirements, we set BB2's
    679 /// equivalence class to \p BB1.
    680 ///
    681 /// \param BB1  Block to check.
    682 /// \param Descendants  Descendants of \p BB1 in either the dom or pdom tree.
    683 /// \param DomTree  Opposite dominator tree. If \p Descendants is filled
    684 ///                 with blocks from \p BB1's dominator tree, then
    685 ///                 this is the post-dominator tree, and vice versa.
    686 void SampleProfileLoader::findEquivalencesFor(
    687     BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
    688     DominatorTreeBase<BasicBlock> *DomTree) {
    689   const BasicBlock *EC = EquivalenceClass[BB1];
    690   uint64_t Weight = BlockWeights[EC];
    691   for (const auto *BB2 : Descendants) {
    692     bool IsDomParent = DomTree->dominates(BB2, BB1);
    693     bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
    694     if (BB1 != BB2 && IsDomParent && IsInSameLoop) {
    695       EquivalenceClass[BB2] = EC;
    696 
    697       // If BB2 is heavier than BB1, make BB2 have the same weight
    698       // as BB1.
    699       //
    700       // Note that we don't worry about the opposite situation here
    701       // (when BB2 is lighter than BB1). We will deal with this
    702       // during the propagation phase. Right now, we just want to
    703       // make sure that BB1 has the largest weight of all the
    704       // members of its equivalence set.
    705       Weight = std::max(Weight, BlockWeights[BB2]);
    706     }
    707   }
    708   BlockWeights[EC] = Weight;
    709 }
    710 
    711 /// \brief Find equivalence classes.
    712 ///
    713 /// Since samples may be missing from blocks, we can fill in the gaps by setting
    714 /// the weights of all the blocks in the same equivalence class to the same
    715 /// weight. To compute the concept of equivalence, we use dominance and loop
    716 /// information. Two blocks B1 and B2 are in the same equivalence class if B1
    717 /// dominates B2, B2 post-dominates B1 and both are in the same loop.
    718 ///
    719 /// \param F The function to query.
    720 void SampleProfileLoader::findEquivalenceClasses(Function &F) {
    721   SmallVector<BasicBlock *, 8> DominatedBBs;
    722   DEBUG(dbgs() << "\nBlock equivalence classes\n");
    723   // Find equivalence sets based on dominance and post-dominance information.
    724   for (auto &BB : F) {
    725     BasicBlock *BB1 = &BB;
    726 
    727     // Compute BB1's equivalence class once.
    728     if (EquivalenceClass.count(BB1)) {
    729       DEBUG(printBlockEquivalence(dbgs(), BB1));
    730       continue;
    731     }
    732 
    733     // By default, blocks are in their own equivalence class.
    734     EquivalenceClass[BB1] = BB1;
    735 
    736     // Traverse all the blocks dominated by BB1. We are looking for
    737     // every basic block BB2 such that:
    738     //
    739     // 1- BB1 dominates BB2.
    740     // 2- BB2 post-dominates BB1.
    741     // 3- BB1 and BB2 are in the same loop nest.
    742     //
    743     // If all those conditions hold, it means that BB2 is executed
    744     // as many times as BB1, so they are placed in the same equivalence
    745     // class by making BB2's equivalence class be BB1.
    746     DominatedBBs.clear();
    747     DT->getDescendants(BB1, DominatedBBs);
    748     findEquivalencesFor(BB1, DominatedBBs, PDT.get());
    749 
    750     DEBUG(printBlockEquivalence(dbgs(), BB1));
    751   }
    752 
    753   // Assign weights to equivalence classes.
    754   //
    755   // All the basic blocks in the same equivalence class will execute
    756   // the same number of times. Since we know that the head block in
    757   // each equivalence class has the largest weight, assign that weight
    758   // to all the blocks in that equivalence class.
    759   DEBUG(dbgs() << "\nAssign the same weight to all blocks in the same class\n");
    760   for (auto &BI : F) {
    761     const BasicBlock *BB = &BI;
    762     const BasicBlock *EquivBB = EquivalenceClass[BB];
    763     if (BB != EquivBB)
    764       BlockWeights[BB] = BlockWeights[EquivBB];
    765     DEBUG(printBlockWeight(dbgs(), BB));
    766   }
    767 }
    768 
    769 /// \brief Visit the given edge to decide if it has a valid weight.
