Home | History | Annotate | Download | only in Utils
      1 //===-- BasicBlockUtils.cpp - BasicBlock Utilities -------------------------==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This family of functions perform manipulations on basic blocks, and
     11 // instructions contained within basic blocks.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     16 #include "llvm/Analysis/AliasAnalysis.h"
     17 #include "llvm/Analysis/CFG.h"
     18 #include "llvm/Analysis/LoopInfo.h"
     19 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
     20 #include "llvm/IR/Constant.h"
     21 #include "llvm/IR/DataLayout.h"
     22 #include "llvm/IR/Dominators.h"
     23 #include "llvm/IR/Function.h"
     24 #include "llvm/IR/Instructions.h"
     25 #include "llvm/IR/IntrinsicInst.h"
     26 #include "llvm/IR/Type.h"
     27 #include "llvm/IR/ValueHandle.h"
     28 #include "llvm/Support/ErrorHandling.h"
     29 #include "llvm/Transforms/Scalar.h"
     30 #include "llvm/Transforms/Utils/Local.h"
     31 #include <algorithm>
     32 using namespace llvm;
     33 
     34 void llvm::DeleteDeadBlock(BasicBlock *BB) {
     35   assert((pred_begin(BB) == pred_end(BB) ||
     36          // Can delete self loop.
     37          BB->getSinglePredecessor() == BB) && "Block is not dead!");
     38   TerminatorInst *BBTerm = BB->getTerminator();
     39 
     40   // Loop through all of our successors and make sure they know that one
     41   // of their predecessors is going away.
     42   for (BasicBlock *Succ : BBTerm->successors())
     43     Succ->removePredecessor(BB);
     44 
     45   // Zap all the instructions in the block.
     46   while (!BB->empty()) {
     47     Instruction &I = BB->back();
     48     // If this instruction is used, replace uses with an arbitrary value.
     49     // Because control flow can't get here, we don't care what we replace the
     50     // value with.  Note that since this block is unreachable, and all values
     51     // contained within it must dominate their uses, that all uses will
     52     // eventually be removed (they are themselves dead).
     53     if (!I.use_empty())
     54       I.replaceAllUsesWith(UndefValue::get(I.getType()));
     55     BB->getInstList().pop_back();
     56   }
     57 
     58   // Zap the block!
     59   BB->eraseFromParent();
     60 }
     61 
     62 void llvm::FoldSingleEntryPHINodes(BasicBlock *BB,
     63                                    MemoryDependenceResults *MemDep) {
     64   if (!isa<PHINode>(BB->begin())) return;
     65 
     66   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
     67     if (PN->getIncomingValue(0) != PN)
     68       PN->replaceAllUsesWith(PN->getIncomingValue(0));
     69     else
     70       PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
     71 
     72     if (MemDep)
     73       MemDep->removeInstruction(PN);  // Memdep updates AA itself.
     74 
     75     PN->eraseFromParent();
     76   }
     77 }
     78 
     79 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI) {
     80   // Recursively deleting a PHI may cause multiple PHIs to be deleted
     81   // or RAUW'd undef, so use an array of WeakVH for the PHIs to delete.
     82   SmallVector<WeakVH, 8> PHIs;
     83   for (BasicBlock::iterator I = BB->begin();
     84        PHINode *PN = dyn_cast<PHINode>(I); ++I)
     85     PHIs.push_back(PN);
     86 
     87   bool Changed = false;
     88   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
     89     if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
     90       Changed |= RecursivelyDeleteDeadPHINode(PN, TLI);
     91 
     92   return Changed;
     93 }
     94 
     95 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DominatorTree *DT,
     96                                      LoopInfo *LI,
     97                                      MemoryDependenceResults *MemDep) {
     98   // Don't merge away blocks who have their address taken.
     99   if (BB->hasAddressTaken()) return false;
    100 
    101   // Can't merge if there are multiple predecessors, or no predecessors.
    102   BasicBlock *PredBB = BB->getUniquePredecessor();
    103   if (!PredBB) return false;
    104 
    105   // Don't break self-loops.
    106   if (PredBB == BB) return false;
    107   // Don't break unwinding instructions.
