Home | History | Annotate | Download | only in C
      1 /* LzmaEnc.c -- LZMA Encoder
      2 2016-05-16 : Igor Pavlov : Public domain */
      3 
      4 #include "Precomp.h"
      5 
      6 #include <string.h>
      7 
      8 /* #define SHOW_STAT */
      9 /* #define SHOW_STAT2 */
     10 
     11 #if defined(SHOW_STAT) || defined(SHOW_STAT2)
     12 #include <stdio.h>
     13 #endif
     14 
     15 #include "LzmaEnc.h"
     16 
     17 #include "LzFind.h"
     18 #ifndef _7ZIP_ST
     19 #include "LzFindMt.h"
     20 #endif
     21 
     22 #ifdef SHOW_STAT
     23 static unsigned g_STAT_OFFSET = 0;
     24 #endif
     25 
     26 #define kMaxHistorySize ((UInt32)3 << 29)
     27 /* #define kMaxHistorySize ((UInt32)7 << 29) */
     28 
     29 #define kBlockSizeMax ((1 << LZMA_NUM_BLOCK_SIZE_BITS) - 1)
     30 
     31 #define kBlockSize (9 << 10)
     32 #define kUnpackBlockSize (1 << 18)
     33 #define kMatchArraySize (1 << 21)
     34 #define kMatchRecordMaxSize ((LZMA_MATCH_LEN_MAX * 2 + 3) * LZMA_MATCH_LEN_MAX)
     35 
     36 #define kNumMaxDirectBits (31)
     37 
     38 #define kNumTopBits 24
     39 #define kTopValue ((UInt32)1 << kNumTopBits)
     40 
     41 #define kNumBitModelTotalBits 11
     42 #define kBitModelTotal (1 << kNumBitModelTotalBits)
     43 #define kNumMoveBits 5
     44 #define kProbInitValue (kBitModelTotal >> 1)
     45 
     46 #define kNumMoveReducingBits 4
     47 #define kNumBitPriceShiftBits 4
     48 #define kBitPrice (1 << kNumBitPriceShiftBits)
     49 
     50 void LzmaEncProps_Init(CLzmaEncProps *p)
     51 {
     52   p->level = 5;
     53   p->dictSize = p->mc = 0;
     54   p->reduceSize = (UInt64)(Int64)-1;
     55   p->lc = p->lp = p->pb = p->algo = p->fb = p->btMode = p->numHashBytes = p->numThreads = -1;
     56   p->writeEndMark = 0;
     57 }
     58 
     59 void LzmaEncProps_Normalize(CLzmaEncProps *p)
     60 {
     61   int level = p->level;
     62   if (level < 0) level = 5;
     63   p->level = level;
     64 
     65   if (p->dictSize == 0) p->dictSize = (level <= 5 ? (1 << (level * 2 + 14)) : (level == 6 ? (1 << 25) : (1 << 26)));
     66   if (p->dictSize > p->reduceSize)
     67   {
     68     unsigned i;
     69     for (i = 11; i <= 30; i++)
     70     {
     71       if ((UInt32)p->reduceSize <= ((UInt32)2 << i)) { p->dictSize = ((UInt32)2 << i); break; }
     72       if ((UInt32)p->reduceSize <= ((UInt32)3 << i)) { p->dictSize = ((UInt32)3 << i); break; }
     73     }
     74   }
     75 
     76   if (p->lc < 0) p->lc = 3;
     77   if (p->lp < 0) p->lp = 0;
     78   if (p->pb < 0) p->pb = 2;
     79 
     80   if (p->algo < 0) p->algo = (level < 5 ? 0 : 1);
     81   if (p->fb < 0) p->fb = (level < 7 ? 32 : 64);
     82   if (p->btMode < 0) p->btMode = (p->algo == 0 ? 0 : 1);
     83   if (p->numHashBytes < 0) p->numHashBytes = 4;
     84   if (p->mc == 0) p->mc = (16 + (p->fb >> 1)) >> (p->btMode ? 0 : 1);
     85 
     86   if (p->numThreads < 0)
     87     p->numThreads =
     88       #ifndef _7ZIP_ST
     89       ((p->btMode && p->algo) ? 2 : 1);
     90       #else
     91       1;
     92       #endif
     93 }
     94 
     95 UInt32 LzmaEncProps_GetDictSize(const CLzmaEncProps *props2)
     96 {
     97   CLzmaEncProps props = *props2;
     98   LzmaEncProps_Normalize(&props);
     99   return props.dictSize;
    100 }
    101 
    102 #if (_MSC_VER >= 1400)
    103 /* BSR code is fast for some new CPUs */
    104 /* #define LZMA_LOG_BSR */
    105 #endif
    106 
    107 #ifdef LZMA_LOG_BSR
    108 
    109 #define kDicLogSizeMaxCompress 32
    110 
    111 #define BSR2_RET(pos, res) { unsigned long zz; _BitScanReverse(&zz, (pos)); res = (zz + zz) + ((pos >> (zz - 1)) & 1); }
    112 
    113 static UInt32 GetPosSlot1(UInt32 pos)
    114 {
    115   UInt32 res;
    116   BSR2_RET(pos, res);
    117   return res;
    118 }
    119 #define GetPosSlot2(pos, res) { BSR2_RET(pos, res); }
    120 #define GetPosSlot(pos, res) { if (pos < 2) res = pos; else BSR2_RET(pos, res); }
    121 
    122 #else
    123 
    124 #define kNumLogBits (9 + sizeof(size_t) / 2)
    125 /* #define kNumLogBits (11 + sizeof(size_t) / 8 * 3) */
    126 
    127 #define kDicLogSizeMaxCompress ((kNumLogBits - 1) * 2 + 7)
    128 
    129 static void LzmaEnc_FastPosInit(Byte *g_FastPos)
    130 {
    131   unsigned slot;
    132   g_FastPos[0] = 0;
    133   g_FastPos[1] = 1;
    134   g_FastPos += 2;
    135 
    136   for (slot = 2; slot < kNumLogBits * 2; slot++)
    137   {
    138     size_t k = ((size_t)1 << ((slot >> 1) - 1));
    139     size_t j;
    140     for (j = 0; j < k; j++)
    141       g_FastPos[j] = (Byte)slot;
    142     g_FastPos += k;
    143   }
    144 }
    145 
    146 /* we can use ((limit - pos) >> 31) only if (pos < ((UInt32)1 << 31)) */
    147 /*
    148 #define BSR2_RET(pos, res) { UInt32 zz = 6 + ((kNumLogBits - 1) & \
    149   (0 - (((((UInt32)1 << (kNumLogBits + 6)) - 1) - pos) >> 31))); \
    150   res = p->g_FastPos[pos >> zz] + (zz * 2); }
    151 */
    152 
    153 /*
    154 #define BSR2_RET(pos, res) { UInt32 zz = 6 + ((kNumLogBits - 1) & \
    155   (0 - (((((UInt32)1 << (kNumLogBits)) - 1) - (pos >> 6)) >> 31))); \
    156   res = p->g_FastPos[pos >> zz] + (zz * 2); }
    157 */
    158 
    159 #define BSR2_RET(pos, res) { UInt32 zz = (pos < (1 << (kNumLogBits + 6))) ? 6 : 6 + kNumLogBits - 1; \
    160   res = p->g_FastPos[pos >> zz] + (zz * 2); }
    161 
    162 /*
    163 #define BSR2_RET(pos, res) { res = (pos < (1 << (kNumLogBits + 6))) ? \
    164   p->g_FastPos[pos >> 6] + 12 : \
    165   p->g_FastPos[pos >> (6 + kNumLogBits - 1)] + (6 + (kNumLogBits - 1)) * 2; }
    166 */
    167 
    168 #define GetPosSlot1(pos) p->g_FastPos[pos]
    169 #define GetPosSlot2(pos, res) { BSR2_RET(pos, res); }
    170 #define GetPosSlot(pos, res) { if (pos < kNumFullDistances) res = p->g_FastPos[pos]; else BSR2_RET(pos, res); }
    171 
    172 #endif
    173 
    174 
    175 #define LZMA_NUM_REPS 4
    176 
    177 typedef unsigned CState;
    178 
    179 typedef struct
    180 {
    181   UInt32 price;
    182 
    183   CState state;
    184   int prev1IsChar;
    185   int prev2;
    186 
    187   UInt32 posPrev2;
    188   UInt32 backPrev2;
    189 
    190   UInt32 posPrev;
    191   UInt32 backPrev;
    192   UInt32 backs[LZMA_NUM_REPS];
    193 } COptimal;
    194 
    195 #define kNumOpts (1 << 12)
    196 
    197 #define kNumLenToPosStates 4
    198 #define kNumPosSlotBits 6
    199 #define kDicLogSizeMin 0
    200 #define kDicLogSizeMax 32
    201 #define kDistTableSizeMax (kDicLogSizeMax * 2)
    202 
    203 
    204 #define kNumAlignBits 4
    205 #define kAlignTableSize (1 << kNumAlignBits)
    206 #define kAlignMask (kAlignTableSize - 1)
    207 
    208 #define kStartPosModelIndex 4
    209 #define kEndPosModelIndex 14
    210 #define kNumPosModels (kEndPosModelIndex - kStartPosModelIndex)
    211 
    212 #define kNumFullDistances (1 << (kEndPosModelIndex >> 1))
    213 
    214 #ifdef _LZMA_PROB32
    215 #define CLzmaProb UInt32
    216 #else
    217 #define CLzmaProb UInt16
    218 #endif
    219 
    220 #define LZMA_PB_MAX 4
    221 #define LZMA_LC_MAX 8
    222 #define LZMA_LP_MAX 4
    223 
    224 #define LZMA_NUM_PB_STATES_MAX (1 << LZMA_PB_MAX)
    225 
    226 
    227 #define kLenNumLowBits 3
    228 #define kLenNumLowSymbols (1 << kLenNumLowBits)
    229 #define kLenNumMidBits 3
    230 #define kLenNumMidSymbols (1 << kLenNumMidBits)
    231 #define kLenNumHighBits 8
    232 #define kLenNumHighSymbols (1 << kLenNumHighBits)
    233 
    234 #define kLenNumSymbolsTotal (kLenNumLowSymbols + kLenNumMidSymbols + kLenNumHighSymbols)
    235 
    236 #define LZMA_MATCH_LEN_MIN 2
    237 #define LZMA_MATCH_LEN_MAX (LZMA_MATCH_LEN_MIN + kLenNumSymbolsTotal - 1)
    238 
    239 #define kNumStates 12
    240 
    241 
    242 typedef struct
    243 {
    244   CLzmaProb choice;
    245   CLzmaProb choice2;
    246   CLzmaProb low[LZMA_NUM_PB_STATES_MAX << kLenNumLowBits];
    247   CLzmaProb mid[LZMA_NUM_PB_STATES_MAX << kLenNumMidBits];
    248   CLzmaProb high[kLenNumHighSymbols];
    249 } CLenEnc;
    250 
    251 
    252 typedef struct
    253 {
    254   CLenEnc p;
    255   UInt32 tableSize;
    256   UInt32 prices[LZMA_NUM_PB_STATES_MAX][kLenNumSymbolsTotal];
    257   UInt32 counters[LZMA_NUM_PB_STATES_MAX];
    258 } CLenPriceEnc;
    259 
    260 
    261 typedef struct
    262 {
    263   UInt32 range;
    264   Byte cache;
    265   UInt64 low;
    266   UInt64 cacheSize;
    267   Byte *buf;
    268   Byte *bufLim;
    269   Byte *bufBase;
    270   ISeqOutStream *outStream;
    271   UInt64 processed;
    272   SRes res;
    273 } CRangeEnc;
    274 
    275 
    276 typedef struct
    277 {
    278   CLzmaProb *litProbs;
    279 
    280   UInt32 state;
    281   UInt32 reps[LZMA_NUM_REPS];
    282 
    283   CLzmaProb isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX];
    284   CLzmaProb isRep[kNumStates];
    285   CLzmaProb isRepG0[kNumStates];
    286   CLzmaProb isRepG1[kNumStates];
    287   CLzmaProb isRepG2[kNumStates];
    288   CLzmaProb isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX];
    289 
    290   CLzmaProb posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits];
    291   CLzmaProb posEncoders[kNumFullDistances - kEndPosModelIndex];
    292   CLzmaProb posAlignEncoder[1 << kNumAlignBits];
    293 
    294   CLenPriceEnc lenEnc;
    295   CLenPriceEnc repLenEnc;
    296 } CSaveState;
    297 
    298 
    299 typedef struct
    300 {
    301   void *matchFinderObj;
    302   IMatchFinder matchFinder;
    303 
    304   UInt32 optimumEndIndex;
    305   UInt32 optimumCurrentIndex;
    306 
    307   UInt32 longestMatchLength;
    308   UInt32 numPairs;
    309   UInt32 numAvail;
    310 
    311   UInt32 numFastBytes;
    312   UInt32 additionalOffset;
    313   UInt32 reps[LZMA_NUM_REPS];
    314   UInt32 state;
    315 
    316   unsigned lc, lp, pb;
    317   unsigned lpMask, pbMask;
    318   unsigned lclp;
    319 
    320   CLzmaProb *litProbs;
    321 
    322   Bool fastMode;
    323   Bool writeEndMark;
    324   Bool finished;
    325   Bool multiThread;
    326   Bool needInit;
    327 
    328   UInt64 nowPos64;
    329 
    330   UInt32 matchPriceCount;
    331   UInt32 alignPriceCount;
    332 
    333   UInt32 distTableSize;
    334 
    335   UInt32 dictSize;
    336   SRes result;
    337 
    338   CRangeEnc rc;
    339 
    340   #ifndef _7ZIP_ST
    341   Bool mtMode;
    342   CMatchFinderMt matchFinderMt;
    343   #endif
    344 
    345   CMatchFinder matchFinderBase;
    346 
    347   #ifndef _7ZIP_ST
    348   Byte pad[128];
    349   #endif
    350 
    351   COptimal opt[kNumOpts];
    352 
    353   #ifndef LZMA_LOG_BSR