    770 ///
    771 /// If \p E has not been visited before, we copy to \p UnknownEdge
    772 /// and increment the count of unknown edges.
    773 ///
    774 /// \param E  Edge to visit.
    775 /// \param NumUnknownEdges  Current number of unknown edges.
    776 /// \param UnknownEdge  Set if E has not been visited before.
    777 ///
    778 /// \returns E's weight, if known. Otherwise, return 0.
    779 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges,
    780                                         Edge *UnknownEdge) {
    781   if (!VisitedEdges.count(E)) {
    782     (*NumUnknownEdges)++;
    783     *UnknownEdge = E;
    784     return 0;
    785   }
    786 
    787   return EdgeWeights[E];
    788 }
    789 
    790 /// \brief Propagate weights through incoming/outgoing edges.
    791 ///
    792 /// If the weight of a basic block is known, and there is only one edge
    793 /// with an unknown weight, we can calculate the weight of that edge.
    794 ///
    795 /// Similarly, if all the edges have a known count, we can calculate the
    796 /// count of the basic block, if needed.
    797 ///
    798 /// \param F  Function to process.
    799 ///
    800 /// \returns  True if new weights were assigned to edges or blocks.
    801 bool SampleProfileLoader::propagateThroughEdges(Function &F) {
    802   bool Changed = false;
    803   DEBUG(dbgs() << "\nPropagation through edges\n");
    804   for (const auto &BI : F) {
    805     const BasicBlock *BB = &BI;
    806     const BasicBlock *EC = EquivalenceClass[BB];
    807 
    808     // Visit all the predecessor and successor edges to determine
    809     // which ones have a weight assigned already. Note that it doesn't
    810     // matter that we only keep track of a single unknown edge. The
    811     // only case we are interested in handling is when only a single
    812     // edge is unknown (see setEdgeOrBlockWeight).
    813     for (unsigned i = 0; i < 2; i++) {
    814       uint64_t TotalWeight = 0;
    815       unsigned NumUnknownEdges = 0, NumTotalEdges = 0;
    816       Edge UnknownEdge, SelfReferentialEdge, SingleEdge;
    817 
    818       if (i == 0) {
    819         // First, visit all predecessor edges.
    820         NumTotalEdges = Predecessors[BB].size();
    821         for (auto *Pred : Predecessors[BB]) {
    822           Edge E = std::make_pair(Pred, BB);
    823           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
    824           if (E.first == E.second)
    825             SelfReferentialEdge = E;
    826         }
    827         if (NumTotalEdges == 1) {
    828           SingleEdge = std::make_pair(Predecessors[BB][0], BB);
    829         }
    830       } else {
    831         // On the second round, visit all successor edges.
    832         NumTotalEdges = Successors[BB].size();
    833         for (auto *Succ : Successors[BB]) {
    834           Edge E = std::make_pair(BB, Succ);
    835           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
    836         }
    837         if (NumTotalEdges == 1) {
    838           SingleEdge = std::make_pair(BB, Successors[BB][0]);
    839         }
    840       }
    841 
    842       // After visiting all the edges, there are three cases that we
    843       // can handle immediately:
    844       //
    845       // - All the edge weights are known (i.e., NumUnknownEdges == 0).
    846       //   In this case, we simply check that the sum of all the edges
    847       //   is the same as BB's weight. If not, we change BB's weight
    848       //   to match. Additionally, if BB had not been visited before,
    849       //   we mark it visited.
    850       //
    851       // - Only one edge is unknown and BB has already been visited.
    852       //   In this case, we can compute the weight of the edge by
    853       //   subtracting the total block weight from all the known
    854       //   edge weights. If the edges weight more than BB, then the
    855       //   edge of the last remaining edge is set to zero.
    856       //
    857       // - There exists a self-referential edge and the weight of BB is
    858       //   known. In this case, this edge can be based on BB's weight.
    859       //   We add up all the other known edges and set the weight on
    860       //   the self-referential edge as we did in the previous case.
    861       //
    862       // In any other case, we must continue iterating. Eventually,
    863       // all edges will get a weight, or iteration will stop when
    864       // it reaches SampleProfileMaxPropagateIterations.
