Home | History | Annotate | Download | only in Utils
      1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the interface to tear out a code region, such as an
     11 // individual loop or a parallel section, into a new function, replacing it with
     12 // a call to the new function.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "llvm/Transforms/Utils/CodeExtractor.h"
     17 #include "llvm/ADT/STLExtras.h"
     18 #include "llvm/ADT/SetVector.h"
     19 #include "llvm/ADT/StringExtras.h"
     20 #include "llvm/Analysis/LoopInfo.h"
     21 #include "llvm/Analysis/RegionInfo.h"
     22 #include "llvm/Analysis/RegionIterator.h"
     23 #include "llvm/IR/Constants.h"
     24 #include "llvm/IR/DerivedTypes.h"
     25 #include "llvm/IR/Dominators.h"
     26 #include "llvm/IR/Instructions.h"
     27 #include "llvm/IR/Intrinsics.h"
     28 #include "llvm/IR/LLVMContext.h"
     29 #include "llvm/IR/Module.h"
     30 #include "llvm/IR/Verifier.h"
     31 #include "llvm/Pass.h"
     32 #include "llvm/Support/CommandLine.h"
     33 #include "llvm/Support/Debug.h"
     34 #include "llvm/Support/ErrorHandling.h"
     35 #include "llvm/Support/raw_ostream.h"
     36 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     37 #include <algorithm>
     38 #include <set>
     39 using namespace llvm;
     40 
     41 #define DEBUG_TYPE "code-extractor"
     42 
     43 // Provide a command-line option to aggregate function arguments into a struct
     44 // for functions produced by the code extractor. This is useful when converting
     45 // extracted functions to pthread-based code, as only one argument (void*) can
     46 // be passed in to pthread_create().
     47 static cl::opt<bool>
     48 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
     49                  cl::desc("Aggregate arguments to code-extracted functions"));
     50 
     51 /// \brief Test whether a block is valid for extraction.
     52 static bool isBlockValidForExtraction(const BasicBlock &BB) {
     53   // Landing pads must be in the function where they were inserted for cleanup.
     54   if (BB.isEHPad())
     55     return false;
     56 
     57   // Don't hoist code containing allocas, invokes, or vastarts.
     58   for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) {
     59     if (isa<AllocaInst>(I) || isa<InvokeInst>(I))
     60       return false;
     61     if (const CallInst *CI = dyn_cast<CallInst>(I))
     62       if (const Function *F = CI->getCalledFunction())
     63         if (F->getIntrinsicID() == Intrinsic::vastart)
     64           return false;
     65   }
     66 
     67   return true;
     68 }
     69 
     70 /// \brief Build a set of blocks to extract if the input blocks are viable.
     71 template <typename IteratorT>
     72 static SetVector<BasicBlock *> buildExtractionBlockSet(IteratorT BBBegin,
     73                                                        IteratorT BBEnd) {
     74   SetVector<BasicBlock *> Result;
     75 
     76   assert(BBBegin != BBEnd);
     77 
     78   // Loop over the blocks, adding them to our set-vector, and aborting with an
     79   // empty set if we encounter invalid blocks.
     80   do {
     81     if (!Result.insert(*BBBegin))
     82       llvm_unreachable("Repeated basic blocks in extraction input");
     83 
     84     if (!isBlockValidForExtraction(**BBBegin)) {
     85       Result.clear();
     86       return Result;
     87     }
     88   } while (++BBBegin != BBEnd);
     89 
     90 #ifndef NDEBUG
     91   for (SetVector<BasicBlock *>::iterator I = std::next(Result.begin()),
     92                                          E = Result.end();
     93        I != E; ++I)
     94     for (pred_iterator PI = pred_begin(*I), PE = pred_end(*I);
     95          PI != PE; ++PI)
     96       assert(Result.count(*PI) &&
     97              "No blocks in this region may have entries from outside the region"
     98              " except for the first block!");
     99 #endif
    100 
    101   return Result;
    102 }
    103 
    104 /// \brief Helper to call buildExtractionBlockSet with an ArrayRef.
    105 static SetVector<BasicBlock *>
    106 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs) {
    107   return buildExtractionBlockSet(BBs.begin(), BBs.end());
    108 }
    109 
    110 /// \brief Helper to call buildExtractionBlockSet with a RegionNode.
    111 static SetVector<BasicBlock *>
    112 buildExtractionBlockSet(const RegionNode &RN) {
    113   if (!RN.isSubRegion())
    114     // Just a single BasicBlock.
