Home | History | Annotate | Download | only in Utils
      1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass performs several transformations to transform natural loops into a
     11 // simpler form, which makes subsequent analyses and transformations simpler and
     12 // more effective.
     13 //
     14 // Loop pre-header insertion guarantees that there is a single, non-critical
     15 // entry edge from outside of the loop to the loop header.  This simplifies a
     16 // number of analyses and transformations, such as LICM.
     17 //
     18 // Loop exit-block insertion guarantees that all exit blocks from the loop
     19 // (blocks which are outside of the loop that have predecessors inside of the
     20 // loop) only have predecessors from inside of the loop (and are thus dominated
     21 // by the loop header).  This simplifies transformations such as store-sinking
     22 // that are built into LICM.
     23 //
     24 // This pass also guarantees that loops will have exactly one backedge.
     25 //
     26 // Indirectbr instructions introduce several complications. If the loop
     27 // contains or is entered by an indirectbr instruction, it may not be possible
     28 // to transform the loop and make these guarantees. Client code should check
     29 // that these conditions are true before relying on them.
     30 //
     31 // Note that the simplifycfg pass will clean up blocks which are split out but
     32 // end up being unnecessary, so usage of this pass should not pessimize
     33 // generated code.
     34 //
     35 // This pass obviously modifies the CFG, but updates loop information and
     36 // dominator information.
     37 //
     38 //===----------------------------------------------------------------------===//
     39 
     40 #include "llvm/Transforms/Utils/LoopSimplify.h"
     41 #include "llvm/Transforms/Scalar.h"
     42 #include "llvm/ADT/DepthFirstIterator.h"
     43 #include "llvm/ADT/SetOperations.h"
     44 #include "llvm/ADT/SetVector.h"
     45 #include "llvm/ADT/SmallVector.h"
     46 #include "llvm/ADT/Statistic.h"
     47 #include "llvm/Analysis/AliasAnalysis.h"
     48 #include "llvm/Analysis/BasicAliasAnalysis.h"
     49 #include "llvm/Analysis/AssumptionCache.h"
     50 #include "llvm/Analysis/DependenceAnalysis.h"
     51 #include "llvm/Analysis/GlobalsModRef.h"
     52 #include "llvm/Analysis/InstructionSimplify.h"
     53 #include "llvm/Analysis/LoopInfo.h"
     54 #include "llvm/Analysis/ScalarEvolution.h"
     55 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
     56 #include "llvm/IR/CFG.h"
     57 #include "llvm/IR/Constants.h"
     58 #include "llvm/IR/DataLayout.h"
     59 #include "llvm/IR/Dominators.h"
     60 #include "llvm/IR/Function.h"
     61 #include "llvm/IR/Instructions.h"
     62 #include "llvm/IR/IntrinsicInst.h"
     63 #include "llvm/IR/LLVMContext.h"
     64 #include "llvm/IR/Module.h"
     65 #include "llvm/IR/Type.h"
     66 #include "llvm/Support/Debug.h"
     67 #include "llvm/Support/raw_ostream.h"
     68 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     69 #include "llvm/Transforms/Utils/Local.h"
     70 #include "llvm/Transforms/Utils/LoopUtils.h"
     71 using namespace llvm;
     72 
     73 #define DEBUG_TYPE "loop-simplify"
     74 
     75 STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted");
     76 STATISTIC(NumNested  , "Number of nested loops split out");
     77 
     78 // If the block isn't already, move the new block to right after some 'outside
     79 // block' block.  This prevents the preheader from being placed inside the loop
     80 // body, e.g. when the loop hasn't been rotated.
     81 static void placeSplitBlockCarefully(BasicBlock *NewBB,
     82                                      SmallVectorImpl<BasicBlock *> &SplitPreds,
     83                                      Loop *L) {
     84   // Check to see if NewBB is already well placed.
     85   Function::iterator BBI = --NewBB->getIterator();
     86   for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
     87     if (&*BBI == SplitPreds[i])
     88       return;
     89   }
     90 
     91   // If it isn't already after an outside block, move it after one.  This is
     92   // always good as it makes the uncond branch from the outside block into a
     93   // fall-through.
     94 
     95   // Figure out *which* outside block to put this after.  Prefer an outside
     96   // block that neighbors a BB actually in the loop.
     97   BasicBlock *FoundBB = nullptr;
     98   for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
     99     Function::iterator BBI = SplitPreds[i]->getIterator();
    100     if (++BBI != NewBB->getParent()->end() && L->contains(&*BBI)) {
    101       FoundBB = SplitPreds[i];
    102       break;
    103     }
    104   }
    105 
    106   // If our heuristic for a *good* bb to place this after doesn't find
    107   // anything, just pick something.  It's likely better than leaving it within
    108   // the loop.