    354   Byte g_FastPos[1 << kNumLogBits];
    355   #endif
    356 
    357   UInt32 ProbPrices[kBitModelTotal >> kNumMoveReducingBits];
    358   UInt32 matches[LZMA_MATCH_LEN_MAX * 2 + 2 + 1];
    359 
    360   UInt32 posSlotPrices[kNumLenToPosStates][kDistTableSizeMax];
    361   UInt32 distancesPrices[kNumLenToPosStates][kNumFullDistances];
    362   UInt32 alignPrices[kAlignTableSize];
    363 
    364   CLzmaProb isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX];
    365   CLzmaProb isRep[kNumStates];
    366   CLzmaProb isRepG0[kNumStates];
    367   CLzmaProb isRepG1[kNumStates];
    368   CLzmaProb isRepG2[kNumStates];
    369   CLzmaProb isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX];
    370 
    371   CLzmaProb posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits];
    372   CLzmaProb posEncoders[kNumFullDistances - kEndPosModelIndex];
    373   CLzmaProb posAlignEncoder[1 << kNumAlignBits];
    374 
    375   CLenPriceEnc lenEnc;
    376   CLenPriceEnc repLenEnc;
    377 
    378   CSaveState saveState;
    379 
    380   #ifndef _7ZIP_ST
    381   Byte pad2[128];
    382   #endif
    383 } CLzmaEnc;
    384 
    385 
    386 void LzmaEnc_SaveState(CLzmaEncHandle pp)
    387 {
    388   CLzmaEnc *p = (CLzmaEnc *)pp;
    389   CSaveState *dest = &p->saveState;
    390   int i;
    391   dest->lenEnc = p->lenEnc;
    392   dest->repLenEnc = p->repLenEnc;
    393   dest->state = p->state;
    394 
    395   for (i = 0; i < kNumStates; i++)
    396   {
    397     memcpy(dest->isMatch[i], p->isMatch[i], sizeof(p->isMatch[i]));
    398     memcpy(dest->isRep0Long[i], p->isRep0Long[i], sizeof(p->isRep0Long[i]));
    399   }
    400   for (i = 0; i < kNumLenToPosStates; i++)
    401     memcpy(dest->posSlotEncoder[i], p->posSlotEncoder[i], sizeof(p->posSlotEncoder[i]));
    402   memcpy(dest->isRep, p->isRep, sizeof(p->isRep));
    403   memcpy(dest->isRepG0, p->isRepG0, sizeof(p->isRepG0));
    404   memcpy(dest->isRepG1, p->isRepG1, sizeof(p->isRepG1));
    405   memcpy(dest->isRepG2, p->isRepG2, sizeof(p->isRepG2));
    406   memcpy(dest->posEncoders, p->posEncoders, sizeof(p->posEncoders));
    407   memcpy(dest->posAlignEncoder, p->posAlignEncoder, sizeof(p->posAlignEncoder));
    408   memcpy(dest->reps, p->reps, sizeof(p->reps));
    409   memcpy(dest->litProbs, p->litProbs, ((UInt32)0x300 << p->lclp) * sizeof(CLzmaProb));
    410 }
    411 
    412 void LzmaEnc_RestoreState(CLzmaEncHandle pp)
    413 {
    414   CLzmaEnc *dest = (CLzmaEnc *)pp;
    415   const CSaveState *p = &dest->saveState;
    416   int i;
    417   dest->lenEnc = p->lenEnc;
    418   dest->repLenEnc = p->repLenEnc;
    419   dest->state = p->state;
    420 
    421   for (i = 0; i < kNumStates; i++)
    422   {
    423     memcpy(dest->isMatch[i], p->isMatch[i], sizeof(p->isMatch[i]));
    424     memcpy(dest->isRep0Long[i], p->isRep0Long[i], sizeof(p->isRep0Long[i]));
    425   }
    426   for (i = 0; i < kNumLenToPosStates; i++)
    427     memcpy(dest->posSlotEncoder[i], p->posSlotEncoder[i], sizeof(p->posSlotEncoder[i]));
    428   memcpy(dest->isRep, p->isRep, sizeof(p->isRep));
    429   memcpy(dest->isRepG0, p->isRepG0, sizeof(p->isRepG0));
    430   memcpy(dest->isRepG1, p->isRepG1, sizeof(p->isRepG1));
    431   memcpy(dest->isRepG2, p->isRepG2, sizeof(p->isRepG2));
    432   memcpy(dest->posEncoders, p->posEncoders, sizeof(p->posEncoders));
    433   memcpy(dest->posAlignEncoder, p->posAlignEncoder, sizeof(p->posAlignEncoder));
    434   memcpy(dest->reps, p->reps, sizeof(p->reps));
    435   memcpy(dest->litProbs, p->litProbs, ((UInt32)0x300 << dest->lclp) * sizeof(CLzmaProb));
    436 }
    437 
    438 SRes LzmaEnc_SetProps(CLzmaEncHandle pp, const CLzmaEncProps *props2)
    439 {
    440   CLzmaEnc *p = (CLzmaEnc *)pp;
    441   CLzmaEncProps props = *props2;
    442   LzmaEncProps_Normalize(&props);
    443 
    444   if (props.lc > LZMA_LC_MAX
    445       || props.lp > LZMA_LP_MAX
    446       || props.pb > LZMA_PB_MAX
    447       || props.dictSize > ((UInt64)1 << kDicLogSizeMaxCompress)
    448       || props.dictSize > kMaxHistorySize)
    449     return SZ_ERROR_PARAM;
    450 
    451   p->dictSize = props.dictSize;
    452   {
    453     unsigned fb = props.fb;
    454     if (fb < 5)
    455       fb = 5;
    456     if (fb > LZMA_MATCH_LEN_MAX)
    457       fb = LZMA_MATCH_LEN_MAX;
    458     p->numFastBytes = fb;
    459   }
    460   p->lc = props.lc;
    461   p->lp = props.lp;
    462   p->pb = props.pb;
    463   p->fastMode = (props.algo == 0);
    464   p->matchFinderBase.btMode = (Byte)(props.btMode ? 1 : 0);
    465   {
    466     UInt32 numHashBytes = 4;
    467     if (props.btMode)
    468     {
    469       if (props.numHashBytes < 2)
    470         numHashBytes = 2;
    471       else if (props.numHashBytes < 4)
    472         numHashBytes = props.numHashBytes;
    473     }
    474     p->matchFinderBase.numHashBytes = numHashBytes;
    475   }
    476 
    477   p->matchFinderBase.cutValue = props.mc;
    478 
    479   p->writeEndMark = props.writeEndMark;
    480 
    481   #ifndef _7ZIP_ST
    482   /*
    483   if (newMultiThread != _multiThread)
    484   {
    485     ReleaseMatchFinder();
    486     _multiThread = newMultiThread;
    487   }
    488   */
    489   p->multiThread = (props.numThreads > 1);
    490   #endif
    491 
    492   return SZ_OK;
    493 }
    494 
    495 static const int kLiteralNextStates[kNumStates] = {0, 0, 0, 0, 1, 2, 3, 4,  5,  6,   4, 5};
    496 static const int kMatchNextStates[kNumStates]   = {7, 7, 7, 7, 7, 7, 7, 10, 10, 10, 10, 10};
    497 static const int kRepNextStates[kNumStates]     = {8, 8, 8, 8, 8, 8, 8, 11, 11, 11, 11, 11};
    498 static const int kShortRepNextStates[kNumStates]= {9, 9, 9, 9, 9, 9, 9, 11, 11, 11, 11, 11};
    499 
    500 #define IsCharState(s) ((s) < 7)
    501 
    502 #define GetLenToPosState(len) (((len) < kNumLenToPosStates + 1) ? (len) - 2 : kNumLenToPosStates - 1)
    503 
    504 #define kInfinityPrice (1 << 30)
    505 
    506 static void RangeEnc_Construct(CRangeEnc *p)
    507 {
    508   p->outStream = NULL;
    509   p->bufBase = NULL;
    510 }
    511 
    512 #define RangeEnc_GetProcessed(p) ((p)->processed + ((p)->buf - (p)->bufBase) + (p)->cacheSize)
    513 
    514 #define RC_BUF_SIZE (1 << 16)
    515 static int RangeEnc_Alloc(CRangeEnc *p, ISzAlloc *alloc)
    516 {
    517   if (!p->bufBase)
    518   {
    519     p->bufBase = (Byte *)alloc->Alloc(alloc, RC_BUF_SIZE);
    520     if (!p->bufBase)
    521       return 0;
    522     p->bufLim = p->bufBase + RC_BUF_SIZE;
    523   }
    524   return 1;
    525 }
    526 
    527 static void RangeEnc_Free(CRangeEnc *p, ISzAlloc *alloc)
    528 {
    529   alloc->Free(alloc, p->bufBase);
    530   p->bufBase = 0;
    531 }
    532 
    533 static void RangeEnc_Init(CRangeEnc *p)
    534 {
    535   /* Stream.Init(); */
    536   p->low = 0;
    537   p->range = 0xFFFFFFFF;
    538   p->cacheSize = 1;
    539   p->cache = 0;
    540 
    541   p->buf = p->bufBase;
    542 
    543   p->processed = 0;
    544   p->res = SZ_OK;
    545 }
    546 
    547 static void RangeEnc_FlushStream(CRangeEnc *p)
    548 {
    549   size_t num;
    550   if (p->res != SZ_OK)
    551     return;
    552   num = p->buf - p->bufBase;
    553   if (num != p->outStream->Write(p->outStream, p->bufBase, num))
    554     p->res = SZ_ERROR_WRITE;
    555   p->processed += num;
    556   p->buf = p->bufBase;
    557 }
    558 
    559 static void MY_FAST_CALL RangeEnc_ShiftLow(CRangeEnc *p)
    560 {
    561   if ((UInt32)p->low < (UInt32)0xFF000000 || (unsigned)(p->low >> 32) != 0)
    562   {
    563     Byte temp = p->cache;
    564     do
    565     {
    566       Byte *buf = p->buf;
    567       *buf++ = (Byte)(temp + (Byte)(p->low >> 32));
    568       p->buf = buf;
    569       if (buf == p->bufLim)
    570         RangeEnc_FlushStream(p);
    571       temp = 0xFF;
    572     }
    573     while (--p->cacheSize != 0);
    574     p->cache = (Byte)((UInt32)p->low >> 24);
    575   }
    576   p->cacheSize++;
    577   p->low = (UInt32)p->low << 8;
    578 }
    579 
    580 static void RangeEnc_FlushData(CRangeEnc *p)
    581 {
    582   int i;
    583   for (i = 0; i < 5; i++)
    584     RangeEnc_ShiftLow(p);
    585 }
    586 
    587 static void RangeEnc_EncodeDirectBits(CRangeEnc *p, UInt32 value, unsigned numBits)
    588 {
    589   do
    590   {
    591     p->range >>= 1;
    592     p->low += p->range & (0 - ((value >> --numBits) & 1));
    593     if (p->range < kTopValue)
    594     {
    595       p->range <<= 8;
    596       RangeEnc_ShiftLow(p);
    597     }
    598   }
    599   while (numBits != 0);
    600 }
    601 
    602 static void RangeEnc_EncodeBit(CRangeEnc *p, CLzmaProb *prob, UInt32 symbol)
    603 {
    604   UInt32 ttt = *prob;
    605   UInt32 newBound = (p->range >> kNumBitModelTotalBits) * ttt;
    606   if (symbol == 0)
    607   {
    608     p->range = newBound;
    609     ttt += (kBitModelTotal - ttt) >> kNumMoveBits;
    610   }
    611   else
    612   {
    613     p->low += newBound;
    614     p->range -= newBound;
    615     ttt -= ttt >> kNumMoveBits;
    616   }
    617   *prob = (CLzmaProb)ttt;
    618   if (p->range < kTopValue)
    619   {
    620     p->range <<= 8;
    621     RangeEnc_ShiftLow(p);
    622   }
    623 }
    624 
    625 static void LitEnc_Encode(CRangeEnc *p, CLzmaProb *probs, UInt32 symbol)
    626 {
    627   symbol |= 0x100;
    628   do
    629   {
    630     RangeEnc_EncodeBit(p, probs + (symbol >> 8), (symbol >> 7) & 1);
    631     symbol <<= 1;
    632   }
    633   while (symbol < 0x10000);
    634 }
    635 
    636 static void LitEnc_EncodeMatched(CRangeEnc *p, CLzmaProb *probs, UInt32 symbol, UInt32 matchByte)
    637 {
    638   UInt32 offs = 0x100;
    639   symbol |= 0x100;
    640   do
    641   {
    642     matchByte <<= 1;
    643     RangeEnc_EncodeBit(p, probs + (offs + (matchByte & offs) + (symbol >> 8)), (symbol >> 7) & 1);
    644     symbol <<= 1;
    645     offs &= ~(matchByte ^ symbol);
    646   }
    647   while (symbol < 0x10000);
    648 }
    649 
    650 static void LzmaEnc_InitPriceTables(UInt32 *ProbPrices)
    651 {
    652   UInt32 i;
    653   for (i = (1 << kNumMoveReducingBits) / 2; i < kBitModelTotal; i += (1 << kNumMoveReducingBits))
    654   {
    655     const int kCyclesBits = kNumBitPriceShiftBits;
    656     UInt32 w = i;
    657     UInt32 bitCount = 0;
    658     int j;
    659     for (j = 0; j < kCyclesBits; j++)
    660     {
    661       w = w * w;
    662       bitCount <<= 1;
    663       while (w >= ((UInt32)1 << 16))
    664       {
    665         w >>= 1;
    666         bitCount++;
    667       }
    668     }
