Home | History | Annotate | Download | only in cconv
      1 ; RUN: llc -march=mips -relocation-model=static < %s | FileCheck --check-prefixes=ALL,SYM32,O32,O32BE %s
      2 ; RUN: llc -march=mipsel -relocation-model=static < %s | FileCheck --check-prefixes=ALL,SYM32,O32,O32LE %s
      3 
      4 ; RUN-TODO: llc -march=mips64 -relocation-model=static -target-abi o32 < %s | FileCheck --check-prefixes=ALL,SYM32,O32 %s
      5 ; RUN-TODO: llc -march=mips64el -relocation-model=static -target-abi o32 < %s | FileCheck --check-prefixes=ALL,SYM32,O32 %s
      6 
      7 ; RUN: llc -march=mips64 -relocation-model=static -target-abi n32 < %s | FileCheck --check-prefixes=ALL,SYM32,NEW %s
      8 ; RUN: llc -march=mips64el -relocation-model=static -target-abi n32 < %s | FileCheck --check-prefixes=ALL,SYM32,NEW %s
      9 
     10 ; RUN: llc -march=mips64 -relocation-model=static -target-abi n64 < %s | FileCheck --check-prefixes=ALL,SYM64,NEW %s
     11 ; RUN: llc -march=mips64el -relocation-model=static -target-abi n64 < %s | FileCheck --check-prefixes=ALL,SYM64,NEW %s
     12 
     13 ; Test the floating point arguments for all ABI's and byte orders as specified
     14 ; by section 5 of MD00305 (MIPS ABIs Described).
     15 ;
     16 ; N32/N64 are identical in this area so their checks have been combined into
     17 ; the 'NEW' prefix (the N stands for New).
     18 
     19 @bytes = global [11 x i8] zeroinitializer
     20 @dwords = global [11 x i64] zeroinitializer
     21 @floats = global [11 x float] zeroinitializer
     22 @doubles = global [11 x double] zeroinitializer
     23 
     24 define void @double_args(double %a, double %b, double %c, double %d, double %e,
     25                          double %f, double %g, double %h, double %i) nounwind {
     26 entry:
     27         %0 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 1
     28         store volatile double %a, double* %0
     29         %1 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 2
     30         store volatile double %b, double* %1
     31         %2 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 3
     32         store volatile double %c, double* %2
     33         %3 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 4
     34         store volatile double %d, double* %3
     35         %4 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 5
     36         store volatile double %e, double* %4
     37         %5 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 6
     38         store volatile double %f, double* %5
     39         %6 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 7
     40         store volatile double %g, double* %6
     41         %7 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 8
     42         store volatile double %h, double* %7
     43         %8 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 9
     44         store volatile double %i, double* %8
     45         ret void
     46 }
     47 
     48 ; ALL-LABEL: double_args:
     49 ; We won't test the way the global address is calculated in this test. This is
     50 ; just to get the register number for the other checks.
     51 ; SYM32-DAG:           addiu [[R2:\$[0-9]+]], ${{[0-9]+}}, %lo(doubles)
     52 ; SYM64-DAG:           ld [[R2:\$[0-9]]], %got_disp(doubles)(
     53 
     54 ; The first argument is floating point so floating point registers are used.