    115     return buildExtractionBlockSet(RN.getNodeAs<BasicBlock>());
    116 
    117   const Region &R = *RN.getNodeAs<Region>();
    118 
    119   return buildExtractionBlockSet(R.block_begin(), R.block_end());
    120 }
    121 
    122 CodeExtractor::CodeExtractor(BasicBlock *BB, bool AggregateArgs)
    123   : DT(nullptr), AggregateArgs(AggregateArgs||AggregateArgsOpt),
    124     Blocks(buildExtractionBlockSet(BB)), NumExitBlocks(~0U) {}
    125 
    126 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
    127                              bool AggregateArgs)
    128   : DT(DT), AggregateArgs(AggregateArgs||AggregateArgsOpt),
    129     Blocks(buildExtractionBlockSet(BBs)), NumExitBlocks(~0U) {}
    130 
    131 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs)
    132   : DT(&DT), AggregateArgs(AggregateArgs||AggregateArgsOpt),
    133     Blocks(buildExtractionBlockSet(L.getBlocks())), NumExitBlocks(~0U) {}
    134 
    135 CodeExtractor::CodeExtractor(DominatorTree &DT, const RegionNode &RN,
    136                              bool AggregateArgs)
    137   : DT(&DT), AggregateArgs(AggregateArgs||AggregateArgsOpt),
    138     Blocks(buildExtractionBlockSet(RN)), NumExitBlocks(~0U) {}
    139 
    140 /// definedInRegion - Return true if the specified value is defined in the
    141 /// extracted region.
    142 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) {
    143   if (Instruction *I = dyn_cast<Instruction>(V))
    144     if (Blocks.count(I->getParent()))
    145       return true;
    146   return false;
    147 }
    148 
    149 /// definedInCaller - Return true if the specified value is defined in the
    150 /// function being code extracted, but not in the region being extracted.
    151 /// These values must be passed in as live-ins to the function.
    152 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) {
    153   if (isa<Argument>(V)) return true;
    154   if (Instruction *I = dyn_cast<Instruction>(V))
    155     if (!Blocks.count(I->getParent()))
    156       return true;
    157   return false;
    158 }
    159 
    160 void CodeExtractor::findInputsOutputs(ValueSet &Inputs,
    161                                       ValueSet &Outputs) const {
    162   for (BasicBlock *BB : Blocks) {
    163     // If a used value is defined outside the region, it's an input.  If an
    164     // instruction is used outside the region, it's an output.
    165     for (Instruction &II : *BB) {
    166       for (User::op_iterator OI = II.op_begin(), OE = II.op_end(); OI != OE;
    167            ++OI)
    168         if (definedInCaller(Blocks, *OI))
    169           Inputs.insert(*OI);
    170 
    171       for (User *U : II.users())
    172         if (!definedInRegion(Blocks, U)) {
    173           Outputs.insert(&II);
    174           break;
    175         }
    176     }
    177   }
    178 }
    179 
    180 /// severSplitPHINodes - If a PHI node has multiple inputs from outside of the
    181 /// region, we need to split the entry block of the region so that the PHI node
    182 /// is easier to deal with.
    183 void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) {
    184   unsigned NumPredsFromRegion = 0;
    185   unsigned NumPredsOutsideRegion = 0;
    186 
    187   if (Header != &Header->getParent()->getEntryBlock()) {
    188     PHINode *PN = dyn_cast<PHINode>(Header->begin());
    189     if (!PN) return;  // No PHI nodes.
    190 
    191     // If the header node contains any PHI nodes, check to see if there is more
    192     // than one entry from outside the region.  If so, we need to sever the
    193     // header block into two.
    194     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    195       if (Blocks.count(PN->getIncomingBlock(i)))
    196         ++NumPredsFromRegion;
    197       else
    198         ++NumPredsOutsideRegion;
    199 
    200     // If there is one (or fewer) predecessor from outside the region, we don't
    201     // need to do anything special.
    202     if (NumPredsOutsideRegion <= 1) return;
    203   }
    204 
    205   // Otherwise, we need to split the header block into two pieces: one
    206   // containing PHI nodes merging values from outside of the region, and a
    207   // second that contains all of the code for the block and merges back any
    208   // incoming values from inside of the region.