    108   if (PredBB->getTerminator()->isExceptional())
    109     return false;
    110 
    111   succ_iterator SI(succ_begin(PredBB)), SE(succ_end(PredBB));
    112   BasicBlock *OnlySucc = BB;
    113   for (; SI != SE; ++SI)
    114     if (*SI != OnlySucc) {
    115       OnlySucc = nullptr;     // There are multiple distinct successors!
    116       break;
    117     }
    118 
    119   // Can't merge if there are multiple successors.
    120   if (!OnlySucc) return false;
    121 
    122   // Can't merge if there is PHI loop.
    123   for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE; ++BI) {
    124     if (PHINode *PN = dyn_cast<PHINode>(BI)) {
    125       for (Value *IncValue : PN->incoming_values())
    126         if (IncValue == PN)
    127           return false;
    128     } else
    129       break;
    130   }
    131 
    132   // Begin by getting rid of unneeded PHIs.
    133   if (isa<PHINode>(BB->front()))
    134     FoldSingleEntryPHINodes(BB, MemDep);
    135 
    136   // Delete the unconditional branch from the predecessor...
    137   PredBB->getInstList().pop_back();
    138 
    139   // Make all PHI nodes that referred to BB now refer to Pred as their
    140   // source...
    141   BB->replaceAllUsesWith(PredBB);
    142 
    143   // Move all definitions in the successor to the predecessor...
    144   PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
    145 
    146   // Inherit predecessors name if it exists.
    147   if (!PredBB->hasName())
    148     PredBB->takeName(BB);
    149 
    150   // Finally, erase the old block and update dominator info.
    151   if (DT)
    152     if (DomTreeNode *DTN = DT->getNode(BB)) {
    153       DomTreeNode *PredDTN = DT->getNode(PredBB);
    154       SmallVector<DomTreeNode *, 8> Children(DTN->begin(), DTN->end());
    155       for (DomTreeNode *DI : Children)
    156         DT->changeImmediateDominator(DI, PredDTN);
    157 
    158       DT->eraseNode(BB);
    159     }
    160 
    161   if (LI)
    162     LI->removeBlock(BB);
    163 
    164   if (MemDep)
    165     MemDep->invalidateCachedPredecessors();
    166 
    167   BB->eraseFromParent();
    168   return true;
    169 }
    170 
    171 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
    172                                 BasicBlock::iterator &BI, Value *V) {
    173   Instruction &I = *BI;
    174   // Replaces all of the uses of the instruction with uses of the value
    175   I.replaceAllUsesWith(V);
    176 
    177   // Make sure to propagate a name if there is one already.
    178   if (I.hasName() && !V->hasName())
    179     V->takeName(&I);
    180 
    181   // Delete the unnecessary instruction now...
    182   BI = BIL.erase(BI);
    183 }
    184 
    185 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
    186                                BasicBlock::iterator &BI, Instruction *I) {
    187   assert(I->getParent() == nullptr &&
    188          "ReplaceInstWithInst: Instruction already inserted into basic block!");
    189 
    190   // Copy debug location to newly added instruction, if it wasn't already set
    191   // by the caller.
    192   if (!I->getDebugLoc())
    193     I->setDebugLoc(BI->getDebugLoc());
    194 
    195   // Insert the new instruction into the basic block...
    196   BasicBlock::iterator New = BIL.insert(BI, I);
    197 
    198   // Replace all uses of the old instruction, and delete it.
    199   ReplaceInstWithValue(BIL, BI, I);
    200 
    201   // Move BI back to point to the newly inserted instruction
    202   BI = New;
    203 }
    204 
    205 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
    206   BasicBlock::iterator BI(From);
    207   ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
    208 }
    209 
    210 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
    211                             LoopInfo *LI) {
    212   unsigned SuccNum = GetSuccessorNumber(BB, Succ);
    213 
    214   // If this is a critical edge, let SplitCriticalEdge do it.
    215   TerminatorInst *LatchTerm = BB->getTerminator();
    216   if (SplitCriticalEdge(LatchTerm, SuccNum, CriticalEdgeSplittingOptions(DT, LI)
    217                                                 .setPreserveLCSSA()))
    218     return LatchTerm->getSuccessor(SuccNum);
    219 
    220   // If the edge isn't critical, then BB has a single successor or Succ has a
    221   // single pred.  Split the block.