     55 ; The first argument is the same for O32/N32/N64 but the second argument differs
     56 ; by register
     57 ; ALL-DAG:           sdc1 $f12, 8([[R2]])
     58 ; O32-DAG:           sdc1 $f14, 16([[R2]])
     59 ; NEW-DAG:           sdc1 $f13, 16([[R2]])
     60 
     61 ; O32 has run out of argument registers and starts using the stack
     62 ; O32-DAG:           ldc1 [[F1:\$f[0-9]+]], 16($sp)
     63 ; O32-DAG:           sdc1 [[F1]], 24([[R2]])
     64 ; NEW-DAG:           sdc1 $f14, 24([[R2]])
     65 ; O32-DAG:           ldc1 [[F1:\$f[0-9]+]], 24($sp)
     66 ; O32-DAG:           sdc1 [[F1]], 32([[R2]])
     67 ; NEW-DAG:           sdc1 $f15, 32([[R2]])
     68 ; O32-DAG:           ldc1 [[F1:\$f[0-9]+]], 32($sp)
     69 ; O32-DAG:           sdc1 [[F1]], 40([[R2]])
     70 ; NEW-DAG:           sdc1 $f16, 40([[R2]])
     71 ; O32-DAG:           ldc1 [[F1:\$f[0-9]+]], 40($sp)
     72 ; O32-DAG:           sdc1 [[F1]], 48([[R2]])
     73 ; NEW-DAG:           sdc1 $f17, 48([[R2]])
     74 ; O32-DAG:           ldc1 [[F1:\$f[0-9]+]], 48($sp)
     75 ; O32-DAG:           sdc1 [[F1]], 56([[R2]])
     76 ; NEW-DAG:           sdc1 $f18, 56([[R2]])
     77 ; O32-DAG:           ldc1 [[F1:\$f[0-9]+]], 56($sp)
     78 ; O32-DAG:           sdc1 [[F1]], 64([[R2]])
     79 ; NEW-DAG:           sdc1 $f19, 64([[R2]])
     80 
     81 ; N32/N64 have run out of registers and start using the stack too
     82 ; O32-DAG:           ldc1 [[F1:\$f[0-9]+]], 64($sp)
     83 ; O32-DAG:           sdc1 [[F1]], 72([[R2]])
     84 ; NEW-DAG:           ldc1 [[F1:\$f[0-9]+]], 0($sp)
     85 ; NEW-DAG:           sdc1 [[F1]], 72([[R2]])
     86 
     87 define void @float_args(float %a, float %b, float %c, float %d, float %e,
     88                         float %f, float %g, float %h, float %i) nounwind {
     89 entry:
     90         %0 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 1
     91         store volatile float %a, float* %0
     92         %1 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 2
     93         store volatile float %b, float* %1
     94         %2 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 3
     95         store volatile float %c, float* %2
     96         %3 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 4
     97         store volatile float %d, float* %3
     98         %4 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 5
     99         store volatile float %e, float* %4
    100         %5 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 6
    101         store volatile float %f, float* %5
    102         %6 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 7
    103         store volatile float %g, float* %6
    104         %7 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 8
    105         store volatile float %h, float* %7
    106         %8 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 9
    107         store volatile float %i, float* %8
    108         ret void
    109 }
    110 
    111 ; ALL-LABEL: float_args:
    112 ; We won't test the way the global address is calculated in this test. This is
    113 ; just to get the register number for the other checks.
    114 ; SYM32-DAG:           addiu [[R1:\$[0-9]+]], ${{[0-9]+}}, %lo(floats)
    115 ; SYM64-DAG:           ld [[R1:\$[0-9]]], %got_disp(floats)(
    116 
    117 ; The first argument is floating point so floating point registers are used.
    118 ; The first argument is the same for O32/N32/N64 but the second argument differs
    119 ; by register
    120 ; ALL-DAG:           swc1 $f12, 4([[R1]])
    121 ; O32-DAG:           swc1 $f14, 8([[R1]])
    122 ; NEW-DAG:           swc1 $f13, 8([[R1]])
    123 
    124 ; O32 has run out of argument registers and (in theory) starts using the stack
    125 ; I've yet to find a reference in the documentation about this but GCC uses up
    126 ; the remaining two argument slots in the GPR's first. We'll do the same for
    127 ; compatibility.
    128 ; O32-DAG:           sw $6, 12([[R1]])
    129 ; NEW-DAG:           swc1 $f14, 12([[R1]])
    130 ; O32-DAG:           sw $7, 16([[R1]])
    131 ; NEW-DAG:           swc1 $f15, 16([[R1]])
    132 
    133 ; O32 is definitely out of registers now and switches to the stack.
