Home | History | Annotate | Download | only in MCJIT
      1 //===- MCJITTestBase.h - Common base class for MCJIT Unit tests -*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This class implements common functionality required by the MCJIT unit tests,
     11 // as well as logic to skip tests on unsupported architectures and operating
     12 // systems.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #ifndef LLVM_UNITTESTS_EXECUTIONENGINE_MCJIT_MCJITTESTBASE_H
     17 #define LLVM_UNITTESTS_EXECUTIONENGINE_MCJIT_MCJITTESTBASE_H
     18 
     19 #include "MCJITTestAPICommon.h"
     20 #include "llvm/Config/config.h"
     21 #include "llvm/ExecutionEngine/ExecutionEngine.h"
     22 #include "llvm/ExecutionEngine/SectionMemoryManager.h"
     23 #include "llvm/IR/Function.h"
     24 #include "llvm/IR/IRBuilder.h"
     25 #include "llvm/IR/LLVMContext.h"
     26 #include "llvm/IR/Module.h"
     27 #include "llvm/IR/TypeBuilder.h"
     28 #include "llvm/Support/CodeGen.h"
     29 
     30 namespace llvm {
     31 
     32 /// Helper class that can build very simple Modules
     33 class TrivialModuleBuilder {
     34 protected:
     35   LLVMContext Context;
     36   IRBuilder<> Builder;
     37   std::string BuilderTriple;
     38 
     39   TrivialModuleBuilder(const std::string &Triple)
     40     : Builder(Context), BuilderTriple(Triple) {}
     41 
     42   Module *createEmptyModule(StringRef Name = StringRef()) {
     43     Module * M = new Module(Name, Context);
     44     M->setTargetTriple(Triple::normalize(BuilderTriple));
     45     return M;
     46   }
     47 
     48   template<typename FuncType>
     49   Function *startFunction(Module *M, StringRef Name) {
     50     Function *Result = Function::Create(
     51       TypeBuilder<FuncType, false>::get(Context),
     52       GlobalValue::ExternalLinkage, Name, M);
     53 
     54     BasicBlock *BB = BasicBlock::Create(Context, Name, Result);
     55     Builder.SetInsertPoint(BB);
     56 
     57     return Result;
     58   }
     59 
     60   void endFunctionWithRet(Function *Func, Value *RetValue) {
     61     Builder.CreateRet(RetValue);
     62   }
     63 
     64   // Inserts a simple function that invokes Callee and takes the same arguments:
     65   //    int Caller(...) { return Callee(...); }
     66   template<typename Signature>
     67   Function *insertSimpleCallFunction(Module *M, Function *Callee) {
     68     Function *Result = startFunction<Signature>(M, "caller");
     69 
     70     SmallVector<Value*, 1> CallArgs;
     71 
     72     for (Argument &A : Result->args())
     73       CallArgs.push_back(&A);
     74 
     75     Value *ReturnCode = Builder.CreateCall(Callee, CallArgs);
     76     Builder.CreateRet(ReturnCode);
     77     return Result;
     78   }
     79 
     80   // Inserts a function named 'main' that returns a uint32_t:
     81   //    int32_t main() { return X; }
     82   // where X is given by returnCode
     83   Function *insertMainFunction(Module *M, uint32_t returnCode) {
     84     Function *Result = startFunction<int32_t(void)>(M, "main");
     85 
     86     Value *ReturnVal = ConstantInt::get(Context, APInt(32, returnCode));
     87     endFunctionWithRet(Result, ReturnVal);
     88 
     89     return Result;
     90   }
     91 
     92   // Inserts a function
     93   //    int32_t add(int32_t a, int32_t b) { return a + b; }
     94   // in the current module and returns a pointer to it.
