Home | History | Annotate | Download | only in Scalar
      1 //===-- Sink.cpp - Code Sinking -------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass moves instructions into successor blocks, when possible, so that
     11 // they aren't executed on paths where their results aren't needed.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "llvm/Transforms/Scalar/Sink.h"
     16 #include "llvm/ADT/Statistic.h"
     17 #include "llvm/Analysis/AliasAnalysis.h"
     18 #include "llvm/Analysis/LoopInfo.h"
     19 #include "llvm/Analysis/ValueTracking.h"
     20 #include "llvm/IR/CFG.h"
     21 #include "llvm/IR/DataLayout.h"
     22 #include "llvm/IR/Dominators.h"
     23 #include "llvm/IR/IntrinsicInst.h"
     24 #include "llvm/IR/Module.h"
     25 #include "llvm/Support/Debug.h"
     26 #include "llvm/Support/raw_ostream.h"
     27 #include "llvm/Transforms/Scalar.h"
     28 using namespace llvm;
     29 
     30 #define DEBUG_TYPE "sink"
     31 
     32 STATISTIC(NumSunk, "Number of instructions sunk");
     33 STATISTIC(NumSinkIter, "Number of sinking iterations");
     34 
     35 /// AllUsesDominatedByBlock - Return true if all uses of the specified value
     36 /// occur in blocks dominated by the specified block.
     37 static bool AllUsesDominatedByBlock(Instruction *Inst, BasicBlock *BB,
     38                                     DominatorTree &DT) {
     39   // Ignoring debug uses is necessary so debug info doesn't affect the code.
     40   // This may leave a referencing dbg_value in the original block, before
     41   // the definition of the vreg.  Dwarf generator handles this although the
     42   // user might not get the right info at runtime.
     43   for (Use &U : Inst->uses()) {
     44     // Determine the block of the use.
     45     Instruction *UseInst = cast<Instruction>(U.getUser());
     46     BasicBlock *UseBlock = UseInst->getParent();
     47     if (PHINode *PN = dyn_cast<PHINode>(UseInst)) {
     48       // PHI nodes use the operand in the predecessor block, not the block with
     49       // the PHI.
     50       unsigned Num = PHINode::getIncomingValueNumForOperand(U.getOperandNo());
     51       UseBlock = PN->getIncomingBlock(Num);
     52     }
     53     // Check that it dominates.
     54     if (!DT.dominates(BB, UseBlock))
     55       return false;
     56   }
     57   return true;
     58 }
     59 
     60 static bool isSafeToMove(Instruction *Inst, AliasAnalysis &AA,
     61                          SmallPtrSetImpl<Instruction *> &Stores) {
     62 
     63   if (Inst->mayWriteToMemory()) {
     64     Stores.insert(Inst);
     65     return false;
     66   }
     67 
     68   if (LoadInst *L = dyn_cast<LoadInst>(Inst)) {
     69     MemoryLocation Loc = MemoryLocation::get(L);
     70     for (Instruction *S : Stores)
     71       if (AA.getModRefInfo(S, Loc) & MRI_Mod)
     72         return false;
     73   }
     74 
     75   if (isa<TerminatorInst>(Inst) || isa<PHINode>(Inst) || Inst->isEHPad() ||
     76       Inst->mayThrow())
     77     return false;
     78 
     79   if (auto CS = CallSite(Inst)) {
     80     // Convergent operations cannot be made control-dependent on additional
     81     // values.
     82     if (CS.hasFnAttr(Attribute::Convergent))
     83       return false;
     84 
     85     for (Instruction *S : Stores)
     86       if (AA.getModRefInfo(S, CS) & MRI_Mod)
     87         return false;
     88   }
     89 
     90   return true;
     91 }
     92 
     93 /// IsAcceptableTarget - Return true if it is possible to sink the instruction
     94 /// in the specified basic block.
     95 static bool IsAcceptableTarget(Instruction *Inst, BasicBlock *SuccToSinkTo,
     96                                DominatorTree &DT, LoopInfo &LI) {
     97   assert(Inst && "Instruction to be sunk is null");
     98   assert(SuccToSinkTo && "Candidate sink target is null");
     99 
    100   // It is not possible to sink an instruction into its own block.  This can
    101   // happen with loops.
    102   if (Inst->getParent() == SuccToSinkTo)
    103     return false;
    104 
    105   // It's never legal to sink an instruction into a block which terminates in an
    106   // EH-pad.
