1 .. _logging-cookbook: 2 3 ================ 4 Logging Cookbook 5 ================ 6 7 :Author: Vinay Sajip <vinay_sajip at red-dove dot com> 8 9 This page contains a number of recipes related to logging, which have been found 10 useful in the past. 11 12 .. currentmodule:: logging 13 14 Using logging in multiple modules 15 --------------------------------- 16 17 Multiple calls to ``logging.getLogger('someLogger')`` return a reference to the 18 same logger object. This is true not only within the same module, but also 19 across modules as long as it is in the same Python interpreter process. It is 20 true for references to the same object; additionally, application code can 21 define and configure a parent logger in one module and create (but not 22 configure) a child logger in a separate module, and all logger calls to the 23 child will pass up to the parent. Here is a main module:: 24 25 import logging 26 import auxiliary_module 27 28 # create logger with 'spam_application' 29 logger = logging.getLogger('spam_application') 30 logger.setLevel(logging.DEBUG) 31 # create file handler which logs even debug messages 32 fh = logging.FileHandler('spam.log') 33 fh.setLevel(logging.DEBUG) 34 # create console handler with a higher log level 35 ch = logging.StreamHandler() 36 ch.setLevel(logging.ERROR) 37 # create formatter and add it to the handlers 38 formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') 39 fh.setFormatter(formatter) 40 ch.setFormatter(formatter) 41 # add the handlers to the logger 42 logger.addHandler(fh) 43 logger.addHandler(ch) 44 45 logger.info('creating an instance of auxiliary_module.Auxiliary') 46 a = auxiliary_module.Auxiliary() 47 logger.info('created an instance of auxiliary_module.Auxiliary') 48 logger.info('calling auxiliary_module.Auxiliary.do_something') 49 a.do_something() 50 logger.info('finished auxiliary_module.Auxiliary.do_something') 51 logger.info('calling auxiliary_module.some_function()') 52 auxiliary_module.some_function() 53 logger.info('done with auxiliary_module.some_function()') 54 55 Here is the auxiliary module:: 56 57 import logging 58 59 # create logger 60 module_logger = logging.getLogger('spam_application.auxiliary') 61 62 class Auxiliary: 63 def __init__(self): 64 self.logger = logging.getLogger('spam_application.auxiliary.Auxiliary') 65 self.logger.info('creating an instance of Auxiliary') 66 67 def do_something(self): 68 self.logger.info('doing something') 69 a = 1 + 1 70 self.logger.info('done doing something') 71 72 def some_function(): 73 module_logger.info('received a call to "some_function"') 74 75 The output looks like this:: 76 77 2005-03-23 23:47:11,663 - spam_application - INFO - 78 creating an instance of auxiliary_module.Auxiliary 79 2005-03-23 23:47:11,665 - spam_application.auxiliary.Auxiliary - INFO - 80 creating an instance of Auxiliary 81 2005-03-23 23:47:11,665 - spam_application - INFO - 82 created an instance of auxiliary_module.Auxiliary 83 2005-03-23 23:47:11,668 - spam_application - INFO - 84 calling auxiliary_module.Auxiliary.do_something 85 2005-03-23 23:47:11,668 - spam_application.auxiliary.Auxiliary - INFO - 86 doing something 87 2005-03-23 23:47:11,669 - spam_application.auxiliary.Auxiliary - INFO - 88 done doing something 89 2005-03-23 23:47:11,670 - spam_application - INFO - 90 finished auxiliary_module.Auxiliary.do_something 91 2005-03-23 23:47:11,671 - spam_application - INFO - 92 calling auxiliary_module.some_function() 93 2005-03-23 23:47:11,672 - spam_application.auxiliary - INFO - 94 received a call to 'some_function' 95 2005-03-23 23:47:11,673 - spam_application - INFO - 96 done with auxiliary_module.some_function() 97 98 Logging from multiple threads 99 ----------------------------- 100 101 Logging from multiple threads requires no special effort. The following example 102 shows logging from the main (initIal) thread and another thread:: 103 104 import logging 105 import threading 106 import time 107 108 def worker(arg): 109 while not arg['stop']: 110 logging.debug('Hi from myfunc') 111 time.sleep(0.5) 112 113 def main(): 114 logging.basicConfig(level=logging.DEBUG, format='%(relativeCreated)6d %(threadName)s %(message)s') 115 info = {'stop': False} 116 thread = threading.Thread(target=worker, args=(info,)) 117 thread.start() 118 while True: 119 try: 120 logging.debug('Hello from main') 121 time.sleep(0.75) 122 except KeyboardInterrupt: 123 info['stop'] = True 124 break 125 thread.join() 126 127 if __name__ == '__main__': 128 main() 129 130 When run, the script should print something like the following:: 131 132 0 Thread-1 Hi from myfunc 133 3 MainThread Hello from main 134 505 Thread-1 Hi from myfunc 135 755 MainThread Hello from main 136 1007 Thread-1 Hi from myfunc 137 1507 MainThread Hello from main 138 1508 Thread-1 Hi from myfunc 139 2010 Thread-1 Hi from myfunc 140 2258 MainThread Hello from main 141 2512 Thread-1 Hi from myfunc 142 3009 MainThread Hello from main 143 3013 Thread-1 Hi from myfunc 144 3515 Thread-1 Hi from myfunc 145 3761 MainThread Hello from main 146 4017 Thread-1 Hi from myfunc 147 4513 MainThread Hello from main 148 4518 Thread-1 Hi from myfunc 149 150 This shows the logging output interspersed as one might expect. This approach 151 works for more threads than shown here, of course. 