     95   Function *insertAddFunction(Module *M, StringRef Name = "add") {
     96     Function *Result = startFunction<int32_t(int32_t, int32_t)>(M, Name);
     97 
     98     Function::arg_iterator args = Result->arg_begin();
     99     Value *Arg1 = &*args;
    100     Value *Arg2 = &*++args;
    101     Value *AddResult = Builder.CreateAdd(Arg1, Arg2);
    102 
    103     endFunctionWithRet(Result, AddResult);
    104 
    105     return Result;
    106   }
    107 
    108   // Inserts a declaration to a function defined elsewhere
    109   template <typename FuncType>
    110   Function *insertExternalReferenceToFunction(Module *M, StringRef Name) {
    111     Function *Result = Function::Create(
    112                          TypeBuilder<FuncType, false>::get(Context),
    113                          GlobalValue::ExternalLinkage, Name, M);
    114     return Result;
    115   }
    116 
    117   // Inserts an declaration to a function defined elsewhere
    118   Function *insertExternalReferenceToFunction(Module *M, StringRef Name,
    119                                               FunctionType *FuncTy) {
    120     Function *Result = Function::Create(FuncTy,
    121                                         GlobalValue::ExternalLinkage,
    122                                         Name, M);
    123     return Result;
    124   }
    125 
    126   // Inserts an declaration to a function defined elsewhere
    127   Function *insertExternalReferenceToFunction(Module *M, Function *Func) {
    128     Function *Result = Function::Create(Func->getFunctionType(),
    129                                         GlobalValue::ExternalLinkage,
    130                                         Func->getName(), M);
    131     return Result;
    132   }
    133 
    134   // Inserts a global variable of type int32
    135   // FIXME: make this a template function to support any type
    136   GlobalVariable *insertGlobalInt32(Module *M,
    137                                     StringRef name,
    138                                     int32_t InitialValue) {
    139     Type *GlobalTy = TypeBuilder<types::i<32>, true>::get(Context);
    140     Constant *IV = ConstantInt::get(Context, APInt(32, InitialValue));
    141     GlobalVariable *Global = new GlobalVariable(*M,
    142                                                 GlobalTy,
    143                                                 false,
    144                                                 GlobalValue::ExternalLinkage,
    145                                                 IV,
    146                                                 name);
    147     return Global;
    148   }
    149 
    150   // Inserts a function
    151   //   int32_t recursive_add(int32_t num) {
    152   //     if (num == 0) {
    153   //       return num;
    154   //     } else {
    155   //       int32_t recursive_param = num - 1;
    156   //       return num + Helper(recursive_param);
    157   //     }
    158   //   }
    159   // NOTE: if Helper is left as the default parameter, Helper == recursive_add.
    160   Function *insertAccumulateFunction(Module *M,
    161                                      Function *Helper = nullptr,
    162                                      StringRef Name = "accumulate") {
    163     Function *Result = startFunction<int32_t(int32_t)>(M, Name);
    164     if (!Helper)
    165       Helper = Result;
    166 
    167     BasicBlock *BaseCase = BasicBlock::Create(Context, "", Result);
    168     BasicBlock *RecursiveCase = BasicBlock::Create(Context, "", Result);
    169 
    170     // if (num == 0)
    171     Value *Param = &*Result->arg_begin();
    172     Value *Zero = ConstantInt::get(Context, APInt(32, 0));
    173     Builder.CreateCondBr(Builder.CreateICmpEQ(Param, Zero),
    174                          BaseCase, RecursiveCase);
    175 
    176     //   return num;
    177     Builder.SetInsertPoint(BaseCase);
    178     Builder.CreateRet(Param);
    179 
    180     //   int32_t recursive_param = num - 1;
    181     //   return Helper(recursive_param);
    182     Builder.SetInsertPoint(RecursiveCase);
    183     Value *One = ConstantInt::get(Context, APInt(32, 1));
    184     Value *RecursiveParam = Builder.CreateSub(Param, One);
    185     Value *RecursiveReturn = Builder.CreateCall(Helper, RecursiveParam);
    186     Value *Accumulator = Builder.CreateAdd(Param, RecursiveReturn);
    187     Builder.CreateRet(Accumulator);
    188 
    189     return Result;
    190   }
    191 
    192   // Populates Modules A and B:
    193   // Module A { Extern FB1, Function FA which calls FB1 },
    194   // Module B { Extern FA, Function FB1, Function FB2 which calls FA },
    195   void createCrossModuleRecursiveCase(std::unique_ptr<Module> &A, Function *&FA,
    196                                       std::unique_ptr<Module> &B,
    197                                       Function *&FB1, Function *&FB2) {
    198     // Define FB1 in B.