    222   if (BasicBlock *SP = Succ->getSinglePredecessor()) {
    223     // If the successor only has a single pred, split the top of the successor
    224     // block.
    225     assert(SP == BB && "CFG broken");
    226     SP = nullptr;
    227     return SplitBlock(Succ, &Succ->front(), DT, LI);
    228   }
    229 
    230   // Otherwise, if BB has a single successor, split it at the bottom of the
    231   // block.
    232   assert(BB->getTerminator()->getNumSuccessors() == 1 &&
    233          "Should have a single succ!");
    234   return SplitBlock(BB, BB->getTerminator(), DT, LI);
    235 }
    236 
    237 unsigned
    238 llvm::SplitAllCriticalEdges(Function &F,
    239                             const CriticalEdgeSplittingOptions &Options) {
    240   unsigned NumBroken = 0;
    241   for (BasicBlock &BB : F) {
    242     TerminatorInst *TI = BB.getTerminator();
    243     if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI))
    244       for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
    245         if (SplitCriticalEdge(TI, i, Options))
    246           ++NumBroken;
    247   }
    248   return NumBroken;
    249 }
    250 
    251 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
    252                              DominatorTree *DT, LoopInfo *LI) {
    253   BasicBlock::iterator SplitIt = SplitPt->getIterator();
    254   while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
    255     ++SplitIt;
    256   BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split");
    257 
    258   // The new block lives in whichever loop the old one did. This preserves
    259   // LCSSA as well, because we force the split point to be after any PHI nodes.
    260   if (LI)
    261     if (Loop *L = LI->getLoopFor(Old))
    262       L->addBasicBlockToLoop(New, *LI);
    263 
    264   if (DT)
    265     // Old dominates New. New node dominates all other nodes dominated by Old.
    266     if (DomTreeNode *OldNode = DT->getNode(Old)) {
    267       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
    268 
    269       DomTreeNode *NewNode = DT->addNewBlock(New, Old);
    270       for (DomTreeNode *I : Children)
    271         DT->changeImmediateDominator(I, NewNode);
    272     }
    273 
    274   return New;
    275 }
    276 
    277 /// Update DominatorTree, LoopInfo, and LCCSA analysis information.
    278 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
    279                                       ArrayRef<BasicBlock *> Preds,
    280                                       DominatorTree *DT, LoopInfo *LI,
    281                                       bool PreserveLCSSA, bool &HasLoopExit) {
    282   // Update dominator tree if available.
    283   if (DT)
    284     DT->splitBlock(NewBB);
    285 
    286   // The rest of the logic is only relevant for updating the loop structures.
    287   if (!LI)
    288     return;
    289 
    290   Loop *L = LI->getLoopFor(OldBB);
    291 
    292   // If we need to preserve loop analyses, collect some information about how
    293   // this split will affect loops.
    294   bool IsLoopEntry = !!L;
    295   bool SplitMakesNewLoopHeader = false;
    296   for (BasicBlock *Pred : Preds) {
    297     // If we need to preserve LCSSA, determine if any of the preds is a loop
    298     // exit.
    299     if (PreserveLCSSA)
    300       if (Loop *PL = LI->getLoopFor(Pred))
    301         if (!PL->contains(OldBB))
    302           HasLoopExit = true;
    303 
    304     // If we need to preserve LoopInfo, note whether any of the preds crosses
    305     // an interesting loop boundary.
    306     if (!L)
    307       continue;
    308     if (L->contains(Pred))
    309       IsLoopEntry = false;
    310     else
    311       SplitMakesNewLoopHeader = true;
    312   }
    313 
    314   // Unless we have a loop for OldBB, nothing else to do here.
    315   if (!L)
    316     return;
    317 
    318   if (IsLoopEntry) {
    319     // Add the new block to the nearest enclosing loop (and not an adjacent
    320     // loop). To find this, examine each of the predecessors and determine which
    321     // loops enclose them, and select the most-nested loop which contains the
    322     // loop containing the block being split.
    323     Loop *InnermostPredLoop = nullptr;
    324     for (BasicBlock *Pred : Preds) {
    325       if (Loop *PredLoop = LI->getLoopFor(Pred)) {
    326         // Seek a loop which actually contains the block being split (to avoid
    327         // adjacent loops).