    669     ProbPrices[i >> kNumMoveReducingBits] = ((kNumBitModelTotalBits << kCyclesBits) - 15 - bitCount);
    670   }
    671 }
    672 
    673 
    674 #define GET_PRICE(prob, symbol) \
    675   p->ProbPrices[((prob) ^ (((-(int)(symbol))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits];
    676 
    677 #define GET_PRICEa(prob, symbol) \
    678   ProbPrices[((prob) ^ ((-((int)(symbol))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits];
    679 
    680 #define GET_PRICE_0(prob) p->ProbPrices[(prob) >> kNumMoveReducingBits]
    681 #define GET_PRICE_1(prob) p->ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits]
    682 
    683 #define GET_PRICE_0a(prob) ProbPrices[(prob) >> kNumMoveReducingBits]
    684 #define GET_PRICE_1a(prob) ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits]
    685 
    686 static UInt32 LitEnc_GetPrice(const CLzmaProb *probs, UInt32 symbol, const UInt32 *ProbPrices)
    687 {
    688   UInt32 price = 0;
    689   symbol |= 0x100;
    690   do
    691   {
    692     price += GET_PRICEa(probs[symbol >> 8], (symbol >> 7) & 1);
    693     symbol <<= 1;
    694   }
    695   while (symbol < 0x10000);
    696   return price;
    697 }
    698 
    699 static UInt32 LitEnc_GetPriceMatched(const CLzmaProb *probs, UInt32 symbol, UInt32 matchByte, const UInt32 *ProbPrices)
    700 {
    701   UInt32 price = 0;
    702   UInt32 offs = 0x100;
    703   symbol |= 0x100;
    704   do
    705   {
    706     matchByte <<= 1;
    707     price += GET_PRICEa(probs[offs + (matchByte & offs) + (symbol >> 8)], (symbol >> 7) & 1);
    708     symbol <<= 1;
    709     offs &= ~(matchByte ^ symbol);
    710   }
    711   while (symbol < 0x10000);
    712   return price;
    713 }
    714 
    715 
    716 static void RcTree_Encode(CRangeEnc *rc, CLzmaProb *probs, int numBitLevels, UInt32 symbol)
    717 {
    718   UInt32 m = 1;
    719   int i;
    720   for (i = numBitLevels; i != 0;)
    721   {
    722     UInt32 bit;
    723     i--;
    724     bit = (symbol >> i) & 1;
    725     RangeEnc_EncodeBit(rc, probs + m, bit);
    726     m = (m << 1) | bit;
    727   }
    728 }
    729 
    730 static void RcTree_ReverseEncode(CRangeEnc *rc, CLzmaProb *probs, int numBitLevels, UInt32 symbol)
    731 {
    732   UInt32 m = 1;
    733   int i;
    734   for (i = 0; i < numBitLevels; i++)
    735   {
    736     UInt32 bit = symbol & 1;
    737     RangeEnc_EncodeBit(rc, probs + m, bit);
    738     m = (m << 1) | bit;
    739     symbol >>= 1;
    740   }
    741 }
    742 
    743 static UInt32 RcTree_GetPrice(const CLzmaProb *probs, int numBitLevels, UInt32 symbol, const UInt32 *ProbPrices)
    744 {
    745   UInt32 price = 0;
    746   symbol |= (1 << numBitLevels);
    747   while (symbol != 1)
    748   {
    749     price += GET_PRICEa(probs[symbol >> 1], symbol & 1);
    750     symbol >>= 1;
    751   }
    752   return price;
    753 }
    754 
    755 static UInt32 RcTree_ReverseGetPrice(const CLzmaProb *probs, int numBitLevels, UInt32 symbol, const UInt32 *ProbPrices)
    756 {
    757   UInt32 price = 0;
    758   UInt32 m = 1;
    759   int i;
    760   for (i = numBitLevels; i != 0; i--)
    761   {
    762     UInt32 bit = symbol & 1;
    763     symbol >>= 1;
    764     price += GET_PRICEa(probs[m], bit);
    765     m = (m << 1) | bit;
    766   }
    767   return price;
    768 }
    769 
    770 
    771 static void LenEnc_Init(CLenEnc *p)
    772 {
    773   unsigned i;
    774   p->choice = p->choice2 = kProbInitValue;
    775   for (i = 0; i < (LZMA_NUM_PB_STATES_MAX << kLenNumLowBits); i++)
    776     p->low[i] = kProbInitValue;
    777   for (i = 0; i < (LZMA_NUM_PB_STATES_MAX << kLenNumMidBits); i++)
    778     p->mid[i] = kProbInitValue;
    779   for (i = 0; i < kLenNumHighSymbols; i++)
    780     p->high[i] = kProbInitValue;
    781 }
    782 
    783 static void LenEnc_Encode(CLenEnc *p, CRangeEnc *rc, UInt32 symbol, UInt32 posState)
    784 {
    785   if (symbol < kLenNumLowSymbols)
    786   {
    787     RangeEnc_EncodeBit(rc, &p->choice, 0);
    788     RcTree_Encode(rc, p->low + (posState << kLenNumLowBits), kLenNumLowBits, symbol);
    789   }
    790   else
    791   {
    792     RangeEnc_EncodeBit(rc, &p->choice, 1);
    793     if (symbol < kLenNumLowSymbols + kLenNumMidSymbols)
    794     {
    795       RangeEnc_EncodeBit(rc, &p->choice2, 0);
    796       RcTree_Encode(rc, p->mid + (posState << kLenNumMidBits), kLenNumMidBits, symbol - kLenNumLowSymbols);
    797     }
    798     else
    799     {
    800       RangeEnc_EncodeBit(rc, &p->choice2, 1);
    801       RcTree_Encode(rc, p->high, kLenNumHighBits, symbol - kLenNumLowSymbols - kLenNumMidSymbols);
    802     }
    803   }
    804 }
    805 
    806 static void LenEnc_SetPrices(CLenEnc *p, UInt32 posState, UInt32 numSymbols, UInt32 *prices, const UInt32 *ProbPrices)
    807 {
    808   UInt32 a0 = GET_PRICE_0a(p->choice);
    809   UInt32 a1 = GET_PRICE_1a(p->choice);
    810   UInt32 b0 = a1 + GET_PRICE_0a(p->choice2);
    811   UInt32 b1 = a1 + GET_PRICE_1a(p->choice2);
    812   UInt32 i = 0;
    813   for (i = 0; i < kLenNumLowSymbols; i++)
    814   {
    815     if (i >= numSymbols)
    816       return;
    817     prices[i] = a0 + RcTree_GetPrice(p->low + (posState << kLenNumLowBits), kLenNumLowBits, i, ProbPrices);
    818   }
    819   for (; i < kLenNumLowSymbols + kLenNumMidSymbols; i++)
    820   {
    821     if (i >= numSymbols)
    822       return;
    823     prices[i] = b0 + RcTree_GetPrice(p->mid + (posState << kLenNumMidBits), kLenNumMidBits, i - kLenNumLowSymbols, ProbPrices);
    824   }
    825   for (; i < numSymbols; i++)
    826     prices[i] = b1 + RcTree_GetPrice(p->high, kLenNumHighBits, i - kLenNumLowSymbols - kLenNumMidSymbols, ProbPrices);
    827 }
    828 
    829 static void MY_FAST_CALL LenPriceEnc_UpdateTable(CLenPriceEnc *p, UInt32 posState, const UInt32 *ProbPrices)
    830 {
    831   LenEnc_SetPrices(&p->p, posState, p->tableSize, p->prices[posState], ProbPrices);
    832   p->counters[posState] = p->tableSize;
    833 }
    834 
    835 static void LenPriceEnc_UpdateTables(CLenPriceEnc *p, UInt32 numPosStates, const UInt32 *ProbPrices)
    836 {
    837   UInt32 posState;
    838   for (posState = 0; posState < numPosStates; posState++)
    839     LenPriceEnc_UpdateTable(p, posState, ProbPrices);
    840 }
    841 
    842 static void LenEnc_Encode2(CLenPriceEnc *p, CRangeEnc *rc, UInt32 symbol, UInt32 posState, Bool updatePrice, const UInt32 *ProbPrices)
    843 {
    844   LenEnc_Encode(&p->p, rc, symbol, posState);
    845   if (updatePrice)
    846     if (--p->counters[posState] == 0)
    847       LenPriceEnc_UpdateTable(p, posState, ProbPrices);
    848 }
    849 
    850 
    851 
    852 
    853 static void MovePos(CLzmaEnc *p, UInt32 num)
    854 {
    855   #ifdef SHOW_STAT
    856   g_STAT_OFFSET += num;
    857   printf("\n MovePos %u", num);
    858   #endif
    859 
    860   if (num != 0)
    861   {
    862     p->additionalOffset += num;
    863     p->matchFinder.Skip(p->matchFinderObj, num);
    864   }
    865 }
    866 
    867 static UInt32 ReadMatchDistances(CLzmaEnc *p, UInt32 *numDistancePairsRes)
    868 {
    869   UInt32 lenRes = 0, numPairs;
    870   p->numAvail = p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
    871   numPairs = p->matchFinder.GetMatches(p->matchFinderObj, p->matches);
    872 
    873   #ifdef SHOW_STAT
    874   printf("\n i = %u numPairs = %u    ", g_STAT_OFFSET, numPairs / 2);
    875   g_STAT_OFFSET++;
    876   {
    877     UInt32 i;
    878     for (i = 0; i < numPairs; i += 2)
    879       printf("%2u %6u   | ", p->matches[i], p->matches[i + 1]);
    880   }
    881   #endif
    882 
    883   if (numPairs > 0)
    884   {
    885     lenRes = p->matches[numPairs - 2];
    886     if (lenRes == p->numFastBytes)
    887     {
    888       UInt32 numAvail = p->numAvail;
    889       if (numAvail > LZMA_MATCH_LEN_MAX)
    890         numAvail = LZMA_MATCH_LEN_MAX;
    891       {
    892         const Byte *pbyCur = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
    893         const Byte *pby = pbyCur + lenRes;
    894         ptrdiff_t dif = (ptrdiff_t)-1 - p->matches[numPairs - 1];
    895         const Byte *pbyLim = pbyCur + numAvail;
    896         for (; pby != pbyLim && *pby == pby[dif]; pby++);
    897         lenRes = (UInt32)(pby - pbyCur);
    898       }
    899     }
    900   }
    901   p->additionalOffset++;
    902   *numDistancePairsRes = numPairs;
    903   return lenRes;
    904 }
    905 
    906 
    907 #define MakeAsChar(p) (p)->backPrev = (UInt32)(-1); (p)->prev1IsChar = False;
    908 #define MakeAsShortRep(p) (p)->backPrev = 0; (p)->prev1IsChar = False;
    909 #define IsShortRep(p) ((p)->backPrev == 0)
    910 
    911 static UInt32 GetRepLen1Price(CLzmaEnc *p, UInt32 state, UInt32 posState)
    912 {
    913   return
    914     GET_PRICE_0(p->isRepG0[state]) +
    915     GET_PRICE_0(p->isRep0Long[state][posState]);
    916 }
    917 
    918 static UInt32 GetPureRepPrice(CLzmaEnc *p, UInt32 repIndex, UInt32 state, UInt32 posState)
    919 {
    920   UInt32 price;
    921   if (repIndex == 0)
    922   {
    923     price = GET_PRICE_0(p->isRepG0[state]);
    924     price += GET_PRICE_1(p->isRep0Long[state][posState]);
    925   }
    926   else
    927   {
    928     price = GET_PRICE_1(p->isRepG0[state]);
    929     if (repIndex == 1)
    930       price += GET_PRICE_0(p->isRepG1[state]);
    931     else
    932     {
    933       price += GET_PRICE_1(p->isRepG1[state]);
    934       price += GET_PRICE(p->isRepG2[state], repIndex - 2);
    935     }
    936   }
    937   return price;
    938 }
    939 
    940 static UInt32 GetRepPrice(CLzmaEnc *p, UInt32 repIndex, UInt32 len, UInt32 state, UInt32 posState)
    941 {
    942   return p->repLenEnc.prices[posState][len - LZMA_MATCH_LEN_MIN] +
    943     GetPureRepPrice(p, repIndex, state, posState);
    944 }
    945 
    946 static UInt32 Backward(CLzmaEnc *p, UInt32 *backRes, UInt32 cur)
    947 {
    948   UInt32 posMem = p->opt[cur].posPrev;
    949   UInt32 backMem = p->opt[cur].backPrev;
    950   p->optimumEndIndex = cur;
    951   do
    952   {
    953     if (p->opt[cur].prev1IsChar)
    954     {
    955       MakeAsChar(&p->opt[posMem])
    956       p->opt[posMem].posPrev = posMem - 1;
    957       if (p->opt[cur].prev2)
    958       {
    959         p->opt[posMem - 1].prev1IsChar = False;
    960         p->opt[posMem - 1].posPrev = p->opt[cur].posPrev2;
    961         p->opt[posMem - 1].backPrev = p->opt[cur].backPrev2;
    962       }
    963     }
    964     {
    965       UInt32 posPrev = posMem;
    966       UInt32 backCur = backMem;
    967 