    199     B.reset(createEmptyModule("B"));
    200     FB1 = insertAccumulateFunction(B.get(), nullptr, "FB1");
    201 
    202     // Declare FB1 in A (as an external).
    203     A.reset(createEmptyModule("A"));
    204     Function *FB1Extern = insertExternalReferenceToFunction(A.get(), FB1);
    205 
    206     // Define FA in A (with a call to FB1).
    207     FA = insertAccumulateFunction(A.get(), FB1Extern, "FA");
    208 
    209     // Declare FA in B (as an external)
    210     Function *FAExtern = insertExternalReferenceToFunction(B.get(), FA);
    211 
    212     // Define FB2 in B (with a call to FA)
    213     FB2 = insertAccumulateFunction(B.get(), FAExtern, "FB2");
    214   }
    215 
    216   // Module A { Function FA },
    217   // Module B { Extern FA, Function FB which calls FA },
    218   // Module C { Extern FB, Function FC which calls FB },
    219   void
    220   createThreeModuleChainedCallsCase(std::unique_ptr<Module> &A, Function *&FA,
    221                                     std::unique_ptr<Module> &B, Function *&FB,
    222                                     std::unique_ptr<Module> &C, Function *&FC) {
    223     A.reset(createEmptyModule("A"));
    224     FA = insertAddFunction(A.get());
    225 
    226     B.reset(createEmptyModule("B"));
    227     Function *FAExtern_in_B = insertExternalReferenceToFunction(B.get(), FA);
    228     FB = insertSimpleCallFunction<int32_t(int32_t, int32_t)>(B.get(), FAExtern_in_B);
    229 
    230     C.reset(createEmptyModule("C"));
    231     Function *FBExtern_in_C = insertExternalReferenceToFunction(C.get(), FB);
    232     FC = insertSimpleCallFunction<int32_t(int32_t, int32_t)>(C.get(), FBExtern_in_C);
    233   }
    234 
    235   // Module A { Function FA },
    236   // Populates Modules A and B:
    237   // Module B { Function FB }
    238   void createTwoModuleCase(std::unique_ptr<Module> &A, Function *&FA,
    239                            std::unique_ptr<Module> &B, Function *&FB) {
    240     A.reset(createEmptyModule("A"));
    241     FA = insertAddFunction(A.get());
    242 
    243     B.reset(createEmptyModule("B"));
    244     FB = insertAddFunction(B.get());
    245   }
    246 
    247   // Module A { Function FA },
    248   // Module B { Extern FA, Function FB which calls FA }
    249   void createTwoModuleExternCase(std::unique_ptr<Module> &A, Function *&FA,
    250                                  std::unique_ptr<Module> &B, Function *&FB) {
    251     A.reset(createEmptyModule("A"));
    252     FA = insertAddFunction(A.get());
    253 
    254     B.reset(createEmptyModule("B"));
    255     Function *FAExtern_in_B = insertExternalReferenceToFunction(B.get(), FA);
    256     FB = insertSimpleCallFunction<int32_t(int32_t, int32_t)>(B.get(),
    257                                                              FAExtern_in_B);
    258   }
    259 
    260   // Module A { Function FA },
    261   // Module B { Extern FA, Function FB which calls FA },
    262   // Module C { Extern FB, Function FC which calls FA },
    263   void createThreeModuleCase(std::unique_ptr<Module> &A, Function *&FA,
    264                              std::unique_ptr<Module> &B, Function *&FB,
    265                              std::unique_ptr<Module> &C, Function *&FC) {
    266     A.reset(createEmptyModule("A"));
    267     FA = insertAddFunction(A.get());
    268 