    109   if (!FoundBB)
    110     FoundBB = SplitPreds[0];
    111   NewBB->moveAfter(FoundBB);
    112 }
    113 
    114 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
    115 /// preheader, this method is called to insert one.  This method has two phases:
    116 /// preheader insertion and analysis updating.
    117 ///
    118 BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, DominatorTree *DT,
    119                                          LoopInfo *LI, bool PreserveLCSSA) {
    120   BasicBlock *Header = L->getHeader();
    121 
    122   // Compute the set of predecessors of the loop that are not in the loop.
    123   SmallVector<BasicBlock*, 8> OutsideBlocks;
    124   for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
    125        PI != PE; ++PI) {
    126     BasicBlock *P = *PI;
    127     if (!L->contains(P)) {         // Coming in from outside the loop?
    128       // If the loop is branched to from an indirect branch, we won't
    129       // be able to fully transform the loop, because it prohibits
    130       // edge splitting.
    131       if (isa<IndirectBrInst>(P->getTerminator())) return nullptr;
    132 
    133       // Keep track of it.
    134       OutsideBlocks.push_back(P);
    135     }
    136   }
    137 
    138   // Split out the loop pre-header.
    139   BasicBlock *PreheaderBB;
    140   PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader", DT,
    141                                        LI, PreserveLCSSA);
    142   if (!PreheaderBB)
    143     return nullptr;
    144 
    145   DEBUG(dbgs() << "LoopSimplify: Creating pre-header "
    146                << PreheaderBB->getName() << "\n");
    147 
    148   // Make sure that NewBB is put someplace intelligent, which doesn't mess up
    149   // code layout too horribly.
    150   placeSplitBlockCarefully(PreheaderBB, OutsideBlocks, L);
    151 
    152   return PreheaderBB;
    153 }
    154 
    155 /// \brief Ensure that the loop preheader dominates all exit blocks.
    156 ///
    157 /// This method is used to split exit blocks that have predecessors outside of
    158 /// the loop.
    159 static BasicBlock *rewriteLoopExitBlock(Loop *L, BasicBlock *Exit,
    160                                         DominatorTree *DT, LoopInfo *LI,
    161                                         bool PreserveLCSSA) {
    162   SmallVector<BasicBlock*, 8> LoopBlocks;
    163   for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) {
    164     BasicBlock *P = *I;
    165     if (L->contains(P)) {
    166       // Don't do this if the loop is exited via an indirect branch.
    167       if (isa<IndirectBrInst>(P->getTerminator())) return nullptr;
    168 
    169       LoopBlocks.push_back(P);
    170     }
    171   }
    172 
    173   assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?");
    174   BasicBlock *NewExitBB = nullptr;
    175 
    176   NewExitBB = SplitBlockPredecessors(Exit, LoopBlocks, ".loopexit", DT, LI,
    177                                      PreserveLCSSA);
    178   if (!NewExitBB)
    179     return nullptr;
    180 
    181   DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
    182                << NewExitBB->getName() << "\n");
    183   return NewExitBB;
    184 }
    185 
    186 /// Add the specified block, and all of its predecessors, to the specified set,
    187 /// if it's not already in there.  Stop predecessor traversal when we reach
    188 /// StopBlock.
    189 static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
    190                                   std::set<BasicBlock*> &Blocks) {
    191   SmallVector<BasicBlock *, 8> Worklist;
    192   Worklist.push_back(InputBB);
    193   do {
    194     BasicBlock *BB = Worklist.pop_back_val();
    195     if (Blocks.insert(BB).second && BB != StopBlock)
    196       // If BB is not already processed and it is not a stop block then
    197       // insert its predecessor in the work list
    198       for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
    199         BasicBlock *WBB = *I;
    200         Worklist.push_back(WBB);
    201       }
    202   } while (!Worklist.empty());
    203 }
    204 
    205 /// \brief The first part of loop-nestification is to find a PHI node that tells
    206 /// us how to partition the loops.
    207 static PHINode *findPHIToPartitionLoops(Loop *L, DominatorTree *DT,
    208                                         AssumptionCache *AC) {
    209   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
    210   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
    211     PHINode *PN = cast<PHINode>(I);
    212     ++I;
    213     if (Value *V = SimplifyInstruction(PN, DL, nullptr, DT, AC)) {
    214       // This is a degenerate PHI already, don't modify it!