    968       backMem = p->opt[posPrev].backPrev;
    969       posMem = p->opt[posPrev].posPrev;
    970 
    971       p->opt[posPrev].backPrev = backCur;
    972       p->opt[posPrev].posPrev = cur;
    973       cur = posPrev;
    974     }
    975   }
    976   while (cur != 0);
    977   *backRes = p->opt[0].backPrev;
    978   p->optimumCurrentIndex  = p->opt[0].posPrev;
    979   return p->optimumCurrentIndex;
    980 }
    981 
    982 #define LIT_PROBS(pos, prevByte) (p->litProbs + ((((pos) & p->lpMask) << p->lc) + ((prevByte) >> (8 - p->lc))) * (UInt32)0x300)
    983 
    984 static UInt32 GetOptimum(CLzmaEnc *p, UInt32 position, UInt32 *backRes)
    985 {
    986   UInt32 lenEnd, cur;
    987   UInt32 reps[LZMA_NUM_REPS], repLens[LZMA_NUM_REPS];
    988   UInt32 *matches;
    989 
    990   {
    991 
    992   UInt32 numAvail, mainLen, numPairs, repMaxIndex, i, posState, len;
    993   UInt32 matchPrice, repMatchPrice, normalMatchPrice;
    994   const Byte *data;
    995   Byte curByte, matchByte;
    996 
    997   if (p->optimumEndIndex != p->optimumCurrentIndex)
    998   {
    999     const COptimal *opt = &p->opt[p->optimumCurrentIndex];
   1000     UInt32 lenRes = opt->posPrev - p->optimumCurrentIndex;
   1001     *backRes = opt->backPrev;
   1002     p->optimumCurrentIndex = opt->posPrev;
   1003     return lenRes;
   1004   }
   1005   p->optimumCurrentIndex = p->optimumEndIndex = 0;
   1006 
   1007   if (p->additionalOffset == 0)
   1008     mainLen = ReadMatchDistances(p, &numPairs);
   1009   else
   1010   {
   1011     mainLen = p->longestMatchLength;
   1012     numPairs = p->numPairs;
   1013   }
   1014 
   1015   numAvail = p->numAvail;
   1016   if (numAvail < 2)
   1017   {
   1018     *backRes = (UInt32)(-1);
   1019     return 1;
   1020   }
   1021   if (numAvail > LZMA_MATCH_LEN_MAX)
   1022     numAvail = LZMA_MATCH_LEN_MAX;
   1023 
   1024   data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
   1025   repMaxIndex = 0;
   1026   for (i = 0; i < LZMA_NUM_REPS; i++)
   1027   {
   1028     UInt32 lenTest;
   1029     const Byte *data2;
   1030     reps[i] = p->reps[i];
   1031     data2 = data - reps[i] - 1;
   1032     if (data[0] != data2[0] || data[1] != data2[1])
   1033     {
   1034       repLens[i] = 0;
   1035       continue;
   1036     }
   1037     for (lenTest = 2; lenTest < numAvail && data[lenTest] == data2[lenTest]; lenTest++);
   1038     repLens[i] = lenTest;
   1039     if (lenTest > repLens[repMaxIndex])
   1040       repMaxIndex = i;
   1041   }
   1042   if (repLens[repMaxIndex] >= p->numFastBytes)
   1043   {
   1044     UInt32 lenRes;
   1045     *backRes = repMaxIndex;
   1046     lenRes = repLens[repMaxIndex];
   1047     MovePos(p, lenRes - 1);
   1048     return lenRes;
   1049   }
   1050 
   1051   matches = p->matches;
   1052   if (mainLen >= p->numFastBytes)
   1053   {
   1054     *backRes = matches[numPairs - 1] + LZMA_NUM_REPS;
   1055     MovePos(p, mainLen - 1);
   1056     return mainLen;
   1057   }
   1058   curByte = *data;
   1059   matchByte = *(data - (reps[0] + 1));
   1060 
   1061   if (mainLen < 2 && curByte != matchByte && repLens[repMaxIndex] < 2)
   1062   {
   1063     *backRes = (UInt32)-1;
   1064     return 1;
   1065   }
   1066 
   1067   p->opt[0].state = (CState)p->state;
   1068 
   1069   posState = (position & p->pbMask);
   1070 
   1071   {
   1072     const CLzmaProb *probs = LIT_PROBS(position, *(data - 1));
   1073     p->opt[1].price = GET_PRICE_0(p->isMatch[p->state][posState]) +
   1074         (!IsCharState(p->state) ?
   1075           LitEnc_GetPriceMatched(probs, curByte, matchByte, p->ProbPrices) :
   1076           LitEnc_GetPrice(probs, curByte, p->ProbPrices));
   1077   }
   1078 
   1079   MakeAsChar(&p->opt[1]);
   1080 
   1081   matchPrice = GET_PRICE_1(p->isMatch[p->state][posState]);
   1082   repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[p->state]);
   1083 
   1084   if (matchByte == curByte)
   1085   {
   1086     UInt32 shortRepPrice = repMatchPrice + GetRepLen1Price(p, p->state, posState);
   1087     if (shortRepPrice < p->opt[1].price)
   1088     {
   1089       p->opt[1].price = shortRepPrice;
   1090       MakeAsShortRep(&p->opt[1]);
   1091     }
   1092   }
   1093   lenEnd = ((mainLen >= repLens[repMaxIndex]) ? mainLen : repLens[repMaxIndex]);
   1094 
   1095   if (lenEnd < 2)
   1096   {
   1097     *backRes = p->opt[1].backPrev;
   1098     return 1;
   1099   }
   1100 
   1101   p->opt[1].posPrev = 0;
   1102   for (i = 0; i < LZMA_NUM_REPS; i++)
   1103     p->opt[0].backs[i] = reps[i];
   1104 
   1105   len = lenEnd;
   1106   do
   1107     p->opt[len--].price = kInfinityPrice;
   1108   while (len >= 2);
   1109 
   1110   for (i = 0; i < LZMA_NUM_REPS; i++)
   1111   {
   1112     UInt32 repLen = repLens[i];
   1113     UInt32 price;
   1114     if (repLen < 2)
   1115       continue;
   1116     price = repMatchPrice + GetPureRepPrice(p, i, p->state, posState);
   1117     do
   1118     {
   1119       UInt32 curAndLenPrice = price + p->repLenEnc.prices[posState][repLen - 2];
   1120       COptimal *opt = &p->opt[repLen];
   1121       if (curAndLenPrice < opt->price)
   1122       {
   1123         opt->price = curAndLenPrice;
   1124         opt->posPrev = 0;
   1125         opt->backPrev = i;
   1126         opt->prev1IsChar = False;
   1127       }
   1128     }
   1129     while (--repLen >= 2);
   1130   }
   1131 
   1132   normalMatchPrice = matchPrice + GET_PRICE_0(p->isRep[p->state]);
   1133 
   1134   len = ((repLens[0] >= 2) ? repLens[0] + 1 : 2);
   1135   if (len <= mainLen)
   1136   {
   1137     UInt32 offs = 0;
   1138     while (len > matches[offs])
   1139       offs += 2;
   1140     for (; ; len++)
   1141     {
   1142       COptimal *opt;
   1143       UInt32 distance = matches[offs + 1];
   1144 
   1145       UInt32 curAndLenPrice = normalMatchPrice + p->lenEnc.prices[posState][len - LZMA_MATCH_LEN_MIN];
   1146       UInt32 lenToPosState = GetLenToPosState(len);
   1147       if (distance < kNumFullDistances)
   1148         curAndLenPrice += p->distancesPrices[lenToPosState][distance];
   1149       else
   1150       {
   1151         UInt32 slot;
   1152         GetPosSlot2(distance, slot);
   1153         curAndLenPrice += p->alignPrices[distance & kAlignMask] + p->posSlotPrices[lenToPosState][slot];
   1154       }
   1155       opt = &p->opt[len];
   1156       if (curAndLenPrice < opt->price)
   1157       {
   1158         opt->price = curAndLenPrice;
   1159         opt->posPrev = 0;
   1160         opt->backPrev = distance + LZMA_NUM_REPS;
   1161         opt->prev1IsChar = False;
   1162       }
   1163       if (len == matches[offs])
   1164       {
   1165         offs += 2;
   1166         if (offs == numPairs)
   1167           break;
   1168       }
   1169     }
   1170   }
   1171 
   1172   cur = 0;
   1173 
   1174     #ifdef SHOW_STAT2
   1175     /* if (position >= 0) */
   1176     {
   1177       unsigned i;
   1178       printf("\n pos = %4X", position);
   1179       for (i = cur; i <= lenEnd; i++)
   1180       printf("\nprice[%4X] = %u", position - cur + i, p->opt[i].price);
   1181     }
   1182     #endif
   1183 
   1184   }
   1185 
   1186   for (;;)
   1187   {
   1188     UInt32 numAvail;
   1189     UInt32 numAvailFull, newLen, numPairs, posPrev, state, posState, startLen;
   1190     UInt32 curPrice, curAnd1Price, matchPrice, repMatchPrice;
   1191     Bool nextIsChar;
   1192     Byte curByte, matchByte;
   1193     const Byte *data;
   1194     COptimal *curOpt;
   1195     COptimal *nextOpt;
   1196 
   1197     cur++;
   1198     if (cur == lenEnd)
   1199       return Backward(p, backRes, cur);
   1200 
   1201     newLen = ReadMatchDistances(p, &numPairs);
   1202     if (newLen >= p->numFastBytes)
   1203     {
   1204       p->numPairs = numPairs;
   1205       p->longestMatchLength = newLen;
   1206       return Backward(p, backRes, cur);
   1207     }
   1208     position++;
   1209     curOpt = &p->opt[cur];
   1210     posPrev = curOpt->posPrev;
   1211     if (curOpt->prev1IsChar)
   1212     {
   1213       posPrev--;
   1214       if (curOpt->prev2)
   1215       {
   1216         state = p->opt[curOpt->posPrev2].state;
   1217         if (curOpt->backPrev2 < LZMA_NUM_REPS)
   1218           state = kRepNextStates[state];
   1219         else
   1220           state = kMatchNextStates[state];
   1221       }
   1222       else
   1223         state = p->opt[posPrev].state;
   1224       state = kLiteralNextStates[state];
   1225     }
   1226     else
   1227       state = p->opt[posPrev].state;
   1228     if (posPrev == cur - 1)
   1229     {
   1230       if (IsShortRep(curOpt))
   1231         state = kShortRepNextStates[state];
   1232       else
   1233         state = kLiteralNextStates[state];
   1234     }
   1235     else
   1236     {
   1237       UInt32 pos;
   1238       const COptimal *prevOpt;
   1239       if (curOpt->prev1IsChar && curOpt->prev2)
   1240       {
   1241         posPrev = curOpt->posPrev2;
   1242         pos = curOpt->backPrev2;
   1243         state = kRepNextStates[state];
   1244       }
   1245       else
   1246       {
   1247         pos = curOpt->backPrev;
   1248         if (pos < LZMA_NUM_REPS)
   1249           state = kRepNextStates[state];
   1250         else
   1251           state = kMatchNextStates[state];
   1252       }
   1253       prevOpt = &p->opt[posPrev];
   1254       if (pos < LZMA_NUM_REPS)
   1255       {
   1256         UInt32 i;
   1257         reps[0] = prevOpt->backs[pos];
   1258         for (i = 1; i <= pos; i++)
   1259           reps[i] = prevOpt->backs[i - 1];
   1260         for (; i < LZMA_NUM_REPS; i++)
   1261           reps[i] = prevOpt->backs[i];
   1262       }
   1263       else
   1264       {
   1265         UInt32 i;
   1266         reps[0] = (pos - LZMA_NUM_REPS);
   1267         for (i = 1; i < LZMA_NUM_REPS; i++)
   1268           reps[i] = prevOpt->backs[i - 1];
   1269       }
   1270     }
   1271     curOpt->state = (CState)state;
   1272 
   1273     curOpt->backs[0] = reps[0];
   1274     curOpt->backs[1] = reps[1];
   1275     curOpt->backs[2] = reps[2];
   1276     curOpt->backs[3] = reps[3];
   1277 
   1278     curPrice = curOpt->price;
   1279     nextIsChar = False;
   1280     data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
   1281     curByte = *data;
   1282     matchByte = *(data - (reps[0] + 1));
   1283 
   1284     posState = (position & p->pbMask);
   1285 
   1286     curAnd1Price = curPrice + GET_PRICE_0(p->isMatch[state][posState]);
   1287     {
   1288       const CLzmaProb *probs = LIT_PROBS(position, *(data - 1));
   1289       curAnd1Price +=
   1290         (!IsCharState(state) ?