    865       if (NumUnknownEdges <= 1) {
    866         uint64_t &BBWeight = BlockWeights[EC];
    867         if (NumUnknownEdges == 0) {
    868           if (!VisitedBlocks.count(EC)) {
    869             // If we already know the weight of all edges, the weight of the
    870             // basic block can be computed. It should be no larger than the sum
    871             // of all edge weights.
    872             if (TotalWeight > BBWeight) {
    873               BBWeight = TotalWeight;
    874               Changed = true;
    875               DEBUG(dbgs() << "All edge weights for " << BB->getName()
    876                            << " known. Set weight for block: ";
    877                     printBlockWeight(dbgs(), BB););
    878             }
    879           } else if (NumTotalEdges == 1 &&
    880                      EdgeWeights[SingleEdge] < BlockWeights[EC]) {
    881             // If there is only one edge for the visited basic block, use the
    882             // block weight to adjust edge weight if edge weight is smaller.
    883             EdgeWeights[SingleEdge] = BlockWeights[EC];
    884             Changed = true;
    885           }
    886         } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) {
    887           // If there is a single unknown edge and the block has been
    888           // visited, then we can compute E's weight.
    889           if (BBWeight >= TotalWeight)
    890             EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
    891           else
    892             EdgeWeights[UnknownEdge] = 0;
    893           VisitedEdges.insert(UnknownEdge);
    894           Changed = true;
    895           DEBUG(dbgs() << "Set weight for edge: ";
    896                 printEdgeWeight(dbgs(), UnknownEdge));
    897         }
    898       } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) {
    899         uint64_t &BBWeight = BlockWeights[BB];
    900         // We have a self-referential edge and the weight of BB is known.
    901         if (BBWeight >= TotalWeight)
    902           EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
    903         else
    904           EdgeWeights[SelfReferentialEdge] = 0;
    905         VisitedEdges.insert(SelfReferentialEdge);
    906         Changed = true;
    907         DEBUG(dbgs() << "Set self-referential edge weight to: ";
    908               printEdgeWeight(dbgs(), SelfReferentialEdge));
    909       }
    910     }
    911   }
    912 
    913   return Changed;
    914 }
    915 
    916 /// \brief Build in/out edge lists for each basic block in the CFG.
    917 ///
    918 /// We are interested in unique edges. If a block B1 has multiple
    919 /// edges to another block B2, we only add a single B1->B2 edge.
    920 void SampleProfileLoader::buildEdges(Function &F) {
    921   for (auto &BI : F) {
    922     BasicBlock *B1 = &BI;
    923 
    924     // Add predecessors for B1.
    925     SmallPtrSet<BasicBlock *, 16> Visited;
    926     if (!Predecessors[B1].empty())
    927       llvm_unreachable("Found a stale predecessors list in a basic block.");
    928     for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) {
    929       BasicBlock *B2 = *PI;
    930       if (Visited.insert(B2).second)
    931         Predecessors[B1].push_back(B2);
    932     }
    933 
    934     // Add successors for B1.
    935     Visited.clear();
    936     if (!Successors[B1].empty())
    937       llvm_unreachable("Found a stale successors list in a basic block.");
    938     for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) {
    939       BasicBlock *B2 = *SI;
    940       if (Visited.insert(B2).second)
    941         Successors[B1].push_back(B2);
    942     }
    943   }
    944 }
    945 
    946 /// \brief Propagate weights into edges
    947 ///
    948 /// The following rules are applied to every block BB in the CFG:
    949 ///
    950 /// - If BB has a single predecessor/successor, then the weight
    951 ///   of that edge is the weight of the block.
    952 ///
    953 /// - If all incoming or outgoing edges are known except one, and the
    954 ///   weight of the block is already known, the weight of the unknown
    955 ///   edge will be the weight of the block minus the sum of all the known
    956 ///   edges. If the sum of all the known edges is larger than BB's weight,
    957 ///   we set the unknown edge weight to zero.
    958 ///
    959 /// - If there is a self-referential edge, and the weight of the block is
    960 ///   known, the weight for that edge is set to the weight of the block
    961 ///   minus the weight of the other incoming edges to that block (if
    962 ///   known).
    963 void SampleProfileLoader::propagateWeights(Function &F) {
    964   bool Changed = true;
    965   unsigned I = 0;
    966 
    967   // Add an entry count to the function using the samples gathered
    968   // at the function entry.