    209   BasicBlock::iterator AfterPHIs = Header->getFirstNonPHI()->getIterator();
    210   BasicBlock *NewBB = Header->splitBasicBlock(AfterPHIs,
    211                                               Header->getName()+".ce");
    212 
    213   // We only want to code extract the second block now, and it becomes the new
    214   // header of the region.
    215   BasicBlock *OldPred = Header;
    216   Blocks.remove(OldPred);
    217   Blocks.insert(NewBB);
    218   Header = NewBB;
    219 
    220   // Okay, update dominator sets. The blocks that dominate the new one are the
    221   // blocks that dominate TIBB plus the new block itself.
    222   if (DT)
    223     DT->splitBlock(NewBB);
    224 
    225   // Okay, now we need to adjust the PHI nodes and any branches from within the
    226   // region to go to the new header block instead of the old header block.
    227   if (NumPredsFromRegion) {
    228     PHINode *PN = cast<PHINode>(OldPred->begin());
    229     // Loop over all of the predecessors of OldPred that are in the region,
    230     // changing them to branch to NewBB instead.
    231     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    232       if (Blocks.count(PN->getIncomingBlock(i))) {
    233         TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator();
    234         TI->replaceUsesOfWith(OldPred, NewBB);
    235       }
    236 
    237     // Okay, everything within the region is now branching to the right block, we
    238     // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
    239     for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
    240       PHINode *PN = cast<PHINode>(AfterPHIs);
    241       // Create a new PHI node in the new region, which has an incoming value
    242       // from OldPred of PN.
    243       PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion,
    244                                        PN->getName() + ".ce", &NewBB->front());
    245       NewPN->addIncoming(PN, OldPred);
    246 
    247       // Loop over all of the incoming value in PN, moving them to NewPN if they
    248       // are from the extracted region.
    249       for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
    250         if (Blocks.count(PN->getIncomingBlock(i))) {
    251           NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
    252           PN->removeIncomingValue(i);
    253           --i;
    254         }
    255       }
    256     }
    257   }
    258 }
    259 
    260 void CodeExtractor::splitReturnBlocks() {
    261   for (BasicBlock *Block : Blocks)
    262     if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) {
    263       BasicBlock *New =
    264           Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret");
    265       if (DT) {
    266         // Old dominates New. New node dominates all other nodes dominated
    267         // by Old.
    268         DomTreeNode *OldNode = DT->getNode(Block);
    269         SmallVector<DomTreeNode *, 8> Children(OldNode->begin(),
    270                                                OldNode->end());
    271 
    272         DomTreeNode *NewNode = DT->addNewBlock(New, Block);
    273 
    274         for (DomTreeNode *I : Children)
    275           DT->changeImmediateDominator(I, NewNode);
    276       }
    277     }
    278 }
    279 
    280 /// constructFunction - make a function based on inputs and outputs, as follows:
    281 /// f(in0, ..., inN, out0, ..., outN)
    282 ///
    283 Function *CodeExtractor::constructFunction(const ValueSet &inputs,
    284                                            const ValueSet &outputs,
    285                                            BasicBlock *header,
    286                                            BasicBlock *newRootNode,
    287                                            BasicBlock *newHeader,
    288                                            Function *oldFunction,
    289                                            Module *M) {
    290   DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
    291   DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");
    292 
    293   // This function returns unsigned, outputs will go back by reference.
    294   switch (NumExitBlocks) {
    295   case 0:
    296   case 1: RetTy = Type::getVoidTy(header->getContext()); break;
    297   case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
    298   default: RetTy = Type::getInt16Ty(header->getContext()); break;
    299   }
    300 
    301   std::vector<Type*> paramTy;
    302 
    303   // Add the types of the input values to the function's argument list
    304   for (Value *value : inputs) {
    305     DEBUG(dbgs() << "value used in func: " << *value << "\n");
    306     paramTy.push_back(value->getType());
    307   }
    308 
    309   // Add the types of the output values to the function's argument list.
