Home | History | Annotate | Download | only in util
      1 /**************************************************************************
      2  *
      3  * Copyright 2008 VMware, Inc.
      4  * All Rights Reserved.
      5  *
      6  * Permission is hereby granted, free of charge, to any person obtaining a
      7  * copy of this software and associated documentation files (the
      8  * "Software"), to deal in the Software without restriction, including
      9  * without limitation the rights to use, copy, modify, merge, publish,
     10  * distribute, sub license, and/or sell copies of the Software, and to
     11  * permit persons to whom the Software is furnished to do so, subject to
     12  * the following conditions:
     13  *
     14  * The above copyright notice and this permission notice (including the
     15  * next paragraph) shall be included in all copies or substantial portions
     16  * of the Software.
     17  *
     18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
     19  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
     20  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
     21  * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
     22  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
     23  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
     24  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
     25  *
     26  **************************************************************************/
     27 
     28 /**
     29  * @file
     30  * SSE intrinsics portability header.
     31  *
     32  * Although the SSE intrinsics are support by all modern x86 and x86-64
     33  * compilers, there are some intrisincs missing in some implementations
     34  * (especially older MSVC versions). This header abstracts that away.
     35  */
     36 
     37 #ifndef U_SSE_H_
     38 #define U_SSE_H_
     39 
     40 #include "pipe/p_config.h"
     41 
     42 #if defined(PIPE_ARCH_SSE)
     43 
     44 #include <emmintrin.h>
     45 
     46 
     47 union m128i {
     48    __m128i m;
     49    ubyte ub[16];
     50    ushort us[8];
     51    uint ui[4];
     52 };
     53 
     54 static inline void u_print_epi8(const char *name, __m128i r)
     55 {
     56    union { __m128i m; ubyte ub[16]; } u;
     57    u.m = r;
     58 
     59    debug_printf("%s: "
     60                 "%02x/"
     61                 "%02x/"
     62                 "%02x/"
     63                 "%02x/"
     64                 "%02x/"
     65                 "%02x/"
     66                 "%02x/"
     67                 "%02x/"
     68                 "%02x/"
     69                 "%02x/"
     70                 "%02x/"
     71                 "%02x/"
     72                 "%02x/"
     73                 "%02x/"
     74                 "%02x/"
     75                 "%02x\n",
     76                 name,
     77                 u.ub[0],  u.ub[1],  u.ub[2],  u.ub[3],
     78                 u.ub[4],  u.ub[5],  u.ub[6],  u.ub[7],
     79                 u.ub[8],  u.ub[9],  u.ub[10], u.ub[11],
     80                 u.ub[12], u.ub[13], u.ub[14], u.ub[15]);
     81 }
     82 
     83 static inline void u_print_epi16(const char *name, __m128i r)
     84 {
     85    union { __m128i m; ushort us[8]; } u;
     86    u.m = r;
     87 
     88    debug_printf("%s: "
     89                 "%04x/"
     90                 "%04x/"
     91                 "%04x/"
     92                 "%04x/"
     93                 "%04x/"
     94                 "%04x/"
     95                 "%04x/"
     96                 "%04x\n",
     97                 name,
     98                 u.us[0],  u.us[1],  u.us[2],  u.us[3],
     99                 u.us[4],  u.us[5],  u.us[6],  u.us[7]);
    100 }
    101 
    102 static inline void u_print_epi32(const char *name, __m128i r)
    103 {
    104    union { __m128i m; uint ui[4]; } u;
    105    u.m = r;
    106 
    107    debug_printf("%s: "
    108                 "%08x/"
    109                 "%08x/"
    110                 "%08x/"
    111                 "%08x\n",
    112                 name,
    113                 u.ui[0],  u.ui[1],  u.ui[2],  u.ui[3]);
    114 }
    115 
    116 static inline void u_print_ps(const char *name, __m128 r)
    117 {
    118    union { __m128 m; float f[4]; } u;
    119    u.m = r;
    120 
    121    debug_printf("%s: "
    122                 "%f/"
    123                 "%f/"
    124                 "%f/"
    125                 "%f\n",
    126                 name,
    127                 u.f[0],  u.f[1],  u.f[2],  u.f[3]);
    128 }
    129 
    130 
    131 #define U_DUMP_EPI32(a) u_print_epi32(#a, a)
    132 #define U_DUMP_EPI16(a) u_print_epi16(#a, a)
    133 #define U_DUMP_EPI8(a)  u_print_epi8(#a, a)
    134 #define U_DUMP_PS(a)    u_print_ps(#a, a)
    135 
    136 
    137 
    138 #if defined(PIPE_ARCH_SSSE3)
    139 
    140 #include <tmmintrin.h>
    141 
    142 #else /* !PIPE_ARCH_SSSE3 */
    143 
    144 /**
    145  * Describe _mm_shuffle_epi8() with gcc extended inline assembly, for cases
    146  * where -mssse3 is not supported/enabled.