    215       PN->replaceAllUsesWith(V);
    216       PN->eraseFromParent();
    217       continue;
    218     }
    219 
    220     // Scan this PHI node looking for a use of the PHI node by itself.
    221     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    222       if (PN->getIncomingValue(i) == PN &&
    223           L->contains(PN->getIncomingBlock(i)))
    224         // We found something tasty to remove.
    225         return PN;
    226   }
    227   return nullptr;
    228 }
    229 
    230 /// \brief If this loop has multiple backedges, try to pull one of them out into
    231 /// a nested loop.
    232 ///
    233 /// This is important for code that looks like
    234 /// this:
    235 ///
    236 ///  Loop:
    237 ///     ...
    238 ///     br cond, Loop, Next
    239 ///     ...
    240 ///     br cond2, Loop, Out
    241 ///
    242 /// To identify this common case, we look at the PHI nodes in the header of the
    243 /// loop.  PHI nodes with unchanging values on one backedge correspond to values
    244 /// that change in the "outer" loop, but not in the "inner" loop.
    245 ///
    246 /// If we are able to separate out a loop, return the new outer loop that was
    247 /// created.
    248 ///
    249 static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader,
    250                                 DominatorTree *DT, LoopInfo *LI,
    251                                 ScalarEvolution *SE, bool PreserveLCSSA,
    252                                 AssumptionCache *AC) {
    253   // Don't try to separate loops without a preheader.
    254   if (!Preheader)
    255     return nullptr;
    256 
    257   // The header is not a landing pad; preheader insertion should ensure this.
    258   BasicBlock *Header = L->getHeader();
    259   assert(!Header->isEHPad() && "Can't insert backedge to EH pad");
    260 
    261   PHINode *PN = findPHIToPartitionLoops(L, DT, AC);
    262   if (!PN) return nullptr;  // No known way to partition.
    263 
    264   // Pull out all predecessors that have varying values in the loop.  This
    265   // handles the case when a PHI node has multiple instances of itself as
    266   // arguments.
    267   SmallVector<BasicBlock*, 8> OuterLoopPreds;
    268   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    269     if (PN->getIncomingValue(i) != PN ||
    270         !L->contains(PN->getIncomingBlock(i))) {
    271       // We can't split indirectbr edges.
    272       if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator()))
    273         return nullptr;
    274       OuterLoopPreds.push_back(PN->getIncomingBlock(i));
    275     }
    276   }
    277   DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n");
    278 
    279   // If ScalarEvolution is around and knows anything about values in
    280   // this loop, tell it to forget them, because we're about to
    281   // substantially change it.
    282   if (SE)
    283     SE->forgetLoop(L);
    284 
    285   BasicBlock *NewBB = SplitBlockPredecessors(Header, OuterLoopPreds, ".outer",
    286                                              DT, LI, PreserveLCSSA);
    287 
    288   // Make sure that NewBB is put someplace intelligent, which doesn't mess up
    289   // code layout too horribly.
    290   placeSplitBlockCarefully(NewBB, OuterLoopPreds, L);
    291 
    292   // Create the new outer loop.
    293   Loop *NewOuter = new Loop();
    294 
    295   // Change the parent loop to use the outer loop as its child now.
    296   if (Loop *Parent = L->getParentLoop())
    297     Parent->replaceChildLoopWith(L, NewOuter);
    298   else
    299     LI->changeTopLevelLoop(L, NewOuter);
    300 
    301   // L is now a subloop of our outer loop.
    302   NewOuter->addChildLoop(L);
    303 
    304   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
    305        I != E; ++I)
    306     NewOuter->addBlockEntry(*I);
    307 
    308   // Now reset the header in L, which had been moved by
    309   // SplitBlockPredecessors for the outer loop.
    310   L->moveToHeader(Header);
    311 
    312   // Determine which blocks should stay in L and which should be moved out to
    313   // the Outer loop now.
    314   std::set<BasicBlock*> BlocksInL;
    315   for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) {
    316     BasicBlock *P = *PI;
    317     if (DT->dominates(Header, P))
    318       addBlockAndPredsToSet(P, Header, BlocksInL);
    319   }
    320 
    321   // Scan all of the loop children of L, moving them to OuterLoop if they are
    322   // not part of the inner loop.
    323   const std::vector<Loop*> &SubLoops = L->getSubLoops();
    324   for (size_t I = 0; I != SubLoops.size(); )
    325     if (BlocksInL.count(SubLoops[I]->getHeader()))
    326       ++I;   // Loop remains in L
    327     else
    328       NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I));
    329 
    330   // Now that we know which blocks are in L and which need to be moved to
    331   // OuterLoop, move any blocks that need it.