   1291           LitEnc_GetPriceMatched(probs, curByte, matchByte, p->ProbPrices) :
   1292           LitEnc_GetPrice(probs, curByte, p->ProbPrices));
   1293     }
   1294 
   1295     nextOpt = &p->opt[cur + 1];
   1296 
   1297     if (curAnd1Price < nextOpt->price)
   1298     {
   1299       nextOpt->price = curAnd1Price;
   1300       nextOpt->posPrev = cur;
   1301       MakeAsChar(nextOpt);
   1302       nextIsChar = True;
   1303     }
   1304 
   1305     matchPrice = curPrice + GET_PRICE_1(p->isMatch[state][posState]);
   1306     repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[state]);
   1307 
   1308     if (matchByte == curByte && !(nextOpt->posPrev < cur && nextOpt->backPrev == 0))
   1309     {
   1310       UInt32 shortRepPrice = repMatchPrice + GetRepLen1Price(p, state, posState);
   1311       if (shortRepPrice <= nextOpt->price)
   1312       {
   1313         nextOpt->price = shortRepPrice;
   1314         nextOpt->posPrev = cur;
   1315         MakeAsShortRep(nextOpt);
   1316         nextIsChar = True;
   1317       }
   1318     }
   1319     numAvailFull = p->numAvail;
   1320     {
   1321       UInt32 temp = kNumOpts - 1 - cur;
   1322       if (temp < numAvailFull)
   1323         numAvailFull = temp;
   1324     }
   1325 
   1326     if (numAvailFull < 2)
   1327       continue;
   1328     numAvail = (numAvailFull <= p->numFastBytes ? numAvailFull : p->numFastBytes);
   1329 
   1330     if (!nextIsChar && matchByte != curByte) /* speed optimization */
   1331     {
   1332       /* try Literal + rep0 */
   1333       UInt32 temp;
   1334       UInt32 lenTest2;
   1335       const Byte *data2 = data - reps[0] - 1;
   1336       UInt32 limit = p->numFastBytes + 1;
   1337       if (limit > numAvailFull)
   1338         limit = numAvailFull;
   1339 
   1340       for (temp = 1; temp < limit && data[temp] == data2[temp]; temp++);
   1341       lenTest2 = temp - 1;
   1342       if (lenTest2 >= 2)
   1343       {
   1344         UInt32 state2 = kLiteralNextStates[state];
   1345         UInt32 posStateNext = (position + 1) & p->pbMask;
   1346         UInt32 nextRepMatchPrice = curAnd1Price +
   1347             GET_PRICE_1(p->isMatch[state2][posStateNext]) +
   1348             GET_PRICE_1(p->isRep[state2]);
   1349         /* for (; lenTest2 >= 2; lenTest2--) */
   1350         {
   1351           UInt32 curAndLenPrice;
   1352           COptimal *opt;
   1353           UInt32 offset = cur + 1 + lenTest2;
   1354           while (lenEnd < offset)
   1355             p->opt[++lenEnd].price = kInfinityPrice;
   1356           curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext);
   1357           opt = &p->opt[offset];
   1358           if (curAndLenPrice < opt->price)
   1359           {
   1360             opt->price = curAndLenPrice;
   1361             opt->posPrev = cur + 1;
   1362             opt->backPrev = 0;
   1363             opt->prev1IsChar = True;
   1364             opt->prev2 = False;
   1365           }
   1366         }
   1367       }
   1368     }
   1369 
   1370     startLen = 2; /* speed optimization */
   1371     {
   1372     UInt32 repIndex;
   1373     for (repIndex = 0; repIndex < LZMA_NUM_REPS; repIndex++)
   1374     {
   1375       UInt32 lenTest;
   1376       UInt32 lenTestTemp;
   1377       UInt32 price;
   1378       const Byte *data2 = data - reps[repIndex] - 1;
   1379       if (data[0] != data2[0] || data[1] != data2[1])
   1380         continue;
   1381       for (lenTest = 2; lenTest < numAvail && data[lenTest] == data2[lenTest]; lenTest++);
   1382       while (lenEnd < cur + lenTest)
   1383         p->opt[++lenEnd].price = kInfinityPrice;
   1384       lenTestTemp = lenTest;
   1385       price = repMatchPrice + GetPureRepPrice(p, repIndex, state, posState);
   1386       do
   1387       {
   1388         UInt32 curAndLenPrice = price + p->repLenEnc.prices[posState][lenTest - 2];
   1389         COptimal *opt = &p->opt[cur + lenTest];
   1390         if (curAndLenPrice < opt->price)
   1391         {
   1392           opt->price = curAndLenPrice;
   1393           opt->posPrev = cur;
   1394           opt->backPrev = repIndex;
   1395           opt->prev1IsChar = False;
   1396         }
   1397       }
   1398       while (--lenTest >= 2);
   1399       lenTest = lenTestTemp;
   1400 
   1401       if (repIndex == 0)
   1402         startLen = lenTest + 1;
   1403 
   1404       /* if (_maxMode) */
   1405         {
   1406           UInt32 lenTest2 = lenTest + 1;
   1407           UInt32 limit = lenTest2 + p->numFastBytes;
   1408           if (limit > numAvailFull)
   1409             limit = numAvailFull;
   1410           for (; lenTest2 < limit && data[lenTest2] == data2[lenTest2]; lenTest2++);
   1411           lenTest2 -= lenTest + 1;
   1412           if (lenTest2 >= 2)
   1413           {
   1414             UInt32 nextRepMatchPrice;
   1415             UInt32 state2 = kRepNextStates[state];
   1416             UInt32 posStateNext = (position + lenTest) & p->pbMask;
   1417             UInt32 curAndLenCharPrice =
   1418                 price + p->repLenEnc.prices[posState][lenTest - 2] +
   1419                 GET_PRICE_0(p->isMatch[state2][posStateNext]) +
   1420                 LitEnc_GetPriceMatched(LIT_PROBS(position + lenTest, data[lenTest - 1]),
   1421                     data[lenTest], data2[lenTest], p->ProbPrices);
   1422             state2 = kLiteralNextStates[state2];
   1423             posStateNext = (position + lenTest + 1) & p->pbMask;
   1424             nextRepMatchPrice = curAndLenCharPrice +
   1425                 GET_PRICE_1(p->isMatch[state2][posStateNext]) +
   1426                 GET_PRICE_1(p->isRep[state2]);
   1427 
   1428             /* for (; lenTest2 >= 2; lenTest2--) */
   1429             {
   1430               UInt32 curAndLenPrice;
   1431               COptimal *opt;
   1432               UInt32 offset = cur + lenTest + 1 + lenTest2;
   1433               while (lenEnd < offset)
   1434                 p->opt[++lenEnd].price = kInfinityPrice;
   1435               curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext);
   1436               opt = &p->opt[offset];
   1437               if (curAndLenPrice < opt->price)
   1438               {
   1439                 opt->price = curAndLenPrice;
   1440                 opt->posPrev = cur + lenTest + 1;
   1441                 opt->backPrev = 0;
   1442                 opt->prev1IsChar = True;
   1443                 opt->prev2 = True;
   1444                 opt->posPrev2 = cur;
   1445                 opt->backPrev2 = repIndex;
   1446               }
   1447             }
   1448           }
   1449         }
   1450     }
   1451     }
   1452     /* for (UInt32 lenTest = 2; lenTest <= newLen; lenTest++) */
   1453     if (newLen > numAvail)
   1454     {
   1455       newLen = numAvail;
   1456       for (numPairs = 0; newLen > matches[numPairs]; numPairs += 2);
   1457       matches[numPairs] = newLen;
   1458       numPairs += 2;
   1459     }
   1460     if (newLen >= startLen)
   1461     {
   1462       UInt32 normalMatchPrice = matchPrice + GET_PRICE_0(p->isRep[state]);
   1463       UInt32 offs, curBack, posSlot;
   1464       UInt32 lenTest;
   1465       while (lenEnd < cur + newLen)
   1466         p->opt[++lenEnd].price = kInfinityPrice;
   1467 
   1468       offs = 0;
   1469       while (startLen > matches[offs])
   1470         offs += 2;
   1471       curBack = matches[offs + 1];
   1472       GetPosSlot2(curBack, posSlot);
   1473       for (lenTest = /*2*/ startLen; ; lenTest++)
   1474       {
   1475         UInt32 curAndLenPrice = normalMatchPrice + p->lenEnc.prices[posState][lenTest - LZMA_MATCH_LEN_MIN];
   1476         {
   1477         UInt32 lenToPosState = GetLenToPosState(lenTest);
   1478         COptimal *opt;
   1479         if (curBack < kNumFullDistances)
   1480           curAndLenPrice += p->distancesPrices[lenToPosState][curBack];
   1481         else
   1482           curAndLenPrice += p->posSlotPrices[lenToPosState][posSlot] + p->alignPrices[curBack & kAlignMask];
   1483 
   1484         opt = &p->opt[cur + lenTest];
   1485         if (curAndLenPrice < opt->price)
   1486         {
   1487           opt->price = curAndLenPrice;
   1488           opt->posPrev = cur;
   1489           opt->backPrev = curBack + LZMA_NUM_REPS;
   1490           opt->prev1IsChar = False;
   1491         }
   1492         }
   1493 
   1494         if (/*_maxMode && */lenTest == matches[offs])
   1495         {
   1496           /* Try Match + Literal + Rep0 */
   1497           const Byte *data2 = data - curBack - 1;
   1498           UInt32 lenTest2 = lenTest + 1;
   1499           UInt32 limit = lenTest2 + p->numFastBytes;
   1500           if (limit > numAvailFull)
   1501             limit = numAvailFull;
   1502           for (; lenTest2 < limit && data[lenTest2] == data2[lenTest2]; lenTest2++);
   1503           lenTest2 -= lenTest + 1;
   1504           if (lenTest2 >= 2)
   1505           {
   1506             UInt32 nextRepMatchPrice;
   1507             UInt32 state2 = kMatchNextStates[state];
   1508             UInt32 posStateNext = (position + lenTest) & p->pbMask;
   1509             UInt32 curAndLenCharPrice = curAndLenPrice +
   1510                 GET_PRICE_0(p->isMatch[state2][posStateNext]) +
   1511                 LitEnc_GetPriceMatched(LIT_PROBS(position + lenTest, data[lenTest - 1]),
   1512                     data[lenTest], data2[lenTest], p->ProbPrices);
   1513             state2 = kLiteralNextStates[state2];
   1514             posStateNext = (posStateNext + 1) & p->pbMask;
   1515             nextRepMatchPrice = curAndLenCharPrice +
   1516                 GET_PRICE_1(p->isMatch[state2][posStateNext]) +