    134 ; O32-DAG:           lwc1 [[F1:\$f[0-9]+]], 16($sp)
    135 ; O32-DAG:           swc1 [[F1]], 20([[R1]])
    136 ; NEW-DAG:           swc1 $f16, 20([[R1]])
    137 ; O32-DAG:           lwc1 [[F1:\$f[0-9]+]], 20($sp)
    138 ; O32-DAG:           swc1 [[F1]], 24([[R1]])
    139 ; NEW-DAG:           swc1 $f17, 24([[R1]])
    140 ; O32-DAG:           lwc1 [[F1:\$f[0-9]+]], 24($sp)
    141 ; O32-DAG:           swc1 [[F1]], 28([[R1]])
    142 ; NEW-DAG:           swc1 $f18, 28([[R1]])
    143 ; O32-DAG:           lwc1 [[F1:\$f[0-9]+]], 28($sp)
    144 ; O32-DAG:           swc1 [[F1]], 32([[R1]])
    145 ; NEW-DAG:           swc1 $f19, 32([[R1]])
    146 
    147 ; N32/N64 have run out of registers and start using the stack too
    148 ; O32-DAG:           lwc1 [[F1:\$f[0-9]+]], 32($sp)
    149 ; O32-DAG:           swc1 [[F1]], 36([[R1]])
    150 ; NEW-DAG:           lwc1 [[F1:\$f[0-9]+]], 0($sp)
    151 ; NEW-DAG:           swc1 [[F1]], 36([[R1]])
    152 
    153 
    154 define void @double_arg2(i8 %a, double %b) nounwind {
    155 entry:
    156         %0 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 1
    157         store volatile i8 %a, i8* %0
    158         %1 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 1
    159         store volatile double %b, double* %1
    160         ret void
    161 }
    162 
    163 ; ALL-LABEL: double_arg2:
    164 ; We won't test the way the global address is calculated in this test. This is
    165 ; just to get the register number for the other checks.
    166 ; SYM32-DAG:           addiu [[R1:\$[0-9]+]], ${{[0-9]+}}, %lo(bytes)
    167 ; SYM64-DAG:           ld [[R1:\$[0-9]]], %got_disp(bytes)(
    168 ; SYM32-DAG:           addiu [[R2:\$[0-9]+]], ${{[0-9]+}}, %lo(doubles)
    169 ; SYM64-DAG:           ld [[R2:\$[0-9]]], %got_disp(doubles)(
    170 
    171 ; The first argument is the same in O32/N32/N64.
    172 ; ALL-DAG:           sb $4, 1([[R1]])
    173 
    174 ; The first argument isn't floating point so floating point registers are not
    175 ; used in O32, but N32/N64 will still use them.
    176 ; The second slot is insufficiently aligned for double on O32 so it is skipped.
    177 ; Also, double occupies two slots on O32 and only one for N32/N64.
    178 ; O32LE-DAG:           mtc1 $6, [[F1:\$f[0-9]*[02468]+]]
    179 ; O32LE-DAG:           mtc1 $7, [[F2:\$f[0-9]*[13579]+]]
    180 ; O32BE-DAG:           mtc1 $6, [[F2:\$f[0-9]*[13579]+]]
    181 ; O32BE-DAG:           mtc1 $7, [[F1:\$f[0-9]*[02468]+]]
    182 ; O32-DAG:           sdc1 [[F1]], 8([[R2]])
    183 ; NEW-DAG:           sdc1 $f13, 8([[R2]])
    184 
    185 define void @float_arg2(i8 %a, float %b) nounwind {
    186 entry:
    187         %0 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 1
    188         store volatile i8 %a, i8* %0
    189         %1 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 1
    190         store volatile float %b, float* %1
    191         ret void
    192 }
    193 
    194 ; ALL-LABEL: float_arg2:
    195 ; We won't test the way the global address is calculated in this test. This is
    196 ; just to get the register number for the other checks.
    197 ; SYM32-DAG:           addiu [[R1:\$[0-9]+]], ${{[0-9]+}}, %lo(bytes)
    198 ; SYM64-DAG:           ld [[R1:\$[0-9]]], %got_disp(bytes)(
    199 ; SYM32-DAG:           addiu [[R2:\$[0-9]+]], ${{[0-9]+}}, %lo(floats)
    200 ; SYM64-DAG:           ld [[R2:\$[0-9]]], %got_disp(floats)(
    201 
    202 ; The first argument is the same in O32/N32/N64.
    203 ; ALL-DAG:           sb $4, 1([[R1]])
    204 
    205 ; The first argument isn't floating point so floating point registers are not
    206 ; used in O32, but N32/N64 will still use them.
    207 ; MD00305 and GCC disagree on this one. MD00305 says that floats are treated
    208 ; as 8-byte aligned and occupy two slots on O32. GCC is treating them as 4-byte
    209 ; aligned and occupying one slot. We'll use GCC's definition.
    210 ; O32-DAG:           sw $5, 4([[R2]])
    211 ; NEW-DAG:           swc1 $f13, 4([[R2]])
    212