    969   F.setEntryCount(Samples->getHeadSamples());
    970 
    971   // Before propagation starts, build, for each block, a list of
    972   // unique predecessors and successors. This is necessary to handle
    973   // identical edges in multiway branches. Since we visit all blocks and all
    974   // edges of the CFG, it is cleaner to build these lists once at the start
    975   // of the pass.
    976   buildEdges(F);
    977 
    978   // Propagate until we converge or we go past the iteration limit.
    979   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
    980     Changed = propagateThroughEdges(F);
    981   }
    982 
    983   // Generate MD_prof metadata for every branch instruction using the
    984   // edge weights computed during propagation.
    985   DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n");
    986   LLVMContext &Ctx = F.getContext();
    987   MDBuilder MDB(Ctx);
    988   for (auto &BI : F) {
    989     BasicBlock *BB = &BI;
    990 
    991     if (BlockWeights[BB]) {
    992       for (auto &I : BB->getInstList()) {
    993         if (CallInst *CI = dyn_cast<CallInst>(&I)) {
    994           if (!dyn_cast<IntrinsicInst>(&I)) {
    995             SmallVector<uint32_t, 1> Weights;
    996             Weights.push_back(BlockWeights[BB]);
    997             CI->setMetadata(LLVMContext::MD_prof,
    998                             MDB.createBranchWeights(Weights));
    999           }
   1000         }
   1001       }
   1002     }
   1003     TerminatorInst *TI = BB->getTerminator();
   1004     if (TI->getNumSuccessors() == 1)
   1005       continue;
   1006     if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
   1007       continue;
   1008 
   1009     DEBUG(dbgs() << "\nGetting weights for branch at line "
   1010                  << TI->getDebugLoc().getLine() << ".\n");
   1011     SmallVector<uint32_t, 4> Weights;
   1012     uint32_t MaxWeight = 0;
   1013     DebugLoc MaxDestLoc;
   1014     for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) {
   1015       BasicBlock *Succ = TI->getSuccessor(I);
   1016       Edge E = std::make_pair(BB, Succ);
   1017       uint64_t Weight = EdgeWeights[E];
   1018       DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E));
   1019       // Use uint32_t saturated arithmetic to adjust the incoming weights,
   1020       // if needed. Sample counts in profiles are 64-bit unsigned values,
   1021       // but internally branch weights are expressed as 32-bit values.
   1022       if (Weight > std::numeric_limits<uint32_t>::max()) {
   1023         DEBUG(dbgs() << " (saturated due to uint32_t overflow)");
   1024         Weight = std::numeric_limits<uint32_t>::max();
   1025       }
   1026       Weights.push_back(static_cast<uint32_t>(Weight));
   1027       if (Weight != 0) {
   1028         if (Weight > MaxWeight) {
   1029           MaxWeight = Weight;
   1030           MaxDestLoc = Succ->getFirstNonPHIOrDbgOrLifetime()->getDebugLoc();
   1031         }
   1032       }
   1033     }
   1034 
   1035     // Only set weights if there is at least one non-zero weight.
   1036     // In any other case, let the analyzer set weights.
   1037     if (MaxWeight > 0) {
   1038       DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n");
   1039       TI->setMetadata(llvm::LLVMContext::MD_prof,
   1040                       MDB.createBranchWeights(Weights));
   1041       DebugLoc BranchLoc = TI->getDebugLoc();
   1042       emitOptimizationRemark(
   1043           Ctx, DEBUG_TYPE, F, MaxDestLoc,
   1044           Twine("most popular destination for conditional branches at ") +
   1045               ((BranchLoc) ? Twine(BranchLoc->getFilename() + ":" +
   1046                                    Twine(BranchLoc.getLine()) + ":" +
   1047                                    Twine(BranchLoc.getCol()))
   1048                            : Twine("<UNKNOWN LOCATION>")));
   1049     } else {
   1050       DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n");
   1051     }
   1052   }
   1053 }
   1054 
   1055 /// \brief Get the line number for the function header.
   1056 ///
   1057 /// This looks up function \p F in the current compilation unit and
   1058 /// retrieves the line number where the function is defined. This is
   1059 /// line 0 for all the samples read from the profile file. Every line
   1060 /// number is relative to this line.
   1061 ///
   1062 /// \param F  Function object to query.
   1063 ///
   1064 /// \returns the line number where \p F is defined. If it returns 0,
   1065 ///          it means that there is no debug information available for \p F.