   1517                 GET_PRICE_1(p->isRep[state2]);
   1518 
   1519             /* for (; lenTest2 >= 2; lenTest2--) */
   1520             {
   1521               UInt32 offset = cur + lenTest + 1 + lenTest2;
   1522               UInt32 curAndLenPrice2;
   1523               COptimal *opt;
   1524               while (lenEnd < offset)
   1525                 p->opt[++lenEnd].price = kInfinityPrice;
   1526               curAndLenPrice2 = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext);
   1527               opt = &p->opt[offset];
   1528               if (curAndLenPrice2 < opt->price)
   1529               {
   1530                 opt->price = curAndLenPrice2;
   1531                 opt->posPrev = cur + lenTest + 1;
   1532                 opt->backPrev = 0;
   1533                 opt->prev1IsChar = True;
   1534                 opt->prev2 = True;
   1535                 opt->posPrev2 = cur;
   1536                 opt->backPrev2 = curBack + LZMA_NUM_REPS;
   1537               }
   1538             }
   1539           }
   1540           offs += 2;
   1541           if (offs == numPairs)
   1542             break;
   1543           curBack = matches[offs + 1];
   1544           if (curBack >= kNumFullDistances)
   1545             GetPosSlot2(curBack, posSlot);
   1546         }
   1547       }
   1548     }
   1549   }
   1550 }
   1551 
   1552 #define ChangePair(smallDist, bigDist) (((bigDist) >> 7) > (smallDist))
   1553 
   1554 static UInt32 GetOptimumFast(CLzmaEnc *p, UInt32 *backRes)
   1555 {
   1556   UInt32 numAvail, mainLen, mainDist, numPairs, repIndex, repLen, i;
   1557   const Byte *data;
   1558   const UInt32 *matches;
   1559 
   1560   if (p->additionalOffset == 0)
   1561     mainLen = ReadMatchDistances(p, &numPairs);
   1562   else
   1563   {
   1564     mainLen = p->longestMatchLength;
   1565     numPairs = p->numPairs;
   1566   }
   1567 
   1568   numAvail = p->numAvail;
   1569   *backRes = (UInt32)-1;
   1570   if (numAvail < 2)
   1571     return 1;
   1572   if (numAvail > LZMA_MATCH_LEN_MAX)
   1573     numAvail = LZMA_MATCH_LEN_MAX;
   1574   data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
   1575 
   1576   repLen = repIndex = 0;
   1577   for (i = 0; i < LZMA_NUM_REPS; i++)
   1578   {
   1579     UInt32 len;
   1580     const Byte *data2 = data - p->reps[i] - 1;
   1581     if (data[0] != data2[0] || data[1] != data2[1])
   1582       continue;
   1583     for (len = 2; len < numAvail && data[len] == data2[len]; len++);
   1584     if (len >= p->numFastBytes)
   1585     {
   1586       *backRes = i;
   1587       MovePos(p, len - 1);
   1588       return len;
   1589     }
   1590     if (len > repLen)
   1591     {
   1592       repIndex = i;
   1593       repLen = len;
   1594     }
   1595   }
   1596 
   1597   matches = p->matches;
   1598   if (mainLen >= p->numFastBytes)
   1599   {
   1600     *backRes = matches[numPairs - 1] + LZMA_NUM_REPS;
   1601     MovePos(p, mainLen - 1);
   1602     return mainLen;
   1603   }
   1604 
   1605   mainDist = 0; /* for GCC */
   1606   if (mainLen >= 2)
   1607   {
   1608     mainDist = matches[numPairs - 1];
   1609     while (numPairs > 2 && mainLen == matches[numPairs - 4] + 1)
   1610     {
   1611       if (!ChangePair(matches[numPairs - 3], mainDist))
   1612         break;
   1613       numPairs -= 2;
   1614       mainLen = matches[numPairs - 2];
   1615       mainDist = matches[numPairs - 1];
   1616     }
   1617     if (mainLen == 2 && mainDist >= 0x80)
   1618       mainLen = 1;
   1619   }
   1620 
   1621   if (repLen >= 2 && (
   1622         (repLen + 1 >= mainLen) ||
   1623         (repLen + 2 >= mainLen && mainDist >= (1 << 9)) ||
   1624         (repLen + 3 >= mainLen && mainDist >= (1 << 15))))
   1625   {
   1626     *backRes = repIndex;
   1627     MovePos(p, repLen - 1);
   1628     return repLen;
   1629   }
   1630 
   1631   if (mainLen < 2 || numAvail <= 2)
   1632     return 1;
   1633 
   1634   p->longestMatchLength = ReadMatchDistances(p, &p->numPairs);
   1635   if (p->longestMatchLength >= 2)
   1636   {
   1637     UInt32 newDistance = matches[p->numPairs - 1];
   1638     if ((p->longestMatchLength >= mainLen && newDistance < mainDist) ||
   1639         (p->longestMatchLength == mainLen + 1 && !ChangePair(mainDist, newDistance)) ||
   1640         (p->longestMatchLength > mainLen + 1) ||
   1641         (p->longestMatchLength + 1 >= mainLen && mainLen >= 3 && ChangePair(newDistance, mainDist)))
   1642       return 1;
   1643   }
   1644 
   1645   data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
   1646   for (i = 0; i < LZMA_NUM_REPS; i++)
   1647   {
   1648     UInt32 len, limit;
   1649     const Byte *data2 = data - p->reps[i] - 1;
   1650     if (data[0] != data2[0] || data[1] != data2[1])
   1651       continue;
   1652     limit = mainLen - 1;
   1653     for (len = 2; len < limit && data[len] == data2[len]; len++);
   1654     if (len >= limit)
   1655       return 1;
   1656   }
   1657   *backRes = mainDist + LZMA_NUM_REPS;
   1658   MovePos(p, mainLen - 2);
   1659   return mainLen;
   1660 }
   1661 
   1662 static void WriteEndMarker(CLzmaEnc *p, UInt32 posState)
   1663 {
   1664   UInt32 len;
   1665   RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 1);
   1666   RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 0);
   1667   p->state = kMatchNextStates[p->state];
   1668   len = LZMA_MATCH_LEN_MIN;
   1669   LenEnc_Encode2(&p->lenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices);
   1670   RcTree_Encode(&p->rc, p->posSlotEncoder[GetLenToPosState(len)], kNumPosSlotBits, (1 << kNumPosSlotBits) - 1);
   1671   RangeEnc_EncodeDirectBits(&p->rc, (((UInt32)1 << 30) - 1) >> kNumAlignBits, 30 - kNumAlignBits);
   1672   RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, kAlignMask);
   1673 }
   1674 
   1675 static SRes CheckErrors(CLzmaEnc *p)
   1676 {
   1677   if (p->result != SZ_OK)
   1678     return p->result;
   1679   if (p->rc.res != SZ_OK)
   1680     p->result = SZ_ERROR_WRITE;
   1681   if (p->matchFinderBase.result != SZ_OK)
   1682     p->result = SZ_ERROR_READ;
   1683   if (p->result != SZ_OK)
   1684     p->finished = True;
   1685   return p->result;
   1686 }
   1687 
   1688 static SRes Flush(CLzmaEnc *p, UInt32 nowPos)
   1689 {
   1690   /* ReleaseMFStream(); */
   1691   p->finished = True;
   1692   if (p->writeEndMark)
   1693     WriteEndMarker(p, nowPos & p->pbMask);
   1694   RangeEnc_FlushData(&p->rc);
   1695   RangeEnc_FlushStream(&p->rc);
   1696   return CheckErrors(p);
   1697 }
   1698 
   1699 static void FillAlignPrices(CLzmaEnc *p)
   1700 {
   1701   UInt32 i;
   1702   for (i = 0; i < kAlignTableSize; i++)
   1703     p->alignPrices[i] = RcTree_ReverseGetPrice(p->posAlignEncoder, kNumAlignBits, i, p->ProbPrices);
   1704   p->alignPriceCount = 0;
   1705 }
   1706 
   1707 static void FillDistancesPrices(CLzmaEnc *p)
   1708 {
   1709   UInt32 tempPrices[kNumFullDistances];
   1710   UInt32 i, lenToPosState;
   1711   for (i = kStartPosModelIndex; i < kNumFullDistances; i++)
   1712   {
   1713     UInt32 posSlot = GetPosSlot1(i);
   1714     UInt32 footerBits = ((posSlot >> 1) - 1);
   1715     UInt32 base = ((2 | (posSlot & 1)) << footerBits);
   1716     tempPrices[i] = RcTree_ReverseGetPrice(p->posEncoders + base - posSlot - 1, footerBits, i - base, p->ProbPrices);
   1717   }
   1718 
   1719   for (lenToPosState = 0; lenToPosState < kNumLenToPosStates; lenToPosState++)
   1720   {
   1721     UInt32 posSlot;
   1722     const CLzmaProb *encoder = p->posSlotEncoder[lenToPosState];
   1723     UInt32 *posSlotPrices = p->posSlotPrices[lenToPosState];
   1724     for (posSlot = 0; posSlot < p->distTableSize; posSlot++)
   1725       posSlotPrices[posSlot] = RcTree_GetPrice(encoder, kNumPosSlotBits, posSlot, p->ProbPrices);
   1726     for (posSlot = kEndPosModelIndex; posSlot < p->distTableSize; posSlot++)
   1727       posSlotPrices[posSlot] += ((((posSlot >> 1) - 1) - kNumAlignBits) << kNumBitPriceShiftBits);
   1728 
   1729     {
   1730       UInt32 *distancesPrices = p->distancesPrices[lenToPosState];
   1731       for (i = 0; i < kStartPosModelIndex; i++)
   1732         distancesPrices[i] = posSlotPrices[i];
   1733       for (; i < kNumFullDistances; i++)
   1734         distancesPrices[i] = posSlotPrices[GetPosSlot1(i)] + tempPrices[i];
   1735     }
   1736   }
   1737   p->matchPriceCount = 0;
   1738 }
   1739 
   1740 void LzmaEnc_Construct(CLzmaEnc *p)
   1741 {
   1742   RangeEnc_Construct(&p->rc);
   1743   MatchFinder_Construct(&p->matchFinderBase);
   1744 
   1745   #ifndef _7ZIP_ST
   1746   MatchFinderMt_Construct(&p->matchFinderMt);
   1747   p->matchFinderMt.MatchFinder = &p->matchFinderBase;
   1748   #endif
   1749 
   1750   {
   1751     CLzmaEncProps props;
   1752     LzmaEncProps_Init(&props);
   1753     LzmaEnc_SetProps(p, &props);
   1754   }
   1755 
   1756   #ifndef LZMA_LOG_BSR
   1757   LzmaEnc_FastPosInit(p->g_FastPos);
   1758   #endif
   1759 
   1760   LzmaEnc_InitPriceTables(p->ProbPrices);
   1761   p->litProbs = NULL;
   1762   p->saveState.litProbs = NULL;
   1763 }
   1764 
   1765 CLzmaEncHandle LzmaEnc_Create(ISzAlloc *alloc)
   1766 {
   1767   void *p;
   1768   p = alloc->Alloc(alloc, sizeof(CLzmaEnc));
   1769   if (p)
   1770     LzmaEnc_Construct((CLzmaEnc *)p);
   1771   return p;
   1772 }
   1773 
   1774 void LzmaEnc_FreeLits(CLzmaEnc *p, ISzAlloc *alloc)
   1775 {
   1776   alloc->Free(alloc, p->litProbs);
   1777   alloc->Free(alloc, p->saveState.litProbs);
   1778   p->litProbs = NULL;
   1779   p->saveState.litProbs = NULL;
   1780 }
   1781 
   1782 void LzmaEnc_Destruct(CLzmaEnc *p, ISzAlloc *alloc, ISzAlloc *allocBig)