    310   for (Value *output : outputs) {
    311     DEBUG(dbgs() << "instr used in func: " << *output << "\n");
    312     if (AggregateArgs)
    313       paramTy.push_back(output->getType());
    314     else
    315       paramTy.push_back(PointerType::getUnqual(output->getType()));
    316   }
    317 
    318   DEBUG({
    319     dbgs() << "Function type: " << *RetTy << " f(";
    320     for (Type *i : paramTy)
    321       dbgs() << *i << ", ";
    322     dbgs() << ")\n";
    323   });
    324 
    325   StructType *StructTy;
    326   if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
    327     StructTy = StructType::get(M->getContext(), paramTy);
    328     paramTy.clear();
    329     paramTy.push_back(PointerType::getUnqual(StructTy));
    330   }
    331   FunctionType *funcType =
    332                   FunctionType::get(RetTy, paramTy, false);
    333 
    334   // Create the new function
    335   Function *newFunction = Function::Create(funcType,
    336                                            GlobalValue::InternalLinkage,
    337                                            oldFunction->getName() + "_" +
    338                                            header->getName(), M);
    339   // If the old function is no-throw, so is the new one.
    340   if (oldFunction->doesNotThrow())
    341     newFunction->setDoesNotThrow();
    342 
    343   newFunction->getBasicBlockList().push_back(newRootNode);
    344 
    345   // Create an iterator to name all of the arguments we inserted.
    346   Function::arg_iterator AI = newFunction->arg_begin();
    347 
    348   // Rewrite all users of the inputs in the extracted region to use the
    349   // arguments (or appropriate addressing into struct) instead.
    350   for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
    351     Value *RewriteVal;
    352     if (AggregateArgs) {
    353       Value *Idx[2];
    354       Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
    355       Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i);
    356       TerminatorInst *TI = newFunction->begin()->getTerminator();
    357       GetElementPtrInst *GEP = GetElementPtrInst::Create(
    358           StructTy, &*AI, Idx, "gep_" + inputs[i]->getName(), TI);
    359       RewriteVal = new LoadInst(GEP, "loadgep_" + inputs[i]->getName(), TI);
    360     } else
    361       RewriteVal = &*AI++;
    362 
    363     std::vector<User*> Users(inputs[i]->user_begin(), inputs[i]->user_end());
    364     for (User *use : Users)
    365       if (Instruction *inst = dyn_cast<Instruction>(use))
    366         if (Blocks.count(inst->getParent()))
    367           inst->replaceUsesOfWith(inputs[i], RewriteVal);
    368   }
    369 
    370   // Set names for input and output arguments.
    371   if (!AggregateArgs) {
    372     AI = newFunction->arg_begin();
    373     for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI)
    374       AI->setName(inputs[i]->getName());
    375     for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI)
    376       AI->setName(outputs[i]->getName()+".out");
    377   }
    378 
    379   // Rewrite branches to basic blocks outside of the loop to new dummy blocks
    380   // within the new function. This must be done before we lose track of which
    381   // blocks were originally in the code region.
    382   std::vector<User*> Users(header->user_begin(), header->user_end());
    383   for (unsigned i = 0, e = Users.size(); i != e; ++i)
    384     // The BasicBlock which contains the branch is not in the region
    385     // modify the branch target to a new block
    386     if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i]))
    387       if (!Blocks.count(TI->getParent()) &&
    388           TI->getParent()->getParent() == oldFunction)
    389         TI->replaceUsesOfWith(header, newHeader);
    390 
    391   return newFunction;
    392 }
    393 
    394 /// FindPhiPredForUseInBlock - Given a value and a basic block, find a PHI
    395 /// that uses the value within the basic block, and return the predecessor
    396 /// block associated with that use, or return 0 if none is found.
    397 static BasicBlock* FindPhiPredForUseInBlock(Value* Used, BasicBlock* BB) {
    398   for (Use &U : Used->uses()) {
    399      PHINode *P = dyn_cast<PHINode>(U.getUser());
    400      if (P && P->getParent() == BB)
    401        return P->getIncomingBlock(U);
    402   }
    403 
    404   return nullptr;
    405 }
    406 
    407 /// emitCallAndSwitchStatement - This method sets up the caller side by adding
    408 /// the call instruction, splitting any PHI nodes in the header block as
    409 /// necessary.