    107   if (SuccToSinkTo->getTerminator()->isExceptional())
    108     return false;
    109 
    110   // If the block has multiple predecessors, this would introduce computation
    111   // on different code paths.  We could split the critical edge, but for now we
    112   // just punt.
    113   // FIXME: Split critical edges if not backedges.
    114   if (SuccToSinkTo->getUniquePredecessor() != Inst->getParent()) {
    115     // We cannot sink a load across a critical edge - there may be stores in
    116     // other code paths.
    117     if (!isSafeToSpeculativelyExecute(Inst))
    118       return false;
    119 
    120     // We don't want to sink across a critical edge if we don't dominate the
    121     // successor. We could be introducing calculations to new code paths.
    122     if (!DT.dominates(Inst->getParent(), SuccToSinkTo))
    123       return false;
    124 
    125     // Don't sink instructions into a loop.
    126     Loop *succ = LI.getLoopFor(SuccToSinkTo);
    127     Loop *cur = LI.getLoopFor(Inst->getParent());
    128     if (succ != nullptr && succ != cur)
    129       return false;
    130   }
    131 
    132   // Finally, check that all the uses of the instruction are actually
    133   // dominated by the candidate
    134   return AllUsesDominatedByBlock(Inst, SuccToSinkTo, DT);
    135 }
    136 
    137 /// SinkInstruction - Determine whether it is safe to sink the specified machine
    138 /// instruction out of its current block into a successor.
    139 static bool SinkInstruction(Instruction *Inst,
    140                             SmallPtrSetImpl<Instruction *> &Stores,
    141                             DominatorTree &DT, LoopInfo &LI, AAResults &AA) {
    142 
    143   // Don't sink static alloca instructions.  CodeGen assumes allocas outside the
    144   // entry block are dynamically sized stack objects.
    145   if (AllocaInst *AI = dyn_cast<AllocaInst>(Inst))
    146     if (AI->isStaticAlloca())
    147       return false;
    148 
    149   // Check if it's safe to move the instruction.
    150   if (!isSafeToMove(Inst, AA, Stores))
    151     return false;
    152 
    153   // FIXME: This should include support for sinking instructions within the
    154   // block they are currently in to shorten the live ranges.  We often get
    155   // instructions sunk into the top of a large block, but it would be better to
    156   // also sink them down before their first use in the block.  This xform has to
    157   // be careful not to *increase* register pressure though, e.g. sinking
    158   // "x = y + z" down if it kills y and z would increase the live ranges of y
    159   // and z and only shrink the live range of x.
    160 
    161   // SuccToSinkTo - This is the successor to sink this instruction to, once we
    162   // decide.
    163   BasicBlock *SuccToSinkTo = nullptr;
    164 
    165   // Instructions can only be sunk if all their uses are in blocks
    166   // dominated by one of the successors.
    167   // Look at all the postdominators and see if we can sink it in one.
    168   DomTreeNode *DTN = DT.getNode(Inst->getParent());
    169   for (DomTreeNode::iterator I = DTN->begin(), E = DTN->end();
    170       I != E && SuccToSinkTo == nullptr; ++I) {
    171     BasicBlock *Candidate = (*I)->getBlock();
    172     if ((*I)->getIDom()->getBlock() == Inst->getParent() &&
    173         IsAcceptableTarget(Inst, Candidate, DT, LI))
    174       SuccToSinkTo = Candidate;
    175   }
    176 
    177   // If no suitable postdominator was found, look at all the successors and
    178   // decide which one we should sink to, if any.
    179   for (succ_iterator I = succ_begin(Inst->getParent()),
    180       E = succ_end(Inst->getParent()); I != E && !SuccToSinkTo; ++I) {
    181     if (IsAcceptableTarget(Inst, *I, DT, LI))
    182       SuccToSinkTo = *I;
    183   }
    184 
    185   // If we couldn't find a block to sink to, ignore this instruction.
    186   if (!SuccToSinkTo)
    187     return false;
    188 
    189   DEBUG(dbgs() << "Sink" << *Inst << " (";
    190         Inst->getParent()->printAsOperand(dbgs(), false);
    191         dbgs() << " -> ";
    192         SuccToSinkTo->printAsOperand(dbgs(), false);
    193         dbgs() << ")\n");
    194 
    195   // Move the instruction.