   1783 {
   1784   #ifndef _7ZIP_ST
   1785   MatchFinderMt_Destruct(&p->matchFinderMt, allocBig);
   1786   #endif
   1787 
   1788   MatchFinder_Free(&p->matchFinderBase, allocBig);
   1789   LzmaEnc_FreeLits(p, alloc);
   1790   RangeEnc_Free(&p->rc, alloc);
   1791 }
   1792 
   1793 void LzmaEnc_Destroy(CLzmaEncHandle p, ISzAlloc *alloc, ISzAlloc *allocBig)
   1794 {
   1795   LzmaEnc_Destruct((CLzmaEnc *)p, alloc, allocBig);
   1796   alloc->Free(alloc, p);
   1797 }
   1798 
   1799 static SRes LzmaEnc_CodeOneBlock(CLzmaEnc *p, Bool useLimits, UInt32 maxPackSize, UInt32 maxUnpackSize)
   1800 {
   1801   UInt32 nowPos32, startPos32;
   1802   if (p->needInit)
   1803   {
   1804     p->matchFinder.Init(p->matchFinderObj);
   1805     p->needInit = 0;
   1806   }
   1807 
   1808   if (p->finished)
   1809     return p->result;
   1810   RINOK(CheckErrors(p));
   1811 
   1812   nowPos32 = (UInt32)p->nowPos64;
   1813   startPos32 = nowPos32;
   1814 
   1815   if (p->nowPos64 == 0)
   1816   {
   1817     UInt32 numPairs;
   1818     Byte curByte;
   1819     if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) == 0)
   1820       return Flush(p, nowPos32);
   1821     ReadMatchDistances(p, &numPairs);
   1822     RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][0], 0);
   1823     p->state = kLiteralNextStates[p->state];
   1824     curByte = *(p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset);
   1825     LitEnc_Encode(&p->rc, p->litProbs, curByte);
   1826     p->additionalOffset--;
   1827     nowPos32++;
   1828   }
   1829 
   1830   if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) != 0)
   1831   for (;;)
   1832   {
   1833     UInt32 pos, len, posState;
   1834 
   1835     if (p->fastMode)
   1836       len = GetOptimumFast(p, &pos);
   1837     else
   1838       len = GetOptimum(p, nowPos32, &pos);
   1839 
   1840     #ifdef SHOW_STAT2
   1841     printf("\n pos = %4X,   len = %u   pos = %u", nowPos32, len, pos);
   1842     #endif
   1843 
   1844     posState = nowPos32 & p->pbMask;
   1845     if (len == 1 && pos == (UInt32)-1)
   1846     {
   1847       Byte curByte;
   1848       CLzmaProb *probs;
   1849       const Byte *data;
   1850 
   1851       RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 0);
   1852       data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset;
   1853       curByte = *data;
   1854       probs = LIT_PROBS(nowPos32, *(data - 1));
   1855       if (IsCharState(p->state))
   1856         LitEnc_Encode(&p->rc, probs, curByte);
   1857       else
   1858         LitEnc_EncodeMatched(&p->rc, probs, curByte, *(data - p->reps[0] - 1));
   1859       p->state = kLiteralNextStates[p->state];
   1860     }
   1861     else
   1862     {
   1863       RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 1);
   1864       if (pos < LZMA_NUM_REPS)
   1865       {
   1866         RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 1);
   1867         if (pos == 0)
   1868         {
   1869           RangeEnc_EncodeBit(&p->rc, &p->isRepG0[p->state], 0);
   1870           RangeEnc_EncodeBit(&p->rc, &p->isRep0Long[p->state][posState], ((len == 1) ? 0 : 1));
   1871         }
   1872         else
   1873         {
   1874           UInt32 distance = p->reps[pos];
   1875           RangeEnc_EncodeBit(&p->rc, &p->isRepG0[p->state], 1);
   1876           if (pos == 1)
   1877             RangeEnc_EncodeBit(&p->rc, &p->isRepG1[p->state], 0);
   1878           else
   1879           {
   1880             RangeEnc_EncodeBit(&p->rc, &p->isRepG1[p->state], 1);
   1881             RangeEnc_EncodeBit(&p->rc, &p->isRepG2[p->state], pos - 2);
   1882             if (pos == 3)
   1883               p->reps[3] = p->reps[2];
   1884             p->reps[2] = p->reps[1];
   1885           }
   1886           p->reps[1] = p->reps[0];
   1887           p->reps[0] = distance;
   1888         }
   1889         if (len == 1)
   1890           p->state = kShortRepNextStates[p->state];
   1891         else
   1892         {
   1893           LenEnc_Encode2(&p->repLenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices);
   1894           p->state = kRepNextStates[p->state];
   1895         }
   1896       }
   1897       else
   1898       {
   1899         UInt32 posSlot;
   1900         RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 0);
   1901         p->state = kMatchNextStates[p->state];
   1902         LenEnc_Encode2(&p->lenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices);
   1903         pos -= LZMA_NUM_REPS;
   1904         GetPosSlot(pos, posSlot);
   1905         RcTree_Encode(&p->rc, p->posSlotEncoder[GetLenToPosState(len)], kNumPosSlotBits, posSlot);
   1906 
   1907         if (posSlot >= kStartPosModelIndex)
   1908         {
   1909           UInt32 footerBits = ((posSlot >> 1) - 1);
   1910           UInt32 base = ((2 | (posSlot & 1)) << footerBits);
   1911           UInt32 posReduced = pos - base;
   1912 
   1913           if (posSlot < kEndPosModelIndex)
   1914             RcTree_ReverseEncode(&p->rc, p->posEncoders + base - posSlot - 1, footerBits, posReduced);
   1915           else
   1916           {
   1917             RangeEnc_EncodeDirectBits(&p->rc, posReduced >> kNumAlignBits, footerBits - kNumAlignBits);
   1918             RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, posReduced & kAlignMask);
   1919             p->alignPriceCount++;
   1920           }
   1921         }
   1922         p->reps[3] = p->reps[2];
   1923         p->reps[2] = p->reps[1];
   1924         p->reps[1] = p->reps[0];
   1925         p->reps[0] = pos;
   1926         p->matchPriceCount++;
   1927       }
   1928     }
   1929     p->additionalOffset -= len;
   1930     nowPos32 += len;
   1931     if (p->additionalOffset == 0)
   1932     {
   1933       UInt32 processed;
   1934       if (!p->fastMode)
   1935       {
   1936         if (p->matchPriceCount >= (1 << 7))
   1937           FillDistancesPrices(p);
   1938         if (p->alignPriceCount >= kAlignTableSize)
   1939           FillAlignPrices(p);
   1940       }
   1941       if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) == 0)
   1942         break;
   1943       processed = nowPos32 - startPos32;
   1944       if (useLimits)
   1945       {
   1946         if (processed + kNumOpts + 300 >= maxUnpackSize ||
   1947             RangeEnc_GetProcessed(&p->rc) + kNumOpts * 2 >= maxPackSize)
   1948           break;
   1949       }
   1950       else if (processed >= (1 << 17))
   1951       {
   1952         p->nowPos64 += nowPos32 - startPos32;
   1953         return CheckErrors(p);
   1954       }
   1955     }
   1956   }
   1957   p->nowPos64 += nowPos32 - startPos32;
   1958   return Flush(p, nowPos32);
   1959 }
   1960 
   1961 #define kBigHashDicLimit ((UInt32)1 << 24)
   1962 
   1963 static SRes LzmaEnc_Alloc(CLzmaEnc *p, UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig)
   1964 {
   1965   UInt32 beforeSize = kNumOpts;
   1966   if (!RangeEnc_Alloc(&p->rc, alloc))
   1967     return SZ_ERROR_MEM;
   1968 
   1969   #ifndef _7ZIP_ST
   1970   p->mtMode = (p->multiThread && !p->fastMode && (p->matchFinderBase.btMode != 0));
   1971   #endif
   1972 
   1973   {
   1974     unsigned lclp = p->lc + p->lp;
   1975     if (!p->litProbs || !p->saveState.litProbs || p->lclp != lclp)
   1976     {
   1977       LzmaEnc_FreeLits(p, alloc);
   1978       p->litProbs = (CLzmaProb *)alloc->Alloc(alloc, ((UInt32)0x300 << lclp) * sizeof(CLzmaProb));
   1979       p->saveState.litProbs = (CLzmaProb *)alloc->Alloc(alloc, ((UInt32)0x300 << lclp) * sizeof(CLzmaProb));
   1980       if (!p->litProbs || !p->saveState.litProbs)
   1981       {
   1982         LzmaEnc_FreeLits(p, alloc);
   1983         return SZ_ERROR_MEM;
   1984       }
   1985       p->lclp = lclp;
   1986     }
   1987   }
   1988 
   1989   p->matchFinderBase.bigHash = (Byte)(p->dictSize > kBigHashDicLimit ? 1 : 0);
   1990 
   1991   if (beforeSize + p->dictSize < keepWindowSize)
   1992     beforeSize = keepWindowSize - p->dictSize;
   1993 
   1994   #ifndef _7ZIP_ST
   1995   if (p->mtMode)
   1996   {
   1997     RINOK(MatchFinderMt_Create(&p->matchFinderMt, p->dictSize, beforeSize, p->numFastBytes, LZMA_MATCH_LEN_MAX, allocBig));
   1998     p->matchFinderObj = &p->matchFinderMt;
   1999     MatchFinderMt_CreateVTable(&p->matchFinderMt, &p->matchFinder);
   2000   }
   2001   else
   2002   #endif
   2003   {
   2004     if (!MatchFinder_Create(&p->matchFinderBase, p->dictSize, beforeSize, p->numFastBytes, LZMA_MATCH_LEN_MAX, allocBig))
   2005       return SZ_ERROR_MEM;
   2006     p->matchFinderObj = &p->matchFinderBase;
   2007     MatchFinder_CreateVTable(&p->matchFinderBase, &p->matchFinder);
   2008   }
   2009 
   2010   return SZ_OK;
   2011 }
   2012 
   2013 void LzmaEnc_Init(CLzmaEnc *p)
   2014 {
   2015   UInt32 i;
   2016   p->state = 0;
   2017   for (i = 0 ; i < LZMA_NUM_REPS; i++)
   2018     p->reps[i] = 0;
   2019 
   2020   RangeEnc_Init(&p->rc);
   2021 
   2022 
   2023   for (i = 0; i < kNumStates; i++)
   2024   {
   2025     UInt32 j;
   2026     for (j = 0; j < LZMA_NUM_PB_STATES_MAX; j++)
   2027     {
   2028       p->isMatch[i][j] = kProbInitValue;
   2029       p->isRep0Long[i][j] = kProbInitValue;
   2030     }
   2031     p->isRep[i] = kProbInitValue;
   2032     p->isRepG0[i] = kProbInitValue;
   2033     p->isRepG1[i] = kProbInitValue;
   2034     p->isRepG2[i] = kProbInitValue;
   2035   }
   2036 
   2037   {
   2038     UInt32 num = (UInt32)0x300 << (p->lp + p->lc);
   2039     CLzmaProb *probs = p->litProbs;
   2040     for (i = 0; i < num; i++)
   2041       probs[i] = kProbInitValue;
   2042   }
   2043 
   2044   {
   2045     for (i = 0; i < kNumLenToPosStates; i++)