152 153 Multiple handlers and formatters 154 -------------------------------- 155 156 Loggers are plain Python objects. The :meth:`~Logger.addHandler` method has no 157 minimum or maximum quota for the number of handlers you may add. Sometimes it 158 will be beneficial for an application to log all messages of all severities to a 159 text file while simultaneously logging errors or above to the console. To set 160 this up, simply configure the appropriate handlers. The logging calls in the 161 application code will remain unchanged. Here is a slight modification to the 162 previous simple module-based configuration example:: 163 164 import logging 165 166 logger = logging.getLogger('simple_example') 167 logger.setLevel(logging.DEBUG) 168 # create file handler which logs even debug messages 169 fh = logging.FileHandler('spam.log') 170 fh.setLevel(logging.DEBUG) 171 # create console handler with a higher log level 172 ch = logging.StreamHandler() 173 ch.setLevel(logging.ERROR) 174 # create formatter and add it to the handlers 175 formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') 176 ch.setFormatter(formatter) 177 fh.setFormatter(formatter) 178 # add the handlers to logger 179 logger.addHandler(ch) 180 logger.addHandler(fh) 181 182 # 'application' code 183 logger.debug('debug message') 184 logger.info('info message') 185 logger.warn('warn message') 186 logger.error('error message') 187 logger.critical('critical message') 188 189 Notice that the 'application' code does not care about multiple handlers. All 190 that changed was the addition and configuration of a new handler named *fh*. 191 192 The ability to create new handlers with higher- or lower-severity filters can be 193 very helpful when writing and testing an application. Instead of using many 194 ``print`` statements for debugging, use ``logger.debug``: Unlike the print 195 statements, which you will have to delete or comment out later, the logger.debug 196 statements can remain intact in the source code and remain dormant until you 197 need them again. At that time, the only change that needs to happen is to 198 modify the severity level of the logger and/or handler to debug. 199 200 .. _multiple-destinations: 201 202 Logging to multiple destinations 203 -------------------------------- 204 205 Let's say you want to log to console and file with different message formats and 206 in differing circumstances. Say you want to log messages with levels of DEBUG 207 and higher to file, and those messages at level INFO and higher to the console. 208 Let's also assume that the file should contain timestamps, but the console 209 messages should not. Here's how you can achieve this:: 210 211 import logging 212 213 # set up logging to file - see previous section for more details 214 logging.basicConfig(level=logging.DEBUG, 215 format='%(asctime)s %(name)-12s %(levelname)-8s %(message)s', 216 datefmt='%m-%d %H:%M', 217 filename='/temp/myapp.log', 218 filemode='w') 219 # define a Handler which writes INFO messages or higher to the sys.stderr 220 console = logging.StreamHandler() 221 console.setLevel(logging.INFO) 222 # set a format which is simpler for console use 223 formatter = logging.Formatter('%(name)-12s: %(levelname)-8s %(message)s') 224 # tell the handler to use this format 225 console.setFormatter(formatter) 226 # add the handler to the root logger 227 logging.getLogger('').addHandler(console) 228 229 # Now, we can log to the root logger, or any other logger. First the root... 230 logging.info('Jackdaws love my big sphinx of quartz.') 231 232 # Now, define a couple of other loggers which might represent areas in your 233 # application: 234 235 logger1 = logging.getLogger('myapp.area1') 236 logger2 = logging.getLogger('myapp.area2') 237 238 logger1.debug('Quick zephyrs blow, vexing daft Jim.') 239 logger1.info('How quickly daft jumping zebras vex.') 240 logger2.warning('Jail zesty vixen who grabbed pay from quack.') 241 logger2.error('The five boxing wizards jump quickly.') 242 243 When you run this, on the console you will see :: 244 245 root : INFO Jackdaws love my big sphinx of quartz. 246 myapp.area1 : INFO How quickly daft jumping zebras vex. 247 myapp.area2 : WARNING Jail zesty vixen who grabbed pay from quack. 248 myapp.area2 : ERROR The five boxing wizards jump quickly. 249 250 and in the file you will see something like :: 251 252 10-22 22:19 root INFO Jackdaws love my big sphinx of quartz. 253 10-22 22:19 myapp.area1 DEBUG Quick zephyrs blow, vexing daft Jim. 254 10-22 22:19 myapp.area1 INFO How quickly daft jumping zebras vex. 255 10-22 22:19 myapp.area2 WARNING Jail zesty vixen who grabbed pay from quack. 256 10-22 22:19 myapp.area2 ERROR The five boxing wizards jump quickly. 257 258 As you can see, the DEBUG message only shows up in the file. The other messages 259 are sent to both destinations. 