    196   Inst->moveBefore(&*SuccToSinkTo->getFirstInsertionPt());
    197   return true;
    198 }
    199 
    200 static bool ProcessBlock(BasicBlock &BB, DominatorTree &DT, LoopInfo &LI,
    201                          AAResults &AA) {
    202   // Can't sink anything out of a block that has less than two successors.
    203   if (BB.getTerminator()->getNumSuccessors() <= 1) return false;
    204 
    205   // Don't bother sinking code out of unreachable blocks. In addition to being
    206   // unprofitable, it can also lead to infinite looping, because in an
    207   // unreachable loop there may be nowhere to stop.
    208   if (!DT.isReachableFromEntry(&BB)) return false;
    209 
    210   bool MadeChange = false;
    211 
    212   // Walk the basic block bottom-up.  Remember if we saw a store.
    213   BasicBlock::iterator I = BB.end();
    214   --I;
    215   bool ProcessedBegin = false;
    216   SmallPtrSet<Instruction *, 8> Stores;
    217   do {
    218     Instruction *Inst = &*I; // The instruction to sink.
    219 
    220     // Predecrement I (if it's not begin) so that it isn't invalidated by
    221     // sinking.
    222     ProcessedBegin = I == BB.begin();
    223     if (!ProcessedBegin)
    224       --I;
    225 
    226     if (isa<DbgInfoIntrinsic>(Inst))
    227       continue;
    228 
    229     if (SinkInstruction(Inst, Stores, DT, LI, AA)) {
    230       ++NumSunk;
    231       MadeChange = true;
    232     }
    233 
    234     // If we just processed the first instruction in the block, we're done.
    235   } while (!ProcessedBegin);
    236 
    237   return MadeChange;
    238 }
    239 
    240 static bool iterativelySinkInstructions(Function &F, DominatorTree &DT,
    241                                         LoopInfo &LI, AAResults &AA) {
    242   bool MadeChange, EverMadeChange = false;
    243 
    244   do {
    245     MadeChange = false;
    246     DEBUG(dbgs() << "Sinking iteration " << NumSinkIter << "\n");
    247     // Process all basic blocks.
    248     for (BasicBlock &I : F)
    249       MadeChange |= ProcessBlock(I, DT, LI, AA);
    250     EverMadeChange |= MadeChange;
    251     NumSinkIter++;
    252   } while (MadeChange);
    253 
    254   return EverMadeChange;
    255 }
    256 
    257 PreservedAnalyses SinkingPass::run(Function &F, AnalysisManager<Function> &AM) {
    258   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
    259   auto &LI = AM.getResult<LoopAnalysis>(F);
    260   auto &AA = AM.getResult<AAManager>(F);
    261 
    262   if (!iterativelySinkInstructions(F, DT, LI, AA))
    263     return PreservedAnalyses::all();
    264 
    265   auto PA = PreservedAnalyses();
    266   PA.preserve<DominatorTreeAnalysis>();
    267   PA.preserve<LoopAnalysis>();
    268   return PA;
    269 }
    270 
    271 namespace {
    272   class SinkingLegacyPass : public FunctionPass {
    273   public:
    274     static char ID; // Pass identification
    275     SinkingLegacyPass() : FunctionPass(ID) {
    276       initializeSinkingLegacyPassPass(*PassRegistry::getPassRegistry());
    277     }
    278 
    279     bool runOnFunction(Function &F) override {
    280       auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    281       auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
    282       auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
    283 
    284       return iterativelySinkInstructions(F, DT, LI, AA);
    285     }
    286 
    287     void getAnalysisUsage(AnalysisUsage &AU) const override {
    288       AU.setPreservesCFG();
    289       FunctionPass::getAnalysisUsage(AU);
    290       AU.addRequired<AAResultsWrapperPass>();
    291       AU.addRequired<DominatorTreeWrapperPass>();
    292       AU.addRequired<LoopInfoWrapperPass>();
    293       AU.addPreserved<DominatorTreeWrapperPass>();
    294       AU.addPreserved<LoopInfoWrapperPass>();
    295     }
    296   };
    297 } // end anonymous namespace
    298 
    299 char SinkingLegacyPass::ID = 0;
    300 INITIALIZE_PASS_BEGIN(SinkingLegacyPass, "sink", "Code sinking", false, false)
    301 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
    302 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
    303 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
    304 INITIALIZE_PASS_END(SinkingLegacyPass, "sink", "Code sinking", false, false)
    305 
    306 FunctionPass *llvm::createSinkingPass() { return new SinkingLegacyPass(); }
    307