   2046     {
   2047       CLzmaProb *probs = p->posSlotEncoder[i];
   2048       UInt32 j;
   2049       for (j = 0; j < (1 << kNumPosSlotBits); j++)
   2050         probs[j] = kProbInitValue;
   2051     }
   2052   }
   2053   {
   2054     for (i = 0; i < kNumFullDistances - kEndPosModelIndex; i++)
   2055       p->posEncoders[i] = kProbInitValue;
   2056   }
   2057 
   2058   LenEnc_Init(&p->lenEnc.p);
   2059   LenEnc_Init(&p->repLenEnc.p);
   2060 
   2061   for (i = 0; i < (1 << kNumAlignBits); i++)
   2062     p->posAlignEncoder[i] = kProbInitValue;
   2063 
   2064   p->optimumEndIndex = 0;
   2065   p->optimumCurrentIndex = 0;
   2066   p->additionalOffset = 0;
   2067 
   2068   p->pbMask = (1 << p->pb) - 1;
   2069   p->lpMask = (1 << p->lp) - 1;
   2070 }
   2071 
   2072 void LzmaEnc_InitPrices(CLzmaEnc *p)
   2073 {
   2074   if (!p->fastMode)
   2075   {
   2076     FillDistancesPrices(p);
   2077     FillAlignPrices(p);
   2078   }
   2079 
   2080   p->lenEnc.tableSize =
   2081   p->repLenEnc.tableSize =
   2082       p->numFastBytes + 1 - LZMA_MATCH_LEN_MIN;
   2083   LenPriceEnc_UpdateTables(&p->lenEnc, 1 << p->pb, p->ProbPrices);
   2084   LenPriceEnc_UpdateTables(&p->repLenEnc, 1 << p->pb, p->ProbPrices);
   2085 }
   2086 
   2087 static SRes LzmaEnc_AllocAndInit(CLzmaEnc *p, UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig)
   2088 {
   2089   UInt32 i;
   2090   for (i = 0; i < (UInt32)kDicLogSizeMaxCompress; i++)
   2091     if (p->dictSize <= ((UInt32)1 << i))
   2092       break;
   2093   p->distTableSize = i * 2;
   2094 
   2095   p->finished = False;
   2096   p->result = SZ_OK;
   2097   RINOK(LzmaEnc_Alloc(p, keepWindowSize, alloc, allocBig));
   2098   LzmaEnc_Init(p);
   2099   LzmaEnc_InitPrices(p);
   2100   p->nowPos64 = 0;
   2101   return SZ_OK;
   2102 }
   2103 
   2104 static SRes LzmaEnc_Prepare(CLzmaEncHandle pp, ISeqOutStream *outStream, ISeqInStream *inStream,
   2105     ISzAlloc *alloc, ISzAlloc *allocBig)
   2106 {
   2107   CLzmaEnc *p = (CLzmaEnc *)pp;
   2108   p->matchFinderBase.stream = inStream;
   2109   p->needInit = 1;
   2110   p->rc.outStream = outStream;
   2111   return LzmaEnc_AllocAndInit(p, 0, alloc, allocBig);
   2112 }
   2113 
   2114 SRes LzmaEnc_PrepareForLzma2(CLzmaEncHandle pp,
   2115     ISeqInStream *inStream, UInt32 keepWindowSize,
   2116     ISzAlloc *alloc, ISzAlloc *allocBig)
   2117 {
   2118   CLzmaEnc *p = (CLzmaEnc *)pp;
   2119   p->matchFinderBase.stream = inStream;
   2120   p->needInit = 1;
   2121   return LzmaEnc_AllocAndInit(p, keepWindowSize, alloc, allocBig);
   2122 }
   2123 
   2124 static void LzmaEnc_SetInputBuf(CLzmaEnc *p, const Byte *src, SizeT srcLen)
   2125 {
   2126   p->matchFinderBase.directInput = 1;
   2127   p->matchFinderBase.bufferBase = (Byte *)src;
   2128   p->matchFinderBase.directInputRem = srcLen;
   2129 }
   2130 
   2131 SRes LzmaEnc_MemPrepare(CLzmaEncHandle pp, const Byte *src, SizeT srcLen,
   2132     UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig)
   2133 {
   2134   CLzmaEnc *p = (CLzmaEnc *)pp;
   2135   LzmaEnc_SetInputBuf(p, src, srcLen);
   2136   p->needInit = 1;
   2137 
   2138   return LzmaEnc_AllocAndInit(p, keepWindowSize, alloc, allocBig);
   2139 }
   2140 
   2141 void LzmaEnc_Finish(CLzmaEncHandle pp)
   2142 {
   2143   #ifndef _7ZIP_ST
   2144   CLzmaEnc *p = (CLzmaEnc *)pp;
   2145   if (p->mtMode)
   2146     MatchFinderMt_ReleaseStream(&p->matchFinderMt);
   2147   #else
   2148   UNUSED_VAR(pp);
   2149   #endif
   2150 }
   2151 
   2152 
   2153 typedef struct
   2154 {
   2155   ISeqOutStream funcTable;
   2156   Byte *data;
   2157   SizeT rem;
   2158   Bool overflow;
   2159 } CSeqOutStreamBuf;
   2160 
   2161 static size_t MyWrite(void *pp, const void *data, size_t size)
   2162 {
   2163   CSeqOutStreamBuf *p = (CSeqOutStreamBuf *)pp;
   2164   if (p->rem < size)
   2165   {
   2166     size = p->rem;
   2167     p->overflow = True;
   2168   }
   2169   memcpy(p->data, data, size);
   2170   p->rem -= size;
   2171   p->data += size;
   2172   return size;
   2173 }
   2174 
   2175 
   2176 UInt32 LzmaEnc_GetNumAvailableBytes(CLzmaEncHandle pp)
   2177 {
   2178   const CLzmaEnc *p = (CLzmaEnc *)pp;
   2179   return p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
   2180 }
   2181 
   2182 
   2183 const Byte *LzmaEnc_GetCurBuf(CLzmaEncHandle pp)
   2184 {
   2185   const CLzmaEnc *p = (CLzmaEnc *)pp;
   2186   return p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset;
   2187 }
   2188 
   2189 
   2190 SRes LzmaEnc_CodeOneMemBlock(CLzmaEncHandle pp, Bool reInit,
   2191     Byte *dest, size_t *destLen, UInt32 desiredPackSize, UInt32 *unpackSize)
   2192 {
   2193   CLzmaEnc *p = (CLzmaEnc *)pp;
   2194   UInt64 nowPos64;
   2195   SRes res;
   2196   CSeqOutStreamBuf outStream;
   2197 
   2198   outStream.funcTable.Write = MyWrite;
   2199   outStream.data = dest;
   2200   outStream.rem = *destLen;
   2201   outStream.overflow = False;
   2202 
   2203   p->writeEndMark = False;
   2204   p->finished = False;
   2205   p->result = SZ_OK;
   2206 
   2207   if (reInit)
   2208     LzmaEnc_Init(p);
   2209   LzmaEnc_InitPrices(p);
   2210   nowPos64 = p->nowPos64;
   2211   RangeEnc_Init(&p->rc);
   2212   p->rc.outStream = &outStream.funcTable;
   2213 
   2214   res = LzmaEnc_CodeOneBlock(p, True, desiredPackSize, *unpackSize);
   2215 
   2216   *unpackSize = (UInt32)(p->nowPos64 - nowPos64);
   2217   *destLen -= outStream.rem;
   2218   if (outStream.overflow)
   2219     return SZ_ERROR_OUTPUT_EOF;
   2220 
   2221   return res;
   2222 }
   2223 
   2224 
   2225 static SRes LzmaEnc_Encode2(CLzmaEnc *p, ICompressProgress *progress)
   2226 {
   2227   SRes res = SZ_OK;
   2228 
   2229   #ifndef _7ZIP_ST
   2230   Byte allocaDummy[0x300];
   2231   allocaDummy[0] = 0;
   2232   allocaDummy[1] = allocaDummy[0];
   2233   #endif
   2234 
   2235   for (;;)
   2236   {
   2237     res = LzmaEnc_CodeOneBlock(p, False, 0, 0);
   2238     if (res != SZ_OK || p->finished)
   2239       break;
   2240     if (progress)
   2241     {
   2242       res = progress->Progress(progress, p->nowPos64, RangeEnc_GetProcessed(&p->rc));
   2243       if (res != SZ_OK)
   2244       {
   2245         res = SZ_ERROR_PROGRESS;
   2246         break;
   2247       }
   2248     }
   2249   }
   2250 
   2251   LzmaEnc_Finish(p);
   2252 
   2253   /*
   2254   if (res == S_OK && !Inline_MatchFinder_IsFinishedOK(&p->matchFinderBase))
   2255     res = SZ_ERROR_FAIL;
   2256   }
   2257   */
   2258 
   2259   return res;
   2260 }
   2261 
   2262 
   2263 SRes LzmaEnc_Encode(CLzmaEncHandle pp, ISeqOutStream *outStream, ISeqInStream *inStream, ICompressProgress *progress,
   2264     ISzAlloc *alloc, ISzAlloc *allocBig)
   2265 {
   2266   RINOK(LzmaEnc_Prepare(pp, outStream, inStream, alloc, allocBig));
   2267   return LzmaEnc_Encode2((CLzmaEnc *)pp, progress);
   2268 }
   2269 
   2270 
   2271 SRes LzmaEnc_WriteProperties(CLzmaEncHandle pp, Byte *props, SizeT *size)
   2272 {
   2273   CLzmaEnc *p = (CLzmaEnc *)pp;
   2274   unsigned i;
   2275   UInt32 dictSize = p->dictSize;
   2276   if (*size < LZMA_PROPS_SIZE)
   2277     return SZ_ERROR_PARAM;
   2278   *size = LZMA_PROPS_SIZE;
   2279   props[0] = (Byte)((p->pb * 5 + p->lp) * 9 + p->lc);
   2280 
   2281   if (dictSize >= ((UInt32)1 << 22))
   2282   {
   2283     UInt32 kDictMask = ((UInt32)1 << 20) - 1;
   2284     if (dictSize < (UInt32)0xFFFFFFFF - kDictMask)
   2285       dictSize = (dictSize + kDictMask) & ~kDictMask;
   2286   }
   2287   else for (i = 11; i <= 30; i++)
   2288   {
   2289     if (dictSize <= ((UInt32)2 << i)) { dictSize = (2 << i); break; }
   2290     if (dictSize <= ((UInt32)3 << i)) { dictSize = (3 << i); break; }
   2291   }
   2292 
   2293   for (i = 0; i < 4; i++)
   2294     props[1 + i] = (Byte)(dictSize >> (8 * i));
   2295   return SZ_OK;
   2296 }
   2297 
   2298 
   2299 SRes LzmaEnc_MemEncode(CLzmaEncHandle pp, Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
   2300     int writeEndMark, ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig)
   2301 {
   2302   SRes res;
   2303   CLzmaEnc *p = (CLzmaEnc *)pp;
   2304 
   2305   CSeqOutStreamBuf outStream;
   2306 
   2307   outStream.funcTable.Write = MyWrite;
   2308   outStream.data = dest;
   2309   outStream.rem = *destLen;
   2310   outStream.overflow = False;
   2311 
   2312   p->writeEndMark = writeEndMark;
   2313   p->rc.outStream = &outStream.funcTable;
   2314 
   2315   res = LzmaEnc_MemPrepare(pp, src, srcLen, 0, alloc, allocBig);
   2316 
   2317   if (res == SZ_OK)
   2318   {
   2319     res = LzmaEnc_Encode2(p, progress);
   2320     if (res == SZ_OK && p->nowPos64 != srcLen)
   2321       res = SZ_ERROR_FAIL;
   2322   }
   2323 
   2324   *destLen -= outStream.rem;
   2325   if (outStream.overflow)
   2326     return SZ_ERROR_OUTPUT_EOF;
   2327   return res;
   2328 }
   2329 
   2330 
   2331 SRes LzmaEncode(Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
   2332     const CLzmaEncProps *props, Byte *propsEncoded, SizeT *propsSize, int writeEndMark,
   2333     ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig)
   2334 {
   2335   CLzmaEnc *p = (CLzmaEnc *)LzmaEnc_Create(alloc);
   2336   SRes res;
   2337   if (!p)
   2338     return SZ_ERROR_MEM;
   2339 
   2340   res = LzmaEnc_SetProps(p, props);
   2341   if (res == SZ_OK)
   2342   {
   2343     res = LzmaEnc_WriteProperties(p, propsEncoded, propsSize);
   2344     if (res == SZ_OK)
   2345       res = LzmaEnc_MemEncode(p, dest, destLen, src, srcLen,
   2346           writeEndMark, progress, alloc, allocBig);
   2347   }
   2348 
   2349   LzmaEnc_Destroy(p, alloc, allocBig);
   2350   return res;
   2351 }
   2352