    147  *
    148  * MSVC will never get in here as its intrinsics support do not rely on
    149  * compiler command line options.
    150  */
    151 static __inline __m128i
    152 #ifdef __clang__
    153    __attribute__((__always_inline__, __nodebug__))
    154 #else
    155    __attribute__((__gnu_inline__, __always_inline__, __artificial__))
    156 #endif
    157 _mm_shuffle_epi8(__m128i a, __m128i mask)
    158 {
    159     __m128i result;
    160     __asm__("pshufb %1, %0"
    161             : "=x" (result)
    162             : "xm" (mask), "0" (a));
    163     return result;
    164 }
    165 
    166 #endif /* !PIPE_ARCH_SSSE3 */
    167 
    168 
    169 /*
    170  * Provide an SSE implementation of _mm_mul_epi32() in terms of
    171  * _mm_mul_epu32().
    172  *
    173  * Basically, albeit surprising at first (and second, and third...) look
    174  * if a * b is done signed instead of unsigned, can just
    175  * subtract b from the high bits of the result if a is negative
    176  * (and the same for a if b is negative). Modular arithmetic at its best!
    177  *
    178  * So for int32 a,b in crude pseudo-code ("*" here denoting a widening mul)
    179  * fixupb = (signmask(b) & a) << 32ULL
    180  * fixupa = (signmask(a) & b) << 32ULL
    181  * a * b = (unsigned)a * (unsigned)b - fixupb - fixupa
    182  * = (unsigned)a * (unsigned)b -(fixupb + fixupa)
    183  *
    184  * This does both lo (dwords 0/2) and hi parts (1/3) at the same time due
    185  * to some optimization potential.
    186  */
    187 static inline __m128i
    188 mm_mullohi_epi32(const __m128i a, const __m128i b, __m128i *res13)
    189 {
    190    __m128i a13, b13, mul02, mul13;
    191    __m128i anegmask, bnegmask, fixup, fixup02, fixup13;
    192    a13 = _mm_shuffle_epi32(a, _MM_SHUFFLE(2,3,0,1));
    193    b13 = _mm_shuffle_epi32(b, _MM_SHUFFLE(2,3,0,1));
    194    anegmask = _mm_srai_epi32(a, 31);
    195    bnegmask = _mm_srai_epi32(b, 31);
    196    fixup = _mm_add_epi32(_mm_and_si128(anegmask, b),
    197                          _mm_and_si128(bnegmask, a));
    198    mul02 = _mm_mul_epu32(a, b);
    199    mul13 = _mm_mul_epu32(a13, b13);
    200    fixup02 = _mm_slli_epi64(fixup, 32);
    201    fixup13 = _mm_and_si128(fixup, _mm_set_epi32(-1,0,-1,0));
    202    *res13 = _mm_sub_epi64(mul13, fixup13);
    203    return _mm_sub_epi64(mul02, fixup02);
    204 }
    205 
    206 
    207 /* Provide an SSE2 implementation of _mm_mullo_epi32() in terms of
    208  * _mm_mul_epu32().
    209  *
    210  * This always works regardless the signs of the operands, since
    211  * the high bits (which would be different) aren't used.
    212  *
    213  * This seems close enough to the speed of SSE4 and the real
    214  * _mm_mullo_epi32() intrinsic as to not justify adding an sse4
    215  * dependency at this point.