   1066 unsigned SampleProfileLoader::getFunctionLoc(Function &F) {
   1067   if (DISubprogram *S = F.getSubprogram())
   1068     return S->getLine();
   1069 
   1070   // If the start of \p F is missing, emit a diagnostic to inform the user
   1071   // about the missed opportunity.
   1072   F.getContext().diagnose(DiagnosticInfoSampleProfile(
   1073       "No debug information found in function " + F.getName() +
   1074           ": Function profile not used",
   1075       DS_Warning));
   1076   return 0;
   1077 }
   1078 
   1079 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) {
   1080   DT.reset(new DominatorTree);
   1081   DT->recalculate(F);
   1082 
   1083   PDT.reset(new DominatorTreeBase<BasicBlock>(true));
   1084   PDT->recalculate(F);
   1085 
   1086   LI.reset(new LoopInfo);
   1087   LI->analyze(*DT);
   1088 }
   1089 
   1090 /// \brief Generate branch weight metadata for all branches in \p F.
   1091 ///
   1092 /// Branch weights are computed out of instruction samples using a
   1093 /// propagation heuristic. Propagation proceeds in 3 phases:
   1094 ///
   1095 /// 1- Assignment of block weights. All the basic blocks in the function
   1096 ///    are initial assigned the same weight as their most frequently
   1097 ///    executed instruction.
   1098 ///
   1099 /// 2- Creation of equivalence classes. Since samples may be missing from
   1100 ///    blocks, we can fill in the gaps by setting the weights of all the
   1101 ///    blocks in the same equivalence class to the same weight. To compute
   1102 ///    the concept of equivalence, we use dominance and loop information.
   1103 ///    Two blocks B1 and B2 are in the same equivalence class if B1
   1104 ///    dominates B2, B2 post-dominates B1 and both are in the same loop.
   1105 ///
   1106 /// 3- Propagation of block weights into edges. This uses a simple
   1107 ///    propagation heuristic. The following rules are applied to every
   1108 ///    block BB in the CFG:
   1109 ///
   1110 ///    - If BB has a single predecessor/successor, then the weight
   1111 ///      of that edge is the weight of the block.
   1112 ///
   1113 ///    - If all the edges are known except one, and the weight of the
   1114 ///      block is already known, the weight of the unknown edge will
   1115 ///      be the weight of the block minus the sum of all the known
   1116 ///      edges. If the sum of all the known edges is larger than BB's weight,
   1117 ///      we set the unknown edge weight to zero.
   1118 ///
   1119 ///    - If there is a self-referential edge, and the weight of the block is
   1120 ///      known, the weight for that edge is set to the weight of the block
   1121 ///      minus the weight of the other incoming edges to that block (if
   1122 ///      known).
   1123 ///
   1124 /// Since this propagation is not guaranteed to finalize for every CFG, we
   1125 /// only allow it to proceed for a limited number of iterations (controlled
   1126 /// by -sample-profile-max-propagate-iterations).
   1127 ///
   1128 /// FIXME: Try to replace this propagation heuristic with a scheme
   1129 /// that is guaranteed to finalize. A work-list approach similar to
   1130 /// the standard value propagation algorithm used by SSA-CCP might
   1131 /// work here.
   1132 ///
   1133 /// Once all the branch weights are computed, we emit the MD_prof
   1134 /// metadata on BB using the computed values for each of its branches.
   1135 ///
   1136 /// \param F The function to query.
   1137 ///
   1138 /// \returns true if \p F was modified. Returns false, otherwise.
   1139 bool SampleProfileLoader::emitAnnotations(Function &F) {
   1140   bool Changed = false;
   1141 
   1142   if (getFunctionLoc(F) == 0)
   1143     return false;
   1144 
   1145   DEBUG(dbgs() << "Line number for the first instruction in " << F.getName()
   1146                << ": " << getFunctionLoc(F) << "\n");
   1147 
   1148   Changed |= inlineHotFunctions(F);
   1149 
   1150   // Compute basic block weights.
   1151   Changed |= computeBlockWeights(F);
   1152 
   1153   if (Changed) {
   1154     // Compute dominance and loop info needed for propagation.
   1155     computeDominanceAndLoopInfo(F);
   1156 
   1157     // Find equivalence classes.
   1158     findEquivalenceClasses(F);
   1159 
   1160     // Propagate weights to all edges.