260 261 This example uses console and file handlers, but you can use any number and 262 combination of handlers you choose. 263 264 265 Configuration server example 266 ---------------------------- 267 268 Here is an example of a module using the logging configuration server:: 269 270 import logging 271 import logging.config 272 import time 273 import os 274 275 # read initial config file 276 logging.config.fileConfig('logging.conf') 277 278 # create and start listener on port 9999 279 t = logging.config.listen(9999) 280 t.start() 281 282 logger = logging.getLogger('simpleExample') 283 284 try: 285 # loop through logging calls to see the difference 286 # new configurations make, until Ctrl+C is pressed 287 while True: 288 logger.debug('debug message') 289 logger.info('info message') 290 logger.warn('warn message') 291 logger.error('error message') 292 logger.critical('critical message') 293 time.sleep(5) 294 except KeyboardInterrupt: 295 # cleanup 296 logging.config.stopListening() 297 t.join() 298 299 And here is a script that takes a filename and sends that file to the server, 300 properly preceded with the binary-encoded length, as the new logging 301 configuration:: 302 303 #!/usr/bin/env python 304 import socket, sys, struct 305 306 with open(sys.argv[1], 'rb') as f: 307 data_to_send = f.read() 308 309 HOST = 'localhost' 310 PORT = 9999 311 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 312 print('connecting...') 313 s.connect((HOST, PORT)) 314 print('sending config...') 315 s.send(struct.pack('>L', len(data_to_send))) 316 s.send(data_to_send) 317 s.close() 318 print('complete') 319 320 321 .. _network-logging: 322 323 Sending and receiving logging events across a network 324 ----------------------------------------------------- 325 326 Let's say you want to send logging events across a network, and handle them at 327 the receiving end. A simple way of doing this is attaching a 328 :class:`SocketHandler` instance to the root logger at the sending end:: 329 330 import logging, logging.handlers 331 332 rootLogger = logging.getLogger('') 333 rootLogger.setLevel(logging.DEBUG) 334 socketHandler = logging.handlers.SocketHandler('localhost', 335 logging.handlers.DEFAULT_TCP_LOGGING_PORT) 336 # don't bother with a formatter, since a socket handler sends the event as 337 # an unformatted pickle 338 rootLogger.addHandler(socketHandler) 339 340 # Now, we can log to the root logger, or any other logger. First the root... 341 logging.info('Jackdaws love my big sphinx of quartz.') 342 343 # Now, define a couple of other loggers which might represent areas in your 344 # application: 345 346 logger1 = logging.getLogger('myapp.area1') 347 logger2 = logging.getLogger('myapp.area2') 348 349 logger1.debug('Quick zephyrs blow, vexing daft Jim.') 350 logger1.info('How quickly daft jumping zebras vex.') 351 logger2.warning('Jail zesty vixen who grabbed pay from quack.') 352 logger2.error('The five boxing wizards jump quickly.') 353 354 At the receiving end, you can set up a receiver using the :mod:`SocketServer` 355 module. Here is a basic working example:: 356 357 import pickle 358 import logging 359 import logging.handlers 360 import SocketServer 361 import struct 362 363 364 class LogRecordStreamHandler(SocketServer.StreamRequestHandler): 365 """Handler for a streaming logging request. 366 367 This basically logs the record using whatever logging policy is 368 configured locally. 369 """ 370 371 def handle(self): 372 """ 373 Handle multiple requests - each expected to be a 4-byte length, 374 followed by the LogRecord in pickle format. Logs the record 375 according to whatever policy is configured locally. 376 """ 377 while True: 378 chunk = self.connection.recv(4) 379 if len(chunk) < 4: 380 break 381 slen = struct.unpack('>L', chunk)[0] 382 chunk = self.connection.recv(slen) 383 while len(chunk) < slen: 384 chunk = chunk + self.connection.recv(slen - len(chunk)) 385 obj = self.unPickle(chunk) 386 record = logging.makeLogRecord(obj) 387 self.handleLogRecord(record) 388 389 def unPickle(self, data): 390 return pickle.loads(data) 391 392 def handleLogRecord(self, record): 393 # if a name is specified, we use the named logger rather than the one 394 # implied by the record. 395 if self.server.logname is not None: 396 name = self.server.logname 397 else: 398 name = record.name 399 logger = logging.getLogger(name) 400 # N.B. EVERY record gets logged. This is because Logger.handle 401 # is normally called AFTER logger-level filtering. If you want 402 # to do filtering, do it at the client end to save wasting 403 # cycles and network bandwidth! 404 logger.handle(record) 405 406 class LogRecordSocketReceiver(SocketServer.ThreadingTCPServer): 407 """ 408 Simple TCP socket-based logging receiver suitable for testing. 409 """ 410 411 allow_reuse_address = 1 412 413 def __init__(self, host='localhost', 414 port=logging.handlers.DEFAULT_TCP_LOGGING_PORT, 415 handler=LogRecordStreamHandler): 416 SocketServer.ThreadingTCPServer.