    332   for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
    333     BasicBlock *BB = L->getBlocks()[i];
    334     if (!BlocksInL.count(BB)) {
    335       // Move this block to the parent, updating the exit blocks sets
    336       L->removeBlockFromLoop(BB);
    337       if ((*LI)[BB] == L)
    338         LI->changeLoopFor(BB, NewOuter);
    339       --i;
    340     }
    341   }
    342 
    343   return NewOuter;
    344 }
    345 
    346 /// \brief This method is called when the specified loop has more than one
    347 /// backedge in it.
    348 ///
    349 /// If this occurs, revector all of these backedges to target a new basic block
    350 /// and have that block branch to the loop header.  This ensures that loops
    351 /// have exactly one backedge.
    352 static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader,
    353                                              DominatorTree *DT, LoopInfo *LI) {
    354   assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
    355 
    356   // Get information about the loop
    357   BasicBlock *Header = L->getHeader();
    358   Function *F = Header->getParent();
    359 
    360   // Unique backedge insertion currently depends on having a preheader.
    361   if (!Preheader)
    362     return nullptr;
    363 
    364   // The header is not an EH pad; preheader insertion should ensure this.
    365   assert(!Header->isEHPad() && "Can't insert backedge to EH pad");
    366 
    367   // Figure out which basic blocks contain back-edges to the loop header.
    368   std::vector<BasicBlock*> BackedgeBlocks;
    369   for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){
    370     BasicBlock *P = *I;
    371 
    372     // Indirectbr edges cannot be split, so we must fail if we find one.
    373     if (isa<IndirectBrInst>(P->getTerminator()))
    374       return nullptr;
    375 
    376     if (P != Preheader) BackedgeBlocks.push_back(P);
    377   }
    378 
    379   // Create and insert the new backedge block...
    380   BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(),
    381                                            Header->getName() + ".backedge", F);
    382   BranchInst *BETerminator = BranchInst::Create(Header, BEBlock);
    383   BETerminator->setDebugLoc(Header->getFirstNonPHI()->getDebugLoc());
    384 
    385   DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block "
    386                << BEBlock->getName() << "\n");
    387 
    388   // Move the new backedge block to right after the last backedge block.
    389   Function::iterator InsertPos = ++BackedgeBlocks.back()->getIterator();
    390   F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
    391 
    392   // Now that the block has been inserted into the function, create PHI nodes in
    393   // the backedge block which correspond to any PHI nodes in the header block.
    394   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
    395     PHINode *PN = cast<PHINode>(I);
    396     PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(),
    397                                      PN->getName()+".be", BETerminator);
    398 
    399     // Loop over the PHI node, moving all entries except the one for the
    400     // preheader over to the new PHI node.
    401     unsigned PreheaderIdx = ~0U;
    402     bool HasUniqueIncomingValue = true;
    403     Value *UniqueValue = nullptr;
    404     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    405       BasicBlock *IBB = PN->getIncomingBlock(i);
    406       Value *IV = PN->getIncomingValue(i);
    407       if (IBB == Preheader) {
    408         PreheaderIdx = i;
    409       } else {
    410         NewPN->addIncoming(IV, IBB);
    411         if (HasUniqueIncomingValue) {
    412           if (!UniqueValue)
    413             UniqueValue = IV;
    414           else if (UniqueValue != IV)
    415             HasUniqueIncomingValue = false;
    416         }
    417       }
    418     }
    419 
    420     // Delete all of the incoming values from the old PN except the preheader's
    421     assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
    422     if (PreheaderIdx != 0) {
    423       PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
    424       PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
    425     }
    426     // Nuke all entries except the zero'th.
    427     for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
    428       PN->removeIncomingValue(e-i, false);
    429 
    430     // Finally, add the newly constructed PHI node as the entry for the BEBlock.
    431     PN->addIncoming(NewPN, BEBlock);
    432 
    433     // As an optimization, if all incoming values in the new PhiNode (which is a
    434     // subset of the incoming values of the old PHI node) have the same value,
    435     // eliminate the PHI Node.
    436     if (HasUniqueIncomingValue) {
    437       NewPN->replaceAllUsesWith(UniqueValue);
    438       BEBlock->getInstList().erase(NewPN);
    439     }
    440   }
    441 
    442   // Now that all of the PHI nodes have been inserted and adjusted, modify the
    443   // backedge blocks to just to the BEBlock instead of the header.