    410 void CodeExtractor::
    411 emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer,
    412                            ValueSet &inputs, ValueSet &outputs) {
    413   // Emit a call to the new function, passing in: *pointer to struct (if
    414   // aggregating parameters), or plan inputs and allocated memory for outputs
    415   std::vector<Value*> params, StructValues, ReloadOutputs, Reloads;
    416 
    417   LLVMContext &Context = newFunction->getContext();
    418 
    419   // Add inputs as params, or to be filled into the struct
    420   for (Value *input : inputs)
    421     if (AggregateArgs)
    422       StructValues.push_back(input);
    423     else
    424       params.push_back(input);
    425 
    426   // Create allocas for the outputs
    427   for (Value *output : outputs) {
    428     if (AggregateArgs) {
    429       StructValues.push_back(output);
    430     } else {
    431       AllocaInst *alloca =
    432           new AllocaInst(output->getType(), nullptr, output->getName() + ".loc",
    433                          &codeReplacer->getParent()->front().front());
    434       ReloadOutputs.push_back(alloca);
    435       params.push_back(alloca);
    436     }
    437   }
    438 
    439   StructType *StructArgTy = nullptr;
    440   AllocaInst *Struct = nullptr;
    441   if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
    442     std::vector<Type*> ArgTypes;
    443     for (ValueSet::iterator v = StructValues.begin(),
    444            ve = StructValues.end(); v != ve; ++v)
    445       ArgTypes.push_back((*v)->getType());
    446 
    447     // Allocate a struct at the beginning of this function
    448     StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
    449     Struct = new AllocaInst(StructArgTy, nullptr, "structArg",
    450                             &codeReplacer->getParent()->front().front());
    451     params.push_back(Struct);
    452 
    453     for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
    454       Value *Idx[2];
    455       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
    456       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
    457       GetElementPtrInst *GEP = GetElementPtrInst::Create(
    458           StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName());
    459       codeReplacer->getInstList().push_back(GEP);
    460       StoreInst *SI = new StoreInst(StructValues[i], GEP);
    461       codeReplacer->getInstList().push_back(SI);
    462     }
    463   }
    464 
    465   // Emit the call to the function
    466   CallInst *call = CallInst::Create(newFunction, params,
    467                                     NumExitBlocks > 1 ? "targetBlock" : "");
    468   codeReplacer->getInstList().push_back(call);
    469 
    470   Function::arg_iterator OutputArgBegin = newFunction->arg_begin();
    471   unsigned FirstOut = inputs.size();
    472   if (!AggregateArgs)
    473     std::advance(OutputArgBegin, inputs.size());
    474 
    475   // Reload the outputs passed in by reference
    476   for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
    477     Value *Output = nullptr;
    478     if (AggregateArgs) {
    479       Value *Idx[2];
    480       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
    481       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
    482       GetElementPtrInst *GEP = GetElementPtrInst::Create(
    483           StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName());
    484       codeReplacer->getInstList().push_back(GEP);
    485       Output = GEP;
    486     } else {
    487       Output = ReloadOutputs[i];
    488     }
    489     LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload");
    490     Reloads.push_back(load);
    491     codeReplacer->getInstList().push_back(load);
    492     std::vector<User*> Users(outputs[i]->user_begin(), outputs[i]->user_end());
    493     for (unsigned u = 0, e = Users.size(); u != e; ++u) {
    494       Instruction *inst = cast<Instruction>(Users[u]);
    495       if (!Blocks.count(inst->getParent()))
    496         inst->replaceUsesOfWith(outputs[i], load);
    497     }
    498   }
    499 
    500   // Now we can emit a switch statement using the call as a value.
    501   SwitchInst *TheSwitch =
    502       SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
    503                          codeReplacer, 0, codeReplacer);
    504 
    505   // Since there may be multiple exits from the original region, make the new
    506   // function return an unsigned, switch on that number.  This loop iterates
    507   // over all of the blocks in the extracted region, updating any terminator
    508   // instructions in the to-be-extracted region that branch to blocks that are
    509   // not in the region to be extracted.
    510   std::map<BasicBlock*, BasicBlock*> ExitBlockMap;
    511 
    512   unsigned switchVal = 0;
    513   for (BasicBlock *Block : Blocks) {
    514     TerminatorInst *TI = Block->getTerminator();
    515     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
    516       if (!Blocks.count(TI->getSuccessor(i))) {
    517         BasicBlock *OldTarget = TI->getSuccessor(i);
    518         // add a new basic block which returns the appropriate value
    519         BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
    520         if (!NewTarget) {
    521           // If we don't already have an exit stub for this non-extracted
    522           // destination, create one now!
    523           NewTarget = BasicBlock::Create(Context,
    524                                          OldTarget->getName() + ".exitStub",
    525                                          newFunction);
    526           unsigned SuccNum = switchVal++;
    527 
    528           Value *brVal = nullptr;
    529           switch (NumExitBlocks) {
    530           case 0:
    531           case 1: break;  // No value needed.