    269     B.reset(createEmptyModule("B"));
    270     Function *FAExtern_in_B = insertExternalReferenceToFunction(B.get(), FA);
    271     FB = insertSimpleCallFunction<int32_t(int32_t, int32_t)>(B.get(), FAExtern_in_B);
    272 
    273     C.reset(createEmptyModule("C"));
    274     Function *FAExtern_in_C = insertExternalReferenceToFunction(C.get(), FA);
    275     FC = insertSimpleCallFunction<int32_t(int32_t, int32_t)>(C.get(), FAExtern_in_C);
    276   }
    277 };
    278 
    279 class MCJITTestBase : public MCJITTestAPICommon, public TrivialModuleBuilder {
    280 protected:
    281 
    282   MCJITTestBase()
    283     : TrivialModuleBuilder(HostTriple)
    284     , OptLevel(CodeGenOpt::None)
    285     , CodeModel(CodeModel::Default)
    286     , MArch("")
    287     , MM(new SectionMemoryManager)
    288   {
    289     // The architectures below are known to be compatible with MCJIT as they
    290     // are copied from test/ExecutionEngine/MCJIT/lit.local.cfg and should be
    291     // kept in sync.
    292     SupportedArchs.push_back(Triple::aarch64);
    293     SupportedArchs.push_back(Triple::arm);
    294     SupportedArchs.push_back(Triple::mips);
    295     SupportedArchs.push_back(Triple::mipsel);
    296     SupportedArchs.push_back(Triple::mips64);
    297     SupportedArchs.push_back(Triple::mips64el);
    298     SupportedArchs.push_back(Triple::x86);
    299     SupportedArchs.push_back(Triple::x86_64);
    300 
    301     // Some architectures have sub-architectures in which tests will fail, like
    302     // ARM. These two vectors will define if they do have sub-archs (to avoid
    303     // extra work for those who don't), and if so, if they are listed to work
    304     HasSubArchs.push_back(Triple::arm);
    305     SupportedSubArchs.push_back("armv6");
    306     SupportedSubArchs.push_back("armv7");
    307 
    308     UnsupportedEnvironments.push_back(Triple::Cygnus);
    309   }
    310 
    311   void createJIT(std::unique_ptr<Module> M) {
    312 
    313     // Due to the EngineBuilder constructor, it is required to have a Module
    314     // in order to construct an ExecutionEngine (i.e. MCJIT)
    315     assert(M != 0 && "a non-null Module must be provided to create MCJIT");
    316 
    317     EngineBuilder EB(std::move(M));
    318     std::string Error;
    319     TheJIT.reset(EB.setEngineKind(EngineKind::JIT)
    320                  .setMCJITMemoryManager(std::move(MM))
    321                  .setErrorStr(&Error)
    322                  .setOptLevel(CodeGenOpt::None)
    323                  .setCodeModel(CodeModel::JITDefault)
    324                  .setMArch(MArch)
    325                  .setMCPU(sys::getHostCPUName())
    326                  //.setMAttrs(MAttrs)
    327                  .create());
    328     // At this point, we cannot modify the module any more.
    329     assert(TheJIT.get() != NULL && "error creating MCJIT with EngineBuilder");
    330   }
    331 
    332   CodeGenOpt::Level OptLevel;
    333   CodeModel::Model CodeModel;
    334   StringRef MArch;
    335   SmallVector<std::string, 1> MAttrs;
    336   std::unique_ptr<ExecutionEngine> TheJIT;
    337   std::unique_ptr<RTDyldMemoryManager> MM;
    338 
    339   std::unique_ptr<Module> M;
    340 };
    341 
    342 } // namespace llvm
    343 
    344 #endif // LLVM_UNITTESTS_EXECUTIONENGINE_MCJIT_MCJITTESTBASE_H
    345