__init__(self, (host, port), handler) 417 self.abort = 0 418 self.timeout = 1 419 self.logname = None 420 421 def serve_until_stopped(self): 422 import select 423 abort = 0 424 while not abort: 425 rd, wr, ex = select.select([self.socket.fileno()], 426 [], [], 427 self.timeout) 428 if rd: 429 self.handle_request() 430 abort = self.abort 431 432 def main(): 433 logging.basicConfig( 434 format='%(relativeCreated)5d %(name)-15s %(levelname)-8s %(message)s') 435 tcpserver = LogRecordSocketReceiver() 436 print('About to start TCP server...') 437 tcpserver.serve_until_stopped() 438 439 if __name__ == '__main__': 440 main() 441 442 First run the server, and then the client. On the client side, nothing is 443 printed on the console; on the server side, you should see something like:: 444 445 About to start TCP server... 446 59 root INFO Jackdaws love my big sphinx of quartz. 447 59 myapp.area1 DEBUG Quick zephyrs blow, vexing daft Jim. 448 69 myapp.area1 INFO How quickly daft jumping zebras vex. 449 69 myapp.area2 WARNING Jail zesty vixen who grabbed pay from quack. 450 69 myapp.area2 ERROR The five boxing wizards jump quickly. 451 452 Note that there are some security issues with pickle in some scenarios. If 453 these affect you, you can use an alternative serialization scheme by overriding 454 the :meth:`~handlers.SocketHandler.makePickle` method and implementing your 455 alternative there, as well as adapting the above script to use your alternative 456 serialization. 457 458 459 .. _context-info: 460 461 Adding contextual information to your logging output 462 ---------------------------------------------------- 463 464 .. currentmodule:: logging 465 466 Sometimes you want logging output to contain contextual information in 467 addition to the parameters passed to the logging call. For example, in a 468 networked application, it may be desirable to log client-specific information 469 in the log (e.g. remote client's username, or IP address). Although you could 470 use the *extra* parameter to achieve this, it's not always convenient to pass 471 the information in this way. While it might be tempting to create 472 :class:`Logger` instances on a per-connection basis, this is not a good idea 473 because these instances are not garbage collected. While this is not a problem 474 in practice, when the number of :class:`Logger` instances is dependent on the 475 level of granularity you want to use in logging an application, it could 476 be hard to manage if the number of :class:`Logger` instances becomes 477 effectively unbounded. 478 479 480 Using LoggerAdapters to impart contextual information 481 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 482 483 An easy way in which you can pass contextual information to be output along 484 with logging event information is to use the :class:`LoggerAdapter` class. 485 This class is designed to look like a :class:`Logger`, so that you can call 486 :meth:`debug`, :meth:`info`, :meth:`warning`, :meth:`error`, 487 :meth:`exception`, :meth:`critical` and :meth:`log`. These methods have the 488 same signatures as their counterparts in :class:`Logger`, so you can use the 489 two types of instances interchangeably. 490 491 When you create an instance of :class:`LoggerAdapter`, you pass it a 492 :class:`Logger` instance and a dict-like object which contains your contextual 493 information. When you call one of the logging methods on an instance of 494 :class:`LoggerAdapter`, it delegates the call to the underlying instance of 495 :class:`Logger` passed to its constructor, and arranges to pass the contextual 496 information in the delegated call. Here's a snippet from the code of 497 :class:`LoggerAdapter`:: 498 499 def debug(self, msg, *args, **kwargs): 500 """ 501 Delegate a debug call to the underlying logger, after adding 502 contextual information from this adapter instance. 503 """ 504 msg, kwargs = self.process(msg, kwargs) 505 self.logger.debug(msg, *args, **kwargs) 506 507 The :meth:`~LoggerAdapter.process` method of :class:`LoggerAdapter` is where the 508 contextual information is added to the logging output. It's passed the message 509 and keyword arguments of the logging call, and it passes back (potentially) 510 modified versions of these to use in the call to the underlying logger. The 511 default implementation of this method leaves the message alone, but inserts 512 an 'extra' key in the keyword argument whose value is the dict-like object 513 passed to the constructor. Of course, if you had passed an 'extra' keyword 514 argument in the call to the adapter, it will be silently overwritten. 515 516 The advantage of using 'extra' is that the values in the dict-like object are 517 merged into the :class:`LogRecord` instance's __dict__, allowing you to use 518 customized strings with your :class:`Formatter` instances which know about 519 the keys of the dict-like object. If you need a different method, e.g. if you 520 want to prepend or append the contextual information to the message string, 521 you just need to subclass :class:`LoggerAdapter` and override 522 :meth:`~LoggerAdapter.process` to do what you need. Here is a simple example:: 523 524 class CustomAdapter(logging.LoggerAdapter): 525 """ 526 This example adapter expects the passed in dict-like object to have a 527 'connid' key, whose value in brackets is prepended to the log message. 