    532           case 2:         // Conditional branch, return a bool
    533             brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
    534             break;
    535           default:
    536             brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
    537             break;
    538           }
    539 
    540           ReturnInst *NTRet = ReturnInst::Create(Context, brVal, NewTarget);
    541 
    542           // Update the switch instruction.
    543           TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
    544                                               SuccNum),
    545                              OldTarget);
    546 
    547           // Restore values just before we exit
    548           Function::arg_iterator OAI = OutputArgBegin;
    549           for (unsigned out = 0, e = outputs.size(); out != e; ++out) {
    550             // For an invoke, the normal destination is the only one that is
    551             // dominated by the result of the invocation
    552             BasicBlock *DefBlock = cast<Instruction>(outputs[out])->getParent();
    553 
    554             bool DominatesDef = true;
    555 
    556             BasicBlock *NormalDest = nullptr;
    557             if (auto *Invoke = dyn_cast<InvokeInst>(outputs[out]))
    558               NormalDest = Invoke->getNormalDest();
    559 
    560             if (NormalDest) {
    561               DefBlock = NormalDest;
    562 
    563               // Make sure we are looking at the original successor block, not
    564               // at a newly inserted exit block, which won't be in the dominator
    565               // info.
    566               for (const auto &I : ExitBlockMap)
    567                 if (DefBlock == I.second) {
    568                   DefBlock = I.first;
    569                   break;
    570                 }
    571 
    572               // In the extract block case, if the block we are extracting ends
    573               // with an invoke instruction, make sure that we don't emit a
    574               // store of the invoke value for the unwind block.
    575               if (!DT && DefBlock != OldTarget)
    576                 DominatesDef = false;
    577             }
    578 
    579             if (DT) {
    580               DominatesDef = DT->dominates(DefBlock, OldTarget);
    581 
    582               // If the output value is used by a phi in the target block,
    583               // then we need to test for dominance of the phi's predecessor
    584               // instead.  Unfortunately, this a little complicated since we
    585               // have already rewritten uses of the value to uses of the reload.
    586               BasicBlock* pred = FindPhiPredForUseInBlock(Reloads[out],
    587                                                           OldTarget);
    588               if (pred && DT && DT->dominates(DefBlock, pred))
    589                 DominatesDef = true;
    590             }
    591 
    592             if (DominatesDef) {
    593               if (AggregateArgs) {
    594                 Value *Idx[2];
    595                 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
    596                 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context),
    597                                           FirstOut+out);
    598                 GetElementPtrInst *GEP = GetElementPtrInst::Create(
    599                     StructArgTy, &*OAI, Idx, "gep_" + outputs[out]->getName(),
    600                     NTRet);
    601                 new StoreInst(outputs[out], GEP, NTRet);
    602               } else {
    603                 new StoreInst(outputs[out], &*OAI, NTRet);
    604               }
    605             }
    606             // Advance output iterator even if we don't emit a store
    607             if (!AggregateArgs) ++OAI;
    608           }
    609         }
    610 
    611         // rewrite the original branch instruction with this new target
    612         TI->setSuccessor(i, NewTarget);
    613       }
    614   }
    615 
    616   // Now that we've done the deed, simplify the switch instruction.
    617   Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
    618   switch (NumExitBlocks) {
    619   case 0:
    620     // There are no successors (the block containing the switch itself), which
    621     // means that previously this was the last part of the function, and hence
    622     // this should be rewritten as a `ret'
    623 
    624     // Check if the function should return a value
    625     if (OldFnRetTy->isVoidTy()) {
    626       ReturnInst::Create(Context, nullptr, TheSwitch);  // Return void
    627     } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
    628       // return what we have
    629       ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch);
    630     } else {
    631       // Otherwise we must have code extracted an unwind or something, just
    632       // return whatever we want.
    633       ReturnInst::Create(Context,
    634                          Constant::getNullValue(OldFnRetTy), TheSwitch);
    635     }
    636 
    637     TheSwitch->eraseFromParent();
    638     break;
    639   case 1:
    640     // Only a single destination, change the switch into an unconditional
    641     // branch.
    642     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch);
    643     TheSwitch->eraseFromParent();
    644     break;
    645   case 2:
    646     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
    647                        call, TheSwitch);
    648     TheSwitch->eraseFromParent();
    649     break;
    650   default:
    651     // Otherwise, make the default destination of the switch instruction be one
    652     // of the other successors.