   1161     propagateWeights(F);
   1162   }
   1163 
   1164   // If coverage checking was requested, compute it now.
   1165   if (SampleProfileRecordCoverage) {
   1166     unsigned Used = CoverageTracker.countUsedRecords(Samples);
   1167     unsigned Total = CoverageTracker.countBodyRecords(Samples);
   1168     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
   1169     if (Coverage < SampleProfileRecordCoverage) {
   1170       F.getContext().diagnose(DiagnosticInfoSampleProfile(
   1171           F.getSubprogram()->getFilename(), getFunctionLoc(F),
   1172           Twine(Used) + " of " + Twine(Total) + " available profile records (" +
   1173               Twine(Coverage) + "%) were applied",
   1174           DS_Warning));
   1175     }
   1176   }
   1177 
   1178   if (SampleProfileSampleCoverage) {
   1179     uint64_t Used = CoverageTracker.getTotalUsedSamples();
   1180     uint64_t Total = CoverageTracker.countBodySamples(Samples);
   1181     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
   1182     if (Coverage < SampleProfileSampleCoverage) {
   1183       F.getContext().diagnose(DiagnosticInfoSampleProfile(
   1184           F.getSubprogram()->getFilename(), getFunctionLoc(F),
   1185           Twine(Used) + " of " + Twine(Total) + " available profile samples (" +
   1186               Twine(Coverage) + "%) were applied",
   1187           DS_Warning));
   1188     }
   1189   }
   1190   return Changed;
   1191 }
   1192 
   1193 char SampleProfileLoaderLegacyPass::ID = 0;
   1194 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile",
   1195                 "Sample Profile loader", false, false)
   1196 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
   1197 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile",
   1198                 "Sample Profile loader", false, false)
   1199 
   1200 bool SampleProfileLoader::doInitialization(Module &M) {
   1201   auto &Ctx = M.getContext();
   1202   auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx);
   1203   if (std::error_code EC = ReaderOrErr.getError()) {
   1204     std::string Msg = "Could not open profile: " + EC.message();
   1205     Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
   1206     return false;
   1207   }
   1208   Reader = std::move(ReaderOrErr.get());
   1209   ProfileIsValid = (Reader->read() == sampleprof_error::success);
   1210   return true;
   1211 }
   1212 
   1213 ModulePass *llvm::createSampleProfileLoaderPass() {
   1214   return new SampleProfileLoaderLegacyPass(SampleProfileFile);
   1215 }
   1216 
   1217 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) {
   1218   return new SampleProfileLoaderLegacyPass(Name);
   1219 }
   1220 
   1221 bool SampleProfileLoader::runOnModule(Module &M) {
   1222   if (!ProfileIsValid)
   1223     return false;
   1224 
   1225   // Compute the total number of samples collected in this profile.
   1226   for (const auto &I : Reader->getProfiles())
   1227     TotalCollectedSamples += I.second.getTotalSamples();
   1228 
   1229   bool retval = false;
   1230   for (auto &F : M)
   1231     if (!F.isDeclaration()) {
   1232       clearFunctionData();
   1233       retval |= runOnFunction(F);
   1234     }
   1235   M.setProfileSummary(Reader->getSummary().getMD(M.getContext()));
   1236   return retval;
   1237 }
   1238 
   1239 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) {
   1240   // FIXME: pass in AssumptionCache correctly for the new pass manager.
   1241   SampleLoader.setACT(&getAnalysis<AssumptionCacheTracker>());
   1242   return SampleLoader.runOnModule(M);
   1243 }
   1244 
   1245 bool SampleProfileLoader::runOnFunction(Function &F) {
   1246   F.setEntryCount(0);
   1247   Samples = Reader->getSamplesFor(F);
   1248   if (!Samples->empty())
   1249     return emitAnnotations(F);
   1250   return false;
   1251 }
   1252 
   1253 PreservedAnalyses SampleProfileLoaderPass::run(Module &M,
   1254                                                AnalysisManager<Module> &AM) {
   1255 
   1256   SampleProfileLoader SampleLoader(SampleProfileFile);
   1257 
   1258   SampleLoader.doInitialization(M);
   1259 
   1260   if (!SampleLoader.runOnModule(M))
   1261     return PreservedAnalyses::all();
   1262 
   1263   return PreservedAnalyses::none();
   1264 }
   1265