528 """ 529 def process(self, msg, kwargs): 530 return '[%s] %s' % (self.extra['connid'], msg), kwargs 531 532 which you can use like this:: 533 534 logger = logging.getLogger(__name__) 535 adapter = CustomAdapter(logger, {'connid': some_conn_id}) 536 537 Then any events that you log to the adapter will have the value of 538 ``some_conn_id`` prepended to the log messages. 539 540 Using objects other than dicts to pass contextual information 541 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 542 543 You don't need to pass an actual dict to a :class:`LoggerAdapter` - you could 544 pass an instance of a class which implements ``__getitem__`` and ``__iter__`` so 545 that it looks like a dict to logging. This would be useful if you want to 546 generate values dynamically (whereas the values in a dict would be constant). 547 548 549 .. _filters-contextual: 550 551 Using Filters to impart contextual information 552 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 553 554 You can also add contextual information to log output using a user-defined 555 :class:`Filter`. ``Filter`` instances are allowed to modify the ``LogRecords`` 556 passed to them, including adding additional attributes which can then be output 557 using a suitable format string, or if needed a custom :class:`Formatter`. 558 559 For example in a web application, the request being processed (or at least, 560 the interesting parts of it) can be stored in a threadlocal 561 (:class:`threading.local`) variable, and then accessed from a ``Filter`` to 562 add, say, information from the request - say, the remote IP address and remote 563 user's username - to the ``LogRecord``, using the attribute names 'ip' and 564 'user' as in the ``LoggerAdapter`` example above. In that case, the same format 565 string can be used to get similar output to that shown above. Here's an example 566 script:: 567 568 import logging 569 from random import choice 570 571 class ContextFilter(logging.Filter): 572 """ 573 This is a filter which injects contextual information into the log. 574 575 Rather than use actual contextual information, we just use random 576 data in this demo. 577 """ 578 579 USERS = ['jim', 'fred', 'sheila'] 580 IPS = ['123.231.231.123', '127.0.0.1', '192.168.0.1'] 581 582 def filter(self, record): 583 584 record.ip = choice(ContextFilter.IPS) 585 record.user = choice(ContextFilter.USERS) 586 return True 587 588 if __name__ == '__main__': 589 levels = (logging.DEBUG, logging.INFO, logging.WARNING, logging.ERROR, logging.CRITICAL) 590 logging.basicConfig(level=logging.DEBUG, 591 format='%(asctime)-15s %(name)-5s %(levelname)-8s IP: %(ip)-15s User: %(user)-8s %(message)s') 592 a1 = logging.getLogger('a.b.c') 593 a2 = logging.getLogger('d.e.f') 594 595 f = ContextFilter() 596 a1.addFilter(f) 597 a2.addFilter(f) 598 a1.debug('A debug message') 599 a1.info('An info message with %s', 'some parameters') 600 for x in range(10): 601 lvl = choice(levels) 602 lvlname = logging.getLevelName(lvl) 603 a2.log(lvl, 'A message at %s level with %d %s', lvlname, 2, 'parameters') 604 605 which, when run, produces something like:: 606 607 2010-09-06 22:38:15,292 a.b.c DEBUG IP: 123.231.231.123 User: fred A debug message 608 2010-09-06 22:38:15,300 a.b.c INFO IP: 192.168.0.1 User: sheila An info message with some parameters 609 2010-09-06 22:38:15,300 d.e.f CRITICAL IP: 127.0.0.1 User: sheila A message at CRITICAL level with 2 parameters 610 2010-09-06 22:38:15,300 d.e.f ERROR IP: 127.0.0.1 User: jim A message at ERROR level with 2 parameters 611 2010-09-06 22:38:15,300 d.e.f DEBUG IP: 127.0.0.1 User: sheila A message at DEBUG level with 2 parameters 612 2010-09-06 22:38:15,300 d.e.f ERROR IP: 123.231.231.123 User: fred A message at ERROR level with 2 parameters 613 2010-09-06 22:38:15,300 d.e.f CRITICAL IP: 192.168.0.1 User: jim A message at CRITICAL level with 2 parameters 614 2010-09-06 22:38:15,300 d.e.f CRITICAL IP: 127.0.0.1 User: sheila A message at CRITICAL level with 2 parameters 615 2010-09-06 22:38:15,300 d.e.f DEBUG IP: 192.168.0.1 User: jim A message at DEBUG level with 2 parameters 616 2010-09-06 22:38:15,301 d.e.f ERROR IP: 127.0.0.1 User: sheila A message at ERROR level with 2 parameters 617 2010-09-06 22:38:15,301 d.e.f DEBUG IP: 123.231.231.123 User: fred A message at DEBUG level with 2 parameters 618 2010-09-06 22:38:15,301 d.e.f INFO IP: 123.231.231.123 User: fred A message at INFO level with 2 parameters 619 620 621 .. _multiple-processes: 622 623 Logging to a single file from multiple processes 624 ------------------------------------------------ 625 626 Although logging is thread-safe, and logging to a single file from multiple 627 threads in a single process *is* supported, logging to a single file from 628 *multiple processes* is *not* supported, because there is no standard way to 629 serialize access to a single file across multiple processes in Python. If you 630 need to log to a single file from multiple processes, one way of doing this is 631 to have all the processes log to a :class:`~handlers.SocketHandler`, and have a 632 separate process which implements a socket server which reads from the socket 633 and logs to file. (If you prefer, you can dedicate one thread in one of the 634 existing processes to perform this function.) 