    444   for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
    445     TerminatorInst *TI = BackedgeBlocks[i]->getTerminator();
    446     for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op)
    447       if (TI->getSuccessor(Op) == Header)
    448         TI->setSuccessor(Op, BEBlock);
    449   }
    450 
    451   //===--- Update all analyses which we must preserve now -----------------===//
    452 
    453   // Update Loop Information - we know that this block is now in the current
    454   // loop and all parent loops.
    455   L->addBasicBlockToLoop(BEBlock, *LI);
    456 
    457   // Update dominator information
    458   DT->splitBlock(BEBlock);
    459 
    460   return BEBlock;
    461 }
    462 
    463 /// \brief Simplify one loop and queue further loops for simplification.
    464 static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist,
    465                             DominatorTree *DT, LoopInfo *LI,
    466                             ScalarEvolution *SE, AssumptionCache *AC,
    467                             bool PreserveLCSSA) {
    468   bool Changed = false;
    469 ReprocessLoop:
    470 
    471   // Check to see that no blocks (other than the header) in this loop have
    472   // predecessors that are not in the loop.  This is not valid for natural
    473   // loops, but can occur if the blocks are unreachable.  Since they are
    474   // unreachable we can just shamelessly delete those CFG edges!
    475   for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
    476        BB != E; ++BB) {
    477     if (*BB == L->getHeader()) continue;
    478 
    479     SmallPtrSet<BasicBlock*, 4> BadPreds;
    480     for (pred_iterator PI = pred_begin(*BB),
    481          PE = pred_end(*BB); PI != PE; ++PI) {
    482       BasicBlock *P = *PI;
    483       if (!L->contains(P))
    484         BadPreds.insert(P);
    485     }
    486 
    487     // Delete each unique out-of-loop (and thus dead) predecessor.
    488     for (BasicBlock *P : BadPreds) {
    489 
    490       DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "
    491                    << P->getName() << "\n");
    492 
    493       // Zap the dead pred's terminator and replace it with unreachable.
    494       TerminatorInst *TI = P->getTerminator();
    495       changeToUnreachable(TI, /*UseLLVMTrap=*/false);
    496       Changed = true;
    497     }
    498   }
    499 
    500   // If there are exiting blocks with branches on undef, resolve the undef in
    501   // the direction which will exit the loop. This will help simplify loop
    502   // trip count computations.
    503   SmallVector<BasicBlock*, 8> ExitingBlocks;
    504   L->getExitingBlocks(ExitingBlocks);
    505   for (BasicBlock *ExitingBlock : ExitingBlocks)
    506     if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()))
    507       if (BI->isConditional()) {
    508         if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) {
    509 
    510           DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in "
    511                        << ExitingBlock->getName() << "\n");
    512 
    513           BI->setCondition(ConstantInt::get(Cond->getType(),
    514                                             !L->contains(BI->getSuccessor(0))));
    515 
    516           // This may make the loop analyzable, force SCEV recomputation.
    517           if (SE)
    518             SE->forgetLoop(L);
    519 
    520           Changed = true;
    521         }
    522       }
    523 
    524   // Does the loop already have a preheader?  If so, don't insert one.
    525   BasicBlock *Preheader = L->getLoopPreheader();
    526   if (!Preheader) {
    527     Preheader = InsertPreheaderForLoop(L, DT, LI, PreserveLCSSA);
    528     if (Preheader) {
    529       ++NumInserted;
    530       Changed = true;
    531     }
    532   }
    533 
    534   // Next, check to make sure that all exit nodes of the loop only have
    535   // predecessors that are inside of the loop.  This check guarantees that the
    536   // loop preheader/header will dominate the exit blocks.  If the exit block has
    537   // predecessors from outside of the loop, split the edge now.
    538   SmallVector<BasicBlock*, 8> ExitBlocks;
    539   L->getExitBlocks(ExitBlocks);
    540 
    541   SmallSetVector<BasicBlock *, 8> ExitBlockSet(ExitBlocks.begin(),
    542                                                ExitBlocks.end());
    543   for (BasicBlock *ExitBlock : ExitBlockSet) {
    544     for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
    545          PI != PE; ++PI)
    546       // Must be exactly this loop: no subloops, parent loops, or non-loop preds
    547       // allowed.
    548       if (!L->contains(*PI)) {
    549         if (rewriteLoopExitBlock(L, ExitBlock, DT, LI, PreserveLCSSA)) {
    550           ++NumInserted;
    551           Changed = true;
    552         }
    553         break;
    554       }
    555   }
    556 
    557   // If the header has more than two predecessors at this point (from the
    558   // preheader and from multiple backedges), we must adjust the loop.