    328         while (PredLoop && !PredLoop->contains(OldBB))
    329           PredLoop = PredLoop->getParentLoop();
    330 
    331         // Select the most-nested of these loops which contains the block.
    332         if (PredLoop && PredLoop->contains(OldBB) &&
    333             (!InnermostPredLoop ||
    334              InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
    335           InnermostPredLoop = PredLoop;
    336       }
    337     }
    338 
    339     if (InnermostPredLoop)
    340       InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
    341   } else {
    342     L->addBasicBlockToLoop(NewBB, *LI);
    343     if (SplitMakesNewLoopHeader)
    344       L->moveToHeader(NewBB);
    345   }
    346 }
    347 
    348 /// Update the PHI nodes in OrigBB to include the values coming from NewBB.
    349 /// This also updates AliasAnalysis, if available.
    350 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
    351                            ArrayRef<BasicBlock *> Preds, BranchInst *BI,
    352                            bool HasLoopExit) {
    353   // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
    354   SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
    355   for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
    356     PHINode *PN = cast<PHINode>(I++);
    357 
    358     // Check to see if all of the values coming in are the same.  If so, we
    359     // don't need to create a new PHI node, unless it's needed for LCSSA.
    360     Value *InVal = nullptr;
    361     if (!HasLoopExit) {
    362       InVal = PN->getIncomingValueForBlock(Preds[0]);
    363       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    364         if (!PredSet.count(PN->getIncomingBlock(i)))
    365           continue;
    366         if (!InVal)
    367           InVal = PN->getIncomingValue(i);
    368         else if (InVal != PN->getIncomingValue(i)) {
    369           InVal = nullptr;
    370           break;
    371         }
    372       }
    373     }
    374 
    375     if (InVal) {
    376       // If all incoming values for the new PHI would be the same, just don't
    377       // make a new PHI.  Instead, just remove the incoming values from the old
    378       // PHI.
    379 
    380       // NOTE! This loop walks backwards for a reason! First off, this minimizes
    381       // the cost of removal if we end up removing a large number of values, and
    382       // second off, this ensures that the indices for the incoming values
    383       // aren't invalidated when we remove one.
    384       for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i)
    385         if (PredSet.count(PN->getIncomingBlock(i)))
    386           PN->removeIncomingValue(i, false);
    387 
    388       // Add an incoming value to the PHI node in the loop for the preheader
    389       // edge.
    390       PN->addIncoming(InVal, NewBB);
    391       continue;
    392     }
    393 
    394     // If the values coming into the block are not the same, we need a new
    395     // PHI.
    396     // Create the new PHI node, insert it into NewBB at the end of the block
    397     PHINode *NewPHI =
    398         PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
    399 
    400     // NOTE! This loop walks backwards for a reason! First off, this minimizes
    401     // the cost of removal if we end up removing a large number of values, and
    402     // second off, this ensures that the indices for the incoming values aren't
    403     // invalidated when we remove one.
    404     for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
    405       BasicBlock *IncomingBB = PN->getIncomingBlock(i);
    406       if (PredSet.count(IncomingBB)) {
    407         Value *V = PN->removeIncomingValue(i, false);
    408         NewPHI->addIncoming(V, IncomingBB);
    409       }
    410     }
    411 
    412     PN->addIncoming(NewPHI, NewBB);
    413   }
    414 }
    415 
    416 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
    417                                          ArrayRef<BasicBlock *> Preds,
    418                                          const char *Suffix, DominatorTree *DT,
    419                                          LoopInfo *LI, bool PreserveLCSSA) {
    420   // Do not attempt to split that which cannot be split.
    421   if (!BB->canSplitPredecessors())
    422     return nullptr;
    423 
    424   // For the landingpads we need to act a bit differently.
    425   // Delegate this work to the SplitLandingPadPredecessors.
    426   if (BB->isLandingPad()) {
    427     SmallVector<BasicBlock*, 2> NewBBs;
    428     std::string NewName = std::string(Suffix) + ".split-lp";
    429 
    430     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs, DT,
    431                                 LI, PreserveLCSSA);
    432     return NewBBs[0];
    433   }
    434 
    435   // Create new basic block, insert right before the original block.
    436   BasicBlock *NewBB = BasicBlock::Create(
    437       BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB);
    438 
    439   // The new block unconditionally branches to the old block.