635 :ref:`This section <network-logging>` documents this approach in more detail and 636 includes a working socket receiver which can be used as a starting point for you 637 to adapt in your own applications. 638 639 If you are using a recent version of Python which includes the 640 :mod:`multiprocessing` module, you could write your own handler which uses the 641 :class:`~multiprocessing.Lock` class from this module to serialize access to the 642 file from your processes. The existing :class:`FileHandler` and subclasses do 643 not make use of :mod:`multiprocessing` at present, though they may do so in the 644 future. Note that at present, the :mod:`multiprocessing` module does not provide 645 working lock functionality on all platforms (see 646 https://bugs.python.org/issue3770). 647 648 649 Using file rotation 650 ------------------- 651 652 .. sectionauthor:: Doug Hellmann, Vinay Sajip (changes) 653 .. (see <http://blog.doughellmann.com/2007/05/pymotw-logging.html>) 654 655 Sometimes you want to let a log file grow to a certain size, then open a new 656 file and log to that. You may want to keep a certain number of these files, and 657 when that many files have been created, rotate the files so that the number of 658 files and the size of the files both remain bounded. For this usage pattern, the 659 logging package provides a :class:`~handlers.RotatingFileHandler`:: 660 661 import glob 662 import logging 663 import logging.handlers 664 665 LOG_FILENAME = 'logging_rotatingfile_example.out' 666 667 # Set up a specific logger with our desired output level 668 my_logger = logging.getLogger('MyLogger') 669 my_logger.setLevel(logging.DEBUG) 670 671 # Add the log message handler to the logger 672 handler = logging.handlers.RotatingFileHandler( 673 LOG_FILENAME, maxBytes=20, backupCount=5) 674 675 my_logger.addHandler(handler) 676 677 # Log some messages 678 for i in range(20): 679 my_logger.debug('i = %d' % i) 680 681 # See what files are created 682 logfiles = glob.glob('%s*' % LOG_FILENAME) 683 684 for filename in logfiles: 685 print(filename) 686 687 The result should be 6 separate files, each with part of the log history for the 688 application:: 689 690 logging_rotatingfile_example.out 691 logging_rotatingfile_example.out.1 692 logging_rotatingfile_example.out.2 693 logging_rotatingfile_example.out.3 694 logging_rotatingfile_example.out.4 695 logging_rotatingfile_example.out.5 696 697 The most current file is always :file:`logging_rotatingfile_example.out`, 698 and each time it reaches the size limit it is renamed with the suffix 699 ``.1``. Each of the existing backup files is renamed to increment the suffix 700 (``.1`` becomes ``.2``, etc.) and the ``.6`` file is erased. 701 702 Obviously this example sets the log length much too small as an extreme 703 example. You would want to set *maxBytes* to an appropriate value. 704 705 An example dictionary-based configuration 706 ----------------------------------------- 707 708 Below is an example of a logging configuration dictionary - it's taken from 709 the `documentation on the Django project <https://docs.djangoproject.com/en/1.9/topics/logging/#configuring-logging>`_. 710 This dictionary is passed to :func:`~config.dictConfig` to put the configuration into effect:: 711 712 LOGGING = { 713 'version': 1, 714 'disable_existing_loggers': True, 715 'formatters': { 716 'verbose': { 717 'format': '%(levelname)s %(asctime)s %(module)s %(process)d %(thread)d %(message)s' 718 }, 719 'simple': { 720 'format': '%(levelname)s %(message)s' 721 }, 722 }, 723 'filters': { 724 'special': { 725 '()': 'project.logging.SpecialFilter', 726 'foo': 'bar', 727 } 728 }, 729 'handlers': { 730 'null': { 731 'level':'DEBUG', 732 'class':'django.utils.log.NullHandler', 733 }, 734 'console':{ 735 'level':'DEBUG', 736 'class':'logging.StreamHandler', 737 'formatter': 'simple' 738 }, 739 'mail_admins': { 740 'level': 'ERROR', 741 'class': 'django.utils.log.AdminEmailHandler', 742 'filters': ['special'] 743 } 744 }, 745 'loggers': { 746 'django': { 747 'handlers':['null'], 748 'propagate': True, 749 'level':'INFO', 750 }, 751 'django.request': { 752 'handlers': ['mail_admins'], 753 'level': 'ERROR', 754 'propagate': False, 755 }, 756 'myproject.custom': { 757 'handlers': ['console', 'mail_admins'], 758 'level': 'INFO', 759 'filters': ['special'] 760 } 761 } 762 } 763 764 For more information about this configuration, you can see the `relevant 765 section <https://docs.djangoproject.com/en/1.9/topics/logging/#configuring-logging>`_ 766 of the Django documentation. 