    559   BasicBlock *LoopLatch = L->getLoopLatch();
    560   if (!LoopLatch) {
    561     // If this is really a nested loop, rip it out into a child loop.  Don't do
    562     // this for loops with a giant number of backedges, just factor them into a
    563     // common backedge instead.
    564     if (L->getNumBackEdges() < 8) {
    565       if (Loop *OuterL =
    566               separateNestedLoop(L, Preheader, DT, LI, SE, PreserveLCSSA, AC)) {
    567         ++NumNested;
    568         // Enqueue the outer loop as it should be processed next in our
    569         // depth-first nest walk.
    570         Worklist.push_back(OuterL);
    571 
    572         // This is a big restructuring change, reprocess the whole loop.
    573         Changed = true;
    574         // GCC doesn't tail recursion eliminate this.
    575         // FIXME: It isn't clear we can't rely on LLVM to TRE this.
    576         goto ReprocessLoop;
    577       }
    578     }
    579 
    580     // If we either couldn't, or didn't want to, identify nesting of the loops,
    581     // insert a new block that all backedges target, then make it jump to the
    582     // loop header.
    583     LoopLatch = insertUniqueBackedgeBlock(L, Preheader, DT, LI);
    584     if (LoopLatch) {
    585       ++NumInserted;
    586       Changed = true;
    587     }
    588   }
    589 
    590   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
    591 
    592   // Scan over the PHI nodes in the loop header.  Since they now have only two
    593   // incoming values (the loop is canonicalized), we may have simplified the PHI
    594   // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
    595   PHINode *PN;
    596   for (BasicBlock::iterator I = L->getHeader()->begin();
    597        (PN = dyn_cast<PHINode>(I++)); )
    598     if (Value *V = SimplifyInstruction(PN, DL, nullptr, DT, AC)) {
    599       if (SE) SE->forgetValue(PN);
    600       PN->replaceAllUsesWith(V);
    601       PN->eraseFromParent();
    602     }
    603 
    604   // If this loop has multiple exits and the exits all go to the same
    605   // block, attempt to merge the exits. This helps several passes, such
    606   // as LoopRotation, which do not support loops with multiple exits.
    607   // SimplifyCFG also does this (and this code uses the same utility
    608   // function), however this code is loop-aware, where SimplifyCFG is
    609   // not. That gives it the advantage of being able to hoist
    610   // loop-invariant instructions out of the way to open up more
    611   // opportunities, and the disadvantage of having the responsibility
    612   // to preserve dominator information.
    613   bool UniqueExit = true;
    614   if (!ExitBlocks.empty())
    615     for (unsigned i = 1, e = ExitBlocks.size(); i != e; ++i)
    616       if (ExitBlocks[i] != ExitBlocks[0]) {
    617         UniqueExit = false;
    618         break;
    619       }
    620   if (UniqueExit) {
    621     for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
    622       BasicBlock *ExitingBlock = ExitingBlocks[i];
    623       if (!ExitingBlock->getSinglePredecessor()) continue;
    624       BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
    625       if (!BI || !BI->isConditional()) continue;
    626       CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
    627       if (!CI || CI->getParent() != ExitingBlock) continue;
    628 
    629       // Attempt to hoist out all instructions except for the
    630       // comparison and the branch.
    631       bool AllInvariant = true;
    632       bool AnyInvariant = false;
    633       for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) {
    634         Instruction *Inst = &*I++;
    635         // Skip debug info intrinsics.
    636         if (isa<DbgInfoIntrinsic>(Inst))
    637           continue;
    638         if (Inst == CI)
    639           continue;
    640         if (!L->makeLoopInvariant(Inst, AnyInvariant,
    641                                   Preheader ? Preheader->getTerminator()
    642                                             : nullptr)) {
    643           AllInvariant = false;
    644           break;
    645         }
    646       }
    647       if (AnyInvariant) {
    648         Changed = true;
    649         // The loop disposition of all SCEV expressions that depend on any
    650         // hoisted values have also changed.
    651         if (SE)
    652           SE->forgetLoopDispositions(L);
    653       }
    654       if (!AllInvariant) continue;
    655 
    656       // The block has now been cleared of all instructions except for
    657       // a comparison and a conditional branch. SimplifyCFG may be able
    658       // to fold it now.
    659       if (!FoldBranchToCommonDest(BI))
    660         continue;
    661 
    662       // Success. The block is now dead, so remove it from the loop,
    663       // update the dominator tree and delete it.