    440   BranchInst *BI = BranchInst::Create(BB, NewBB);
    441   BI->setDebugLoc(BB->getFirstNonPHI()->getDebugLoc());
    442 
    443   // Move the edges from Preds to point to NewBB instead of BB.
    444   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
    445     // This is slightly more strict than necessary; the minimum requirement
    446     // is that there be no more than one indirectbr branching to BB. And
    447     // all BlockAddress uses would need to be updated.
    448     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
    449            "Cannot split an edge from an IndirectBrInst");
    450     Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
    451   }
    452 
    453   // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
    454   // node becomes an incoming value for BB's phi node.  However, if the Preds
    455   // list is empty, we need to insert dummy entries into the PHI nodes in BB to
    456   // account for the newly created predecessor.
    457   if (Preds.size() == 0) {
    458     // Insert dummy values as the incoming value.
    459     for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
    460       cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
    461     return NewBB;
    462   }
    463 
    464   // Update DominatorTree, LoopInfo, and LCCSA analysis information.
    465   bool HasLoopExit = false;
    466   UpdateAnalysisInformation(BB, NewBB, Preds, DT, LI, PreserveLCSSA,
    467                             HasLoopExit);
    468 
    469   // Update the PHI nodes in BB with the values coming from NewBB.
    470   UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit);
    471   return NewBB;
    472 }
    473 
    474 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
    475                                        ArrayRef<BasicBlock *> Preds,
    476                                        const char *Suffix1, const char *Suffix2,
    477                                        SmallVectorImpl<BasicBlock *> &NewBBs,
    478                                        DominatorTree *DT, LoopInfo *LI,
    479                                        bool PreserveLCSSA) {
    480   assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
    481 
    482   // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
    483   // it right before the original block.
    484   BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
    485                                           OrigBB->getName() + Suffix1,
    486                                           OrigBB->getParent(), OrigBB);
    487   NewBBs.push_back(NewBB1);
    488 
    489   // The new block unconditionally branches to the old block.
    490   BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
    491   BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
    492 
    493   // Move the edges from Preds to point to NewBB1 instead of OrigBB.
    494   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
    495     // This is slightly more strict than necessary; the minimum requirement
    496     // is that there be no more than one indirectbr branching to BB. And
    497     // all BlockAddress uses would need to be updated.
    498     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
    499            "Cannot split an edge from an IndirectBrInst");
    500     Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
    501   }
    502 
    503   bool HasLoopExit = false;
    504   UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DT, LI, PreserveLCSSA,
    505                             HasLoopExit);
    506 
    507   // Update the PHI nodes in OrigBB with the values coming from NewBB1.
    508   UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit);
    509 
    510   // Move the remaining edges from OrigBB to point to NewBB2.
    511   SmallVector<BasicBlock*, 8> NewBB2Preds;
    512   for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
    513        i != e; ) {
    514     BasicBlock *Pred = *i++;
    515     if (Pred == NewBB1) continue;
    516     assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
    517            "Cannot split an edge from an IndirectBrInst");
    518     NewBB2Preds.push_back(Pred);
    519     e = pred_end(OrigBB);
    520   }
    521 
    522   BasicBlock *NewBB2 = nullptr;
    523   if (!NewBB2Preds.empty()) {
    524     // Create another basic block for the rest of OrigBB's predecessors.
    525     NewBB2 = BasicBlock::Create(OrigBB->getContext(),
    526                                 OrigBB->getName() + Suffix2,
    527                                 OrigBB->getParent(), OrigBB);
    528     NewBBs.push_back(NewBB2);
    529 
    530     // The new block unconditionally branches to the old block.
    531     BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
    532     BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
    533 
    534     // Move the remaining edges from OrigBB to point to NewBB2.
    535     for (BasicBlock *NewBB2Pred : NewBB2Preds)
    536       NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
    537 
    538     // Update DominatorTree, LoopInfo, and LCCSA analysis information.
    539     HasLoopExit = false;
    540     UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DT, LI,
    541                               PreserveLCSSA, HasLoopExit);
    542 
    543     // Update the PHI nodes in OrigBB with the values coming from NewBB2.