    653     TheSwitch->setCondition(call);
    654     TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks));
    655     // Remove redundant case
    656     TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1));
    657     break;
    658   }
    659 }
    660 
    661 void CodeExtractor::moveCodeToFunction(Function *newFunction) {
    662   Function *oldFunc = (*Blocks.begin())->getParent();
    663   Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList();
    664   Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList();
    665 
    666   for (BasicBlock *Block : Blocks) {
    667     // Delete the basic block from the old function, and the list of blocks
    668     oldBlocks.remove(Block);
    669 
    670     // Insert this basic block into the new function
    671     newBlocks.push_back(Block);
    672   }
    673 }
    674 
    675 Function *CodeExtractor::extractCodeRegion() {
    676   if (!isEligible())
    677     return nullptr;
    678 
    679   ValueSet inputs, outputs;
    680 
    681   // Assumption: this is a single-entry code region, and the header is the first
    682   // block in the region.
    683   BasicBlock *header = *Blocks.begin();
    684 
    685   // If we have to split PHI nodes or the entry block, do so now.
    686   severSplitPHINodes(header);
    687 
    688   // If we have any return instructions in the region, split those blocks so
    689   // that the return is not in the region.
    690   splitReturnBlocks();
    691 
    692   Function *oldFunction = header->getParent();
    693 
    694   // This takes place of the original loop
    695   BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(),
    696                                                 "codeRepl", oldFunction,
    697                                                 header);
    698 
    699   // The new function needs a root node because other nodes can branch to the
    700   // head of the region, but the entry node of a function cannot have preds.
    701   BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(),
    702                                                "newFuncRoot");
    703   newFuncRoot->getInstList().push_back(BranchInst::Create(header));
    704 
    705   // Find inputs to, outputs from the code region.
    706   findInputsOutputs(inputs, outputs);
    707 
    708   SmallPtrSet<BasicBlock *, 1> ExitBlocks;
    709   for (BasicBlock *Block : Blocks)
    710     for (succ_iterator SI = succ_begin(Block), SE = succ_end(Block); SI != SE;
    711          ++SI)
    712       if (!Blocks.count(*SI))
    713         ExitBlocks.insert(*SI);
    714   NumExitBlocks = ExitBlocks.size();
    715 
    716   // Construct new function based on inputs/outputs & add allocas for all defs.
    717   Function *newFunction = constructFunction(inputs, outputs, header,
    718                                             newFuncRoot,
    719                                             codeReplacer, oldFunction,
    720                                             oldFunction->getParent());
    721 
    722   emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
    723 
    724   moveCodeToFunction(newFunction);
    725 
    726   // Loop over all of the PHI nodes in the header block, and change any
    727   // references to the old incoming edge to be the new incoming edge.
    728   for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
    729     PHINode *PN = cast<PHINode>(I);
    730     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    731       if (!Blocks.count(PN->getIncomingBlock(i)))
    732         PN->setIncomingBlock(i, newFuncRoot);
    733   }
    734 
    735   // Look at all successors of the codeReplacer block.  If any of these blocks
    736   // had PHI nodes in them, we need to update the "from" block to be the code
    737   // replacer, not the original block in the extracted region.
    738   std::vector<BasicBlock*> Succs(succ_begin(codeReplacer),
    739                                  succ_end(codeReplacer));
    740   for (unsigned i = 0, e = Succs.size(); i != e; ++i)
    741     for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) {
    742       PHINode *PN = cast<PHINode>(I);
    743       std::set<BasicBlock*> ProcessedPreds;
    744       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    745         if (Blocks.count(PN->getIncomingBlock(i))) {
    746           if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second)
    747             PN->setIncomingBlock(i, codeReplacer);
    748           else {
    749             // There were multiple entries in the PHI for this block, now there
    750             // is only one, so remove the duplicated entries.
    751             PN->removeIncomingValue(i, false);
    752             --i; --e;
    753           }
    754         }
    755     }
    756 
    757   //cerr << "NEW FUNCTION: " << *newFunction;
    758   //  verifyFunction(*newFunction);
    759 
    760   //  cerr << "OLD FUNCTION: " << *oldFunction;
    761   //  verifyFunction(*oldFunction);
    762 
    763   DEBUG(if (verifyFunction(*newFunction))
    764         report_fatal_error("verifyFunction failed!"));
    765   return newFunction;
    766 }
    767