    664       DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block "
    665                    << ExitingBlock->getName() << "\n");
    666 
    667       // Notify ScalarEvolution before deleting this block. Currently assume the
    668       // parent loop doesn't change (spliting edges doesn't count). If blocks,
    669       // CFG edges, or other values in the parent loop change, then we need call
    670       // to forgetLoop() for the parent instead.
    671       if (SE)
    672         SE->forgetLoop(L);
    673 
    674       assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock));
    675       Changed = true;
    676       LI->removeBlock(ExitingBlock);
    677 
    678       DomTreeNode *Node = DT->getNode(ExitingBlock);
    679       const std::vector<DomTreeNodeBase<BasicBlock> *> &Children =
    680         Node->getChildren();
    681       while (!Children.empty()) {
    682         DomTreeNode *Child = Children.front();
    683         DT->changeImmediateDominator(Child, Node->getIDom());
    684       }
    685       DT->eraseNode(ExitingBlock);
    686 
    687       BI->getSuccessor(0)->removePredecessor(
    688           ExitingBlock, /* DontDeleteUselessPHIs */ PreserveLCSSA);
    689       BI->getSuccessor(1)->removePredecessor(
    690           ExitingBlock, /* DontDeleteUselessPHIs */ PreserveLCSSA);
    691       ExitingBlock->eraseFromParent();
    692     }
    693   }
    694 
    695   return Changed;
    696 }
    697 
    698 bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI,
    699                         ScalarEvolution *SE, AssumptionCache *AC,
    700                         bool PreserveLCSSA) {
    701   bool Changed = false;
    702 
    703   // Worklist maintains our depth-first queue of loops in this nest to process.
    704   SmallVector<Loop *, 4> Worklist;
    705   Worklist.push_back(L);
    706 
    707   // Walk the worklist from front to back, pushing newly found sub loops onto
    708   // the back. This will let us process loops from back to front in depth-first
    709   // order. We can use this simple process because loops form a tree.
    710   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
    711     Loop *L2 = Worklist[Idx];
    712     Worklist.append(L2->begin(), L2->end());
    713   }
    714 
    715   while (!Worklist.empty())
    716     Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, DT, LI, SE,
    717                                AC, PreserveLCSSA);
    718 
    719   return Changed;
    720 }
    721 
    722 namespace {
    723   struct LoopSimplify : public FunctionPass {
    724     static char ID; // Pass identification, replacement for typeid
    725     LoopSimplify() : FunctionPass(ID) {
    726       initializeLoopSimplifyPass(*PassRegistry::getPassRegistry());
    727     }
    728 
    729     bool runOnFunction(Function &F) override;
    730 
    731     void getAnalysisUsage(AnalysisUsage &AU) const override {
    732       AU.addRequired<AssumptionCacheTracker>();
    733 
    734       // We need loop information to identify the loops...
    735       AU.addRequired<DominatorTreeWrapperPass>();
    736       AU.addPreserved<DominatorTreeWrapperPass>();
    737 
    738       AU.addRequired<LoopInfoWrapperPass>();
    739       AU.addPreserved<LoopInfoWrapperPass>();
    740 
    741       AU.addPreserved<BasicAAWrapperPass>();
    742       AU.addPreserved<AAResultsWrapperPass>();
    743       AU.addPreserved<GlobalsAAWrapperPass>();
    744       AU.addPreserved<ScalarEvolutionWrapperPass>();
    745       AU.addPreserved<SCEVAAWrapperPass>();
    746       AU.addPreservedID(LCSSAID);
    747       AU.addPreserved<DependenceAnalysisWrapperPass>();
    748       AU.addPreservedID(BreakCriticalEdgesID);  // No critical edges added.
    749     }
    750 
    751     /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
    752     void verifyAnalysis() const override;
    753   };
    754 }
    755 
    756 char LoopSimplify::ID = 0;
    757 INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify",
    758                 "Canonicalize natural loops", false, false)
    759 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
    760 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
    761 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
    762 INITIALIZE_PASS_END(LoopSimplify, "loop-simplify",
    763                 "Canonicalize natural loops", false, false)
    764 
    765 // Publicly exposed interface to pass...
    766 char &llvm::LoopSimplifyID = LoopSimplify::ID;
    767 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
    768 
    769 /// runOnFunction - Run down all loops in the CFG (recursively, but we could do
    770 /// it in any convenient order) inserting preheaders...