767 768 Inserting a BOM into messages sent to a SysLogHandler 769 ----------------------------------------------------- 770 771 `RFC 5424 <https://tools.ietf.org/html/rfc5424>`_ requires that a 772 Unicode message be sent to a syslog daemon as a set of bytes which have the 773 following structure: an optional pure-ASCII component, followed by a UTF-8 Byte 774 Order Mark (BOM), followed by Unicode encoded using UTF-8. (See the `relevant 775 section of the specification <https://tools.ietf.org/html/rfc5424#section-6>`_.) 776 777 In Python 2.6 and 2.7, code was added to 778 :class:`~logging.handlers.SysLogHandler` to insert a BOM into the message, but 779 unfortunately, it was implemented incorrectly, with the BOM appearing at the 780 beginning of the message and hence not allowing any pure-ASCII component to 781 appear before it. 782 783 As this behaviour is broken, the incorrect BOM insertion code is being removed 784 from Python 2.7.4 and later. However, it is not being replaced, and if you 785 want to produce RFC 5424-compliant messages which include a BOM, an optional 786 pure-ASCII sequence before it and arbitrary Unicode after it, encoded using 787 UTF-8, then you need to do the following: 788 789 #. Attach a :class:`~logging.Formatter` instance to your 790 :class:`~logging.handlers.SysLogHandler` instance, with a format string 791 such as:: 792 793 u'ASCII section\ufeffUnicode section' 794 795 The Unicode code point ``u'\ufeff'``, when encoded using UTF-8, will be 796 encoded as a UTF-8 BOM -- the byte-string ``'\xef\xbb\xbf'``. 797 798 #. Replace the ASCII section with whatever placeholders you like, but make sure 799 that the data that appears in there after substitution is always ASCII (that 800 way, it will remain unchanged after UTF-8 encoding). 801 802 #. Replace the Unicode section with whatever placeholders you like; if the data 803 which appears there after substitution contains characters outside the ASCII 804 range, that's fine -- it will be encoded using UTF-8. 805 806 If the formatted message is Unicode, it *will* be encoded using UTF-8 encoding 807 by ``SysLogHandler``. If you follow the above rules, you should be able to 808 produce RFC 5424-compliant messages. If you don't, logging may not complain, 809 but your messages will not be RFC 5424-compliant, and your syslog daemon may 810 complain. 811 812 813 Implementing structured logging 814 ------------------------------- 815 816 Although most logging messages are intended for reading by humans, and thus not 817 readily machine-parseable, there might be cirumstances where you want to output 818 messages in a structured format which *is* capable of being parsed by a program 819 (without needing complex regular expressions to parse the log message). This is 820 straightforward to achieve using the logging package. There are a number of 821 ways in which this could be achieved, but the following is a simple approach 822 which uses JSON to serialise the event in a machine-parseable manner:: 823 824 import json 825 import logging 826 827 class StructuredMessage(object): 828 def __init__(self, message, **kwargs): 829 self.message = message 830 self.kwargs = kwargs 831 832 def __str__(self): 833 return '%s >>> %s' % (self.message, json.dumps(self.kwargs)) 834 835 _ = StructuredMessage # optional, to improve readability 836 837 logging.basicConfig(level=logging.INFO, format='%(message)s') 838 logging.info(_('message 1', foo='bar', bar='baz', num=123, fnum=123.456)) 839 840 If the above script is run, it prints:: 841 842 message 1 >>> {"fnum": 123.456, "num": 123, "bar": "baz", "foo": "bar"} 843 844 Note that the order of items might be different according to the version of 845 Python used. 846 847 If you need more specialised processing, you can use a custom JSON encoder, 848 as in the following complete example:: 849 850 from __future__ import unicode_literals 851 852 import json 853 import logging 854 855 # This next bit is to ensure the script runs unchanged on 2.x and 3.x 856 try: 857 unicode 858 except NameError: 859 unicode = str 860 861 class Encoder(json.JSONEncoder): 862 def default(self, o): 863 if isinstance(o, set): 864 return tuple(o) 865 elif isinstance(o, unicode): 866 return o.encode('unicode_escape').decode('ascii') 867 return super(Encoder, self).default(o) 868 869 class StructuredMessage(object): 870 def __init__(self, message, **kwargs): 871 self.message = message 872 self.kwargs = kwargs 873 874 def __str__(self): 875 s = Encoder().encode(self.kwargs) 876 return '%s >>> %s' % (self.message, s) 877 878 _ = StructuredMessage # optional, to improve readability 879 880 def main(): 881 logging.basicConfig(level=logging.INFO, format='%(message)s') 882 logging.info(_('message 1', set_value=set([1, 2, 3]), snowman='\u2603')) 883 884 if __name__ == '__main__': 885 main() 886 887 When the above script is run, it prints:: 888 889 message 1 >>> {"snowman": "\u2603", "set_value": [1, 2, 3]} 890 891 Note that the order of items might be different according to the version of 892 Python used. 893 894 895 .. _custom-handlers: 896 897 .. currentmodule:: logging.config 898 899 Customizing handlers with :func:`dictConfig` 900 -------------------------------------------- 901 902 There are times when you want to customize logging handlers in particular ways, 903 and if