    544     UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit);
    545   }
    546 
    547   LandingPadInst *LPad = OrigBB->getLandingPadInst();
    548   Instruction *Clone1 = LPad->clone();
    549   Clone1->setName(Twine("lpad") + Suffix1);
    550   NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1);
    551 
    552   if (NewBB2) {
    553     Instruction *Clone2 = LPad->clone();
    554     Clone2->setName(Twine("lpad") + Suffix2);
    555     NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2);
    556 
    557     // Create a PHI node for the two cloned landingpad instructions only
    558     // if the original landingpad instruction has some uses.
    559     if (!LPad->use_empty()) {
    560       assert(!LPad->getType()->isTokenTy() &&
    561              "Split cannot be applied if LPad is token type. Otherwise an "
    562              "invalid PHINode of token type would be created.");
    563       PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
    564       PN->addIncoming(Clone1, NewBB1);
    565       PN->addIncoming(Clone2, NewBB2);
    566       LPad->replaceAllUsesWith(PN);
    567     }
    568     LPad->eraseFromParent();
    569   } else {
    570     // There is no second clone. Just replace the landing pad with the first
    571     // clone.
    572     LPad->replaceAllUsesWith(Clone1);
    573     LPad->eraseFromParent();
    574   }
    575 }
    576 
    577 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
    578                                              BasicBlock *Pred) {
    579   Instruction *UncondBranch = Pred->getTerminator();
    580   // Clone the return and add it to the end of the predecessor.
    581   Instruction *NewRet = RI->clone();
    582   Pred->getInstList().push_back(NewRet);
    583 
    584   // If the return instruction returns a value, and if the value was a
    585   // PHI node in "BB", propagate the right value into the return.
    586   for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
    587        i != e; ++i) {
    588     Value *V = *i;
    589     Instruction *NewBC = nullptr;
    590     if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
    591       // Return value might be bitcasted. Clone and insert it before the
    592       // return instruction.
    593       V = BCI->getOperand(0);
    594       NewBC = BCI->clone();
    595       Pred->getInstList().insert(NewRet->getIterator(), NewBC);
    596       *i = NewBC;
    597     }
    598     if (PHINode *PN = dyn_cast<PHINode>(V)) {
    599       if (PN->getParent() == BB) {
    600         if (NewBC)
    601           NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
    602         else
    603           *i = PN->getIncomingValueForBlock(Pred);
    604       }
    605     }
    606   }
    607 
    608   // Update any PHI nodes in the returning block to realize that we no
    609   // longer branch to them.
    610   BB->removePredecessor(Pred);
    611   UncondBranch->eraseFromParent();
    612   return cast<ReturnInst>(NewRet);
    613 }
    614 
    615 TerminatorInst *
    616 llvm::SplitBlockAndInsertIfThen(Value *Cond, Instruction *SplitBefore,
    617                                 bool Unreachable, MDNode *BranchWeights,
    618                                 DominatorTree *DT, LoopInfo *LI) {
    619   BasicBlock *Head = SplitBefore->getParent();
    620   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
    621   TerminatorInst *HeadOldTerm = Head->getTerminator();
    622   LLVMContext &C = Head->getContext();
    623   BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
    624   TerminatorInst *CheckTerm;
    625   if (Unreachable)
    626     CheckTerm = new UnreachableInst(C, ThenBlock);
    627   else
    628     CheckTerm = BranchInst::Create(Tail, ThenBlock);
    629   CheckTerm->setDebugLoc(SplitBefore->getDebugLoc());
    630   BranchInst *HeadNewTerm =
    631     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cond);
    632   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
    633   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
    634 
    635   if (DT) {
    636     if (DomTreeNode *OldNode = DT->getNode(Head)) {
    637       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
    638 
    639       DomTreeNode *NewNode = DT->addNewBlock(Tail, Head);
    640       for (DomTreeNode *Child : Children)
    641         DT->changeImmediateDominator(Child, NewNode);
    642 
    643       // Head dominates ThenBlock.