    771 ///
    772 bool LoopSimplify::runOnFunction(Function &F) {
    773   bool Changed = false;
    774   LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
    775   DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    776   auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
    777   ScalarEvolution *SE = SEWP ? &SEWP->getSE() : nullptr;
    778   AssumptionCache *AC =
    779       &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
    780 
    781   bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
    782 #ifndef NDEBUG
    783   if (PreserveLCSSA) {
    784     assert(DT && "DT not available.");
    785     assert(LI && "LI not available.");
    786     bool InLCSSA =
    787         all_of(*LI, [&](Loop *L) { return L->isRecursivelyLCSSAForm(*DT); });
    788     assert(InLCSSA && "Requested to preserve LCSSA, but it's already broken.");
    789   }
    790 #endif
    791 
    792   // Simplify each loop nest in the function.
    793   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
    794     Changed |= simplifyLoop(*I, DT, LI, SE, AC, PreserveLCSSA);
    795 
    796 #ifndef NDEBUG
    797   if (PreserveLCSSA) {
    798     bool InLCSSA =
    799         all_of(*LI, [&](Loop *L) { return L->isRecursivelyLCSSAForm(*DT); });
    800     assert(InLCSSA && "LCSSA is broken after loop-simplify.");
    801   }
    802 #endif
    803   return Changed;
    804 }
    805 
    806 PreservedAnalyses LoopSimplifyPass::run(Function &F,
    807                                         AnalysisManager<Function> &AM) {
    808   bool Changed = false;
    809   LoopInfo *LI = &AM.getResult<LoopAnalysis>(F);
    810   DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
    811   ScalarEvolution *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F);
    812   AssumptionCache *AC = &AM.getResult<AssumptionAnalysis>(F);
    813 
    814   // FIXME: This pass should verify that the loops on which it's operating
    815   // are in canonical SSA form, and that the pass itself preserves this form.
    816   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
    817     Changed |= simplifyLoop(*I, DT, LI, SE, AC, true /* PreserveLCSSA */);
    818 
    819   if (!Changed)
    820     return PreservedAnalyses::all();
    821   PreservedAnalyses PA;
    822   PA.preserve<DominatorTreeAnalysis>();
    823   PA.preserve<LoopAnalysis>();
    824   PA.preserve<BasicAA>();
    825   PA.preserve<GlobalsAA>();
    826   PA.preserve<SCEVAA>();
    827   PA.preserve<ScalarEvolutionAnalysis>();
    828   PA.preserve<DependenceAnalysis>();
    829   return PA;
    830 }
    831 
    832 // FIXME: Restore this code when we re-enable verification in verifyAnalysis
    833 // below.
    834 #if 0
    835 static void verifyLoop(Loop *L) {
    836   // Verify subloops.
    837   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
    838     verifyLoop(*I);
    839 
    840   // It used to be possible to just assert L->isLoopSimplifyForm(), however
    841   // with the introduction of indirectbr, there are now cases where it's
    842   // not possible to transform a loop as necessary. We can at least check
    843   // that there is an indirectbr near any time there's trouble.
    844 
    845   // Indirectbr can interfere with preheader and unique backedge insertion.
    846   if (!L->getLoopPreheader() || !L->getLoopLatch()) {
    847     bool HasIndBrPred = false;
    848     for (pred_iterator PI = pred_begin(L->getHeader()),
    849          PE = pred_end(L->getHeader()); PI != PE; ++PI)
    850       if (isa<IndirectBrInst>((*PI)->getTerminator())) {
    851         HasIndBrPred = true;
    852         break;
    853       }
    854     assert(HasIndBrPred &&
    855            "LoopSimplify has no excuse for missing loop header info!");
    856     (void)HasIndBrPred;
    857   }
    858 
    859   // Indirectbr can interfere with exit block canonicalization.
    860   if (!L->hasDedicatedExits()) {
    861     bool HasIndBrExiting = false;
    862     SmallVector<BasicBlock*, 8> ExitingBlocks;
    863     L->getExitingBlocks(ExitingBlocks);
    864     for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
    865       if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) {
    866         HasIndBrExiting = true;
    867         break;
    868       }
    869     }
    870 
    871     assert(HasIndBrExiting &&
    872            "LoopSimplify has no excuse for missing exit block info!");
    873     (void)HasIndBrExiting;
    874   }
    875 }
    876 #endif
    877 
    878 void LoopSimplify::verifyAnalysis() const {
    879   // FIXME: This routine is being called mid-way through the loop pass manager
    880   // as loop passes destroy this analysis. That's actually fine, but we have no
    881   // way of expressing that here. Once all of the passes that destroy this are
    882   // hoisted out of the loop pass manager we can add back verification here.
    883 #if 0
    884   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
    885     verifyLoop(*I);
    886 #endif
    887 }
    888