1 ; RUN: llc -mtriple x86_64-apple-macosx -mcpu=corei7-avx -combiner-stress-load-slicing < %s -o - | FileCheck %s --check-prefix=STRESS 2 ; RUN: llc -mtriple x86_64-apple-macosx -mcpu=corei7-avx < %s -o - | FileCheck %s --check-prefix=REGULAR 3 ; 4 ; <rdar://problem/14477220> 5 6 %class.Complex = type { float, float } 7 8 9 ; Check that independent slices leads to independent loads then the slices leads to 10 ; different register file. 11 ; 12 ; The layout is: 13 ; LSB 0 1 2 3 | 4 5 6 7 MSB 14 ; Low High 15 ; The base address points to 0 and is 8-bytes aligned. 16 ; Low slice starts at 0 (base) and is 8-bytes aligned. 17 ; High slice starts at 4 (base + 4-bytes) and is 4-bytes aligned. 18 ; 19 ; STRESS-LABEL: t1: 20 ; Load out[out_start + 8].real, this is base + 8 * 8 + 0. 21 ; STRESS: vmovss 64([[BASE:[^(]+]]), [[OUT_Real:%xmm[0-9]+]] 22 ; Add low slice: out[out_start].real, this is base + 0. 23 ; STRESS-NEXT: vaddss ([[BASE]]), [[OUT_Real]], [[RES_Real:%xmm[0-9]+]] 24 ; Load out[out_start + 8].imm, this is base + 8 * 8 + 4. 25 ; STRESS-NEXT: vmovss 68([[BASE]]), [[OUT_Imm:%xmm[0-9]+]] 26 ; Add high slice: out[out_start].imm, this is base + 4. 27 ; STRESS-NEXT: vaddss 4([[BASE]]), [[OUT_Imm]], [[RES_Imm:%xmm[0-9]+]] 28 ; Swap Imm and Real. 29 ; STRESS-NEXT: vinsertps $16, [[RES_Imm]], [[RES_Real]], [[RES_Vec:%xmm[0-9]+]] 30 ; Put the results back into out[out_start]. 31 ; STRESS-NEXT: vmovlps [[RES_Vec]], ([[BASE]]) 32 ; 33 ; Same for REGULAR, we eliminate register bank copy with each slices. 34 ; REGULAR-LABEL: t1: 35 ; Load out[out_start + 8].real, this is base + 8 * 8 + 0. 36 ; REGULAR: vmovss 64([[BASE:[^)]+]]), [[OUT_Real:%xmm[0-9]+]] 37 ; Add low slice: out[out_start].real, this is base + 0. 38 ; REGULAR-NEXT: vaddss ([[BASE]]), [[OUT_Real]], [[RES_Real:%xmm[0-9]+]] 39 ; Load out[out_start + 8].imm, this is base + 8 * 8 + 4. 40 ; REGULAR-NEXT: vmovss 68([[BASE]]), [[OUT_Imm:%xmm[0-9]+]] 41 ; Add high slice: out[out_start].imm, this is base + 4. 42 ; REGULAR-NEXT: vaddss 4([[BASE]]), [[OUT_Imm]], [[RES_Imm:%xmm[0-9]+]] 43 ; Swap Imm and Real. 44 ; REGULAR-NEXT: vinsertps $16, [[RES_Imm]], [[RES_Real]], [[RES_Vec:%xmm[0-9]+]] 45 ; Put the results back into out[out_start]. 46 ; REGULAR-NEXT: vmovlps [[RES_Vec]], ([[BASE]]) 47 define void @t1(%class.Complex* nocapture %out, i64 %out_start) { 48 entry: 49 %arrayidx = getelementptr inbounds %class.Complex, %class.Complex* %out, i64 %out_start 50 %tmp = bitcast %class.Complex* %arrayidx to i64* 51 %tmp1 = load i64, i64* %tmp, align 8 52 %t0.sroa.0.0.extract.trunc = trunc i64 %tmp1 to i32 53 %tmp2 = bitcast i32 %t0.sroa.0.0.extract.trunc to float 54 %t0.sroa.2.0.extract.shift = lshr i64 %tmp1, 32 55 %t0.sroa.2.0.extract.trunc = trunc i64 %t0.sroa.2.0.extract.shift to i32 56 %tmp3 = bitcast i32 %t0.sroa.2.0.extract.trunc to float 57 %add = add i64 %out_start, 8 58 %arrayidx2 = getelementptr inbounds %class.Complex, %class.Complex* %out, i64 %add 59 %i.i = getelementptr inbounds %class.Complex, %class.Complex* %arrayidx2, i64 0, i32 0 60 %tmp4 = load float, float* %i.i, align 4 61 %add.i = fadd float %tmp4, %tmp2 62 %retval.sroa.0.0.vec.insert.i = insertelement <2 x