    644       DT->addNewBlock(ThenBlock, Head);
    645     }
    646   }
    647 
    648   if (LI) {
    649     Loop *L = LI->getLoopFor(Head);
    650     L->addBasicBlockToLoop(ThenBlock, *LI);
    651     L->addBasicBlockToLoop(Tail, *LI);
    652   }
    653 
    654   return CheckTerm;
    655 }
    656 
    657 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore,
    658                                          TerminatorInst **ThenTerm,
    659                                          TerminatorInst **ElseTerm,
    660                                          MDNode *BranchWeights) {
    661   BasicBlock *Head = SplitBefore->getParent();
    662   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
    663   TerminatorInst *HeadOldTerm = Head->getTerminator();
    664   LLVMContext &C = Head->getContext();
    665   BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
    666   BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
    667   *ThenTerm = BranchInst::Create(Tail, ThenBlock);
    668   (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc());
    669   *ElseTerm = BranchInst::Create(Tail, ElseBlock);
    670   (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc());
    671   BranchInst *HeadNewTerm =
    672     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond);
    673   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
    674   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
    675 }
    676 
    677 
    678 Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
    679                              BasicBlock *&IfFalse) {
    680   PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
    681   BasicBlock *Pred1 = nullptr;
    682   BasicBlock *Pred2 = nullptr;
    683 
    684   if (SomePHI) {
    685     if (SomePHI->getNumIncomingValues() != 2)
    686       return nullptr;
    687     Pred1 = SomePHI->getIncomingBlock(0);
    688     Pred2 = SomePHI->getIncomingBlock(1);
    689   } else {
    690     pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
    691     if (PI == PE) // No predecessor
    692       return nullptr;
    693     Pred1 = *PI++;
    694     if (PI == PE) // Only one predecessor
    695       return nullptr;
    696     Pred2 = *PI++;
    697     if (PI != PE) // More than two predecessors
    698       return nullptr;
    699   }
    700 
    701   // We can only handle branches.  Other control flow will be lowered to
    702   // branches if possible anyway.
    703   BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
    704   BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
    705   if (!Pred1Br || !Pred2Br)
    706     return nullptr;
    707 
    708   // Eliminate code duplication by ensuring that Pred1Br is conditional if
    709   // either are.
    710   if (Pred2Br->isConditional()) {
    711     // If both branches are conditional, we don't have an "if statement".  In
    712     // reality, we could transform this case, but since the condition will be
    713     // required anyway, we stand no chance of eliminating it, so the xform is
    714     // probably not profitable.
    715     if (Pred1Br->isConditional())
    716       return nullptr;
    717 
    718     std::swap(Pred1, Pred2);
    719     std::swap(Pred1Br, Pred2Br);
    720   }
    721 
    722   if (Pred1Br->isConditional()) {
    723     // The only thing we have to watch out for here is to make sure that Pred2
    724     // doesn't have incoming edges from other blocks.  If it does, the condition
    725     // doesn't dominate BB.
    726     if (!Pred2->getSinglePredecessor())
    727       return nullptr;
    728 
    729     // If we found a conditional branch predecessor, make sure that it branches
    730     // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
    731     if (Pred1Br->getSuccessor(0) == BB &&
    732         Pred1Br->getSuccessor(1) == Pred2) {
    733       IfTrue = Pred1;
    734       IfFalse = Pred2;
    735     } else if (Pred1Br->getSuccessor(0) == Pred2 &&
    736                Pred1Br->getSuccessor(1) == BB) {
    737       IfTrue = Pred2;
    738       IfFalse = Pred1;
    739     } else {
    740       // We know that one arm of the conditional goes to BB, so the other must
    741       // go somewhere unrelated, and this must not be an "if statement".
    742       return nullptr;
    743     }
    744 
    745     return Pred1Br->getCondition();
    746   }
    747 
    748   // Ok, if we got here, both predecessors end with an unconditional branch to
    749   // BB.  Don't panic!  If both blocks only have a single (identical)
    750   // predecessor, and THAT is a conditional branch, then we're all ok!
    751   BasicBlock *CommonPred = Pred1->getSinglePredecessor();
    752   if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
    753     return nullptr;
    754 
    755   // Otherwise, if this is a conditional branch, then we can use it!
    756   BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
    757   if (!BI) return nullptr;
    758 
    759   assert(BI->isConditional() && "Two successors but not conditional?");
    760   if (BI->getSuccessor(0) == Pred1) {
    761     IfTrue = Pred1;
    762     IfFalse = Pred2;
    763   } else {
    764     IfTrue = Pred2;
    765     IfFalse = Pred1;
    766   }
    767   return BI->getCondition();
    768 }
    769