    216  */
    217 static inline __m128i mm_mullo_epi32(const __m128i a, const __m128i b)
    218 {
    219    __m128i a4   = _mm_srli_epi64(a, 32);  /* shift by one dword */
    220    __m128i b4   = _mm_srli_epi64(b, 32);  /* shift by one dword */
    221    __m128i ba   = _mm_mul_epu32(b, a);   /* multply dwords 0, 2 */
    222    __m128i b4a4 = _mm_mul_epu32(b4, a4); /* multiply dwords 1, 3 */
    223 
    224    /* Interleave the results, either with shuffles or (slightly
    225     * faster) direct bit operations:
    226     * XXX: might be only true for some cpus (in particular 65nm
    227     * Core 2). On most cpus (including that Core 2, but not Nehalem...)
    228     * using _mm_shuffle_ps/_mm_shuffle_epi32 might also be faster
    229     * than using the 3 instructions below. But logic should be fine
    230     * as well, we can't have optimal solution for all cpus (if anything,
    231     * should just use _mm_mullo_epi32() if sse41 is available...).
    232     */
    233 #if 0
    234    __m128i ba8             = _mm_shuffle_epi32(ba, 8);
    235    __m128i b4a48           = _mm_shuffle_epi32(b4a4, 8);
    236    __m128i result          = _mm_unpacklo_epi32(ba8, b4a48);
    237 #else
    238    __m128i mask            = _mm_setr_epi32(~0,0,~0,0);
    239    __m128i ba_mask         = _mm_and_si128(ba, mask);
    240    __m128i b4a4_mask_shift = _mm_slli_epi64(b4a4, 32);
    241    __m128i result          = _mm_or_si128(ba_mask, b4a4_mask_shift);
    242 #endif
    243 
    244    return result;
    245 }
    246 
    247 
    248 static inline void
    249 transpose4_epi32(const __m128i * restrict a,
    250                  const __m128i * restrict b,
    251                  const __m128i * restrict c,
    252                  const __m128i * restrict d,
    253                  __m128i * restrict o,
    254                  __m128i * restrict p,
    255                  __m128i * restrict q,
    256                  __m128i * restrict r)
    257 {
    258    __m128i t0 = _mm_unpacklo_epi32(*a, *b);
    259    __m128i t1 = _mm_unpacklo_epi32(*c, *d);
    260    __m128i t2 = _mm_unpackhi_epi32(*a, *b);
    261    __m128i t3 = _mm_unpackhi_epi32(*c, *d);
    262 
    263    *o = _mm_unpacklo_epi64(t0, t1);
    264    *p = _mm_unpackhi_epi64(t0, t1);
    265    *q = _mm_unpacklo_epi64(t2, t3);
    266    *r = _mm_unpackhi_epi64(t2, t3);
    267 }
    268 
    269 
    270 /*
    271  * Same as above, except the first two values are already interleaved
    272  * (i.e. contain 64bit values).
    273  */
    274 static inline void
    275 transpose2_64_2_32(const __m128i * restrict a01,
    276                    const __m128i * restrict a23,
    277                    const __m128i * restrict c,
    278                    const __m128i * restrict d,
    279                    __m128i * restrict o,
    280                    __m128i * restrict p,
    281                    __m128i * restrict q,
    282                    __m128i * restrict r)
    283 {
    284    __m128i t0 = *a01;
    285    __m128i t1 = _mm_unpacklo_epi32(*c, *d);
    286    __m128i t2 = *a23;
    287    __m128i t3 = _mm_unpackhi_epi32(*c, *d);
    288 
    289    *o = _mm_unpacklo_epi64(t0, t1);
    290    *p = _mm_unpackhi_epi64(t0, t1);
    291    *q = _mm_unpacklo_epi64(t2, t3);
    292    *r = _mm_unpackhi_epi64(t2, t3);
    293 }
    294 
    295 
    296 #define SCALAR_EPI32(m, i) _mm_shuffle_epi32((m), _MM_SHUFFLE(i,i,i,i))
    297 
    298 
    299 #endif /* PIPE_ARCH_SSE */
    300 
    301 #endif /* U_SSE_H_ */
    302