float> undef, float %add.i, i32 0 63 %r.i = getelementptr inbounds %class.Complex, %class.Complex* %arrayidx2, i64 0, i32 1 64 %tmp5 = load float, float* %r.i, align 4 65 %add5.i = fadd float %tmp5, %tmp3 66 %retval.sroa.0.4.vec.insert.i = insertelement <2 x float> %retval.sroa.0.0.vec.insert.i, float %add5.i, i32 1 67 %ref.tmp.sroa.0.0.cast = bitcast %class.Complex* %arrayidx to <2 x float>* 68 store <2 x float> %retval.sroa.0.4.vec.insert.i, <2 x float>* %ref.tmp.sroa.0.0.cast, align 4 69 ret void 70 } 71 72 ; Function Attrs: nounwind 73 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* nocapture, i8* nocapture readonly, i64, i32, i1) #1 74 75 ; Function Attrs: nounwind 76 declare void @llvm.lifetime.start(i64, i8* nocapture) 77 78 ; Function Attrs: nounwind 79 declare void @llvm.lifetime.end(i64, i8* nocapture) 80 81 ; Check that we do not read outside of the chunk of bits of the original loads. 82 ; 83 ; The 64-bits should have been split in one 32-bits and one 16-bits slices. 84 ; The 16-bits should be zero extended to match the final type. 85 ; 86 ; The memory layout is: 87 ; LSB 0 1 2 3 | 4 5 | 6 7 MSB 88 ; Low High 89 ; The base address points to 0 and is 8-bytes aligned. 90 ; Low slice starts at 0 (base) and is 8-bytes aligned. 91 ; High slice starts at 6 (base + 6-bytes) and is 2-bytes aligned. 92 ; 93 ; STRESS-LABEL: t2: 94 ; STRESS: movzwl 6([[BASE:[^)]+]]), %eax 95 ; STRESS-NEXT: addl ([[BASE]]), %eax 96 ; STRESS-NEXT: ret 97 ; 98 ; For the REGULAR heuristic, this is not profitable to slice things that are not 99 ; next to each other in memory. Here we have a hole with bytes #4-5. 100 ; REGULAR-LABEL: t2: 101 ; REGULAR: shrq $48 102 define i32 @t2(%class.Complex* nocapture %out, i64 %out_start) { 103 %arrayidx = getelementptr inbounds %class.Complex, %class.Complex* %out, i64 %out_start 104 %bitcast = bitcast %class.Complex* %arrayidx to i64* 105 %chunk64 = load i64, i64* %bitcast, align 8 106 %slice32_low = trunc i64 %chunk64 to i32 107 %shift48 = lshr i64 %chunk64, 48 108 %slice32_high = trunc i64 %shift48 to i32 109 %res = add i32 %slice32_high, %slice32_low 110 ret i32 %res 111 } 112 113 ; Check that we do not optimize overlapping slices. 114 ; 115 ; The 64-bits should NOT have been split in as slices are overlapping. 116 ; First slice uses bytes numbered 0 to 3. 117 ; Second slice uses bytes numbered 6 and 7. 118 ; Third slice uses bytes numbered 4 to 7. 119 ; 120 ; STRESS-LABEL: t3: 121 ; STRESS: shrq $48 122 ; STRESS: shrq $32 123 ; 124 ; REGULAR-LABEL: t3: 125 ; REGULAR: shrq $48 126 ; REGULAR: shrq $32 127 define i32 @t3(%class.Complex* nocapture %out, i64 %out_start) { 128 %arrayidx = getelementptr inbounds %class.Complex, %class.Complex* %out, i64 %out_start 129 %bitcast = bitcast %class.Complex* %arrayidx to i64* 130 %chunk64 = load i64, i64* %bitcast, align 8 131 %slice32_low = trunc i64 %chunk64 to i32 132 %shift48 = lshr i64 %chunk64, 48 133 %slice32_high = trunc i64 %shift48 to i32 134 %shift32 = lshr i64 %chunk64, 32 135 %slice32_lowhigh = trunc i64 %shift32 to i32 136 %tmpres = add i32 %slice32_high, %slice32_low 137 %res = add i32 %slice32_lowhigh, %tmpres 138 ret i32 %res 139 } 140