you use :func:`dictConfig` you may be able to do this without 904 subclassing. As an example, consider that you may want to set the ownership of a 905 log file. On POSIX, this is easily done using :func:`os.chown`, but the file 906 handlers in the stdlib don't offer built-in support. You can customize handler 907 creation using a plain function such as:: 908 909 def owned_file_handler(filename, mode='a', encoding=None, owner=None): 910 if owner: 911 import os, pwd, grp 912 # convert user and group names to uid and gid 913 uid = pwd.getpwnam(owner[0]).pw_uid 914 gid = grp.getgrnam(owner[1]).gr_gid 915 owner = (uid, gid) 916 if not os.path.exists(filename): 917 open(filename, 'a').close() 918 os.chown(filename, *owner) 919 return logging.FileHandler(filename, mode, encoding) 920 921 You can then specify, in a logging configuration passed to :func:`dictConfig`, 922 that a logging handler be created by calling this function:: 923 924 LOGGING = { 925 'version': 1, 926 'disable_existing_loggers': False, 927 'formatters': { 928 'default': { 929 'format': '%(asctime)s %(levelname)s %(name)s %(message)s' 930 }, 931 }, 932 'handlers': { 933 'file':{ 934 # The values below are popped from this dictionary and 935 # used to create the handler, set the handler's level and 936 # its formatter. 937 '()': owned_file_handler, 938 'level':'DEBUG', 939 'formatter': 'default', 940 # The values below are passed to the handler creator callable 941 # as keyword arguments. 942 'owner': ['pulse', 'pulse'], 943 'filename': 'chowntest.log', 944 'mode': 'w', 945 'encoding': 'utf-8', 946 }, 947 }, 948 'root': { 949 'handlers': ['file'], 950 'level': 'DEBUG', 951 }, 952 } 953 954 In this example I am setting the ownership using the ``pulse`` user and group, 955 just for the purposes of illustration. Putting it together into a working 956 script, ``chowntest.py``:: 957 958 import logging, logging.config, os, shutil 959 960 def owned_file_handler(filename, mode='a', encoding=None, owner=None): 961 if owner: 962 if not os.path.exists(filename): 963 open(filename, 'a').close() 964 shutil.chown(filename, *owner) 965 return logging.FileHandler(filename, mode, encoding) 966 967 LOGGING = { 968 'version': 1, 969 'disable_existing_loggers': False, 970 'formatters': { 971 'default': { 972 'format': '%(asctime)s %(levelname)s %(name)s %(message)s' 973 }, 974 }, 975 'handlers': { 976 'file':{ 977 # The values below are popped from this dictionary and 978 # used to create the handler, set the handler's level and 979 # its formatter. 980 '()': owned_file_handler, 981 'level':'DEBUG', 982 'formatter': 'default', 983 # The values below are passed to the handler creator callable 984 # as keyword arguments. 985 'owner': ['pulse', 'pulse'], 986 'filename': 'chowntest.log', 987 'mode': 'w', 988 'encoding': 'utf-8', 989 }, 990 }, 991 'root': { 992 'handlers': ['file'], 993 'level': 'DEBUG', 994 }, 995 } 996 997 logging.config.dictConfig(LOGGING) 998 logger = logging.getLogger('mylogger') 999 logger.debug('A debug message') 1000 1001 To run this, you will probably need to run as ``root``: 1002 1003 .. code-block:: shell-session 1004 1005 $ sudo python3.3 chowntest.py 1006 $ cat chowntest.log 1007 2013-11-05 09:34:51,128 DEBUG mylogger A debug message 1008 $ ls -l chowntest.log 1009 -rw-r--r-- 1 pulse pulse 55 2013-11-05 09:34 chowntest.log 1010 1011 Note that this example uses Python 3.3 because that's where :func:`shutil.chown` 1012 makes an appearance. This approach should work with any Python version that 1013 supports :func:`dictConfig` - namely, Python 2.7, 3.2 or later. With pre-3.3 1014 versions, you would need to implement the actual ownership change using e.g. 1015 :func:`os.chown`. 1016 1017 In practice, the handler-creating function may be in a utility module somewhere 1018 in your project. Instead of the line in the configuration:: 1019 1020 '()': owned_file_handler, 1021 1022 you could use e.g.:: 1023 1024 '()': 'ext://project.util.owned_file_handler', 1025 1026 where ``project.util`` can be replaced with the actual name of the package 1027 where the function resides. In the above working script, using 1028 ``'ext://__main__.owned_file_handler'`` should work. Here, the actual callable 1029 is resolved by :func:`dictConfig` from the ``ext://`` specification. 1030 1031 This example hopefully also points the way to how you could implement other 1032 types of file change - e.g. setting specific POSIX permission bits - in the 1033 same way, using :func:`os.chmod`. 1034 1035 Of course, the approach could also be extended to types of handler other than a 1036 :class:`~logging.FileHandler` - for example, one of the rotating file handlers, 1037 or a different type of handler altogether. 1038 1039 1040 .. _filters-dictconfig: 1041 1042 Configuring filters with :func:`dictConfig` 1043 ------------------------------------------- 1044 1045 You *can* configure filters using :func:`~logging.config.dictConfig`, though it 1046 might not be obvious at first glance how to do it (hence this recipe). Since 1047 :class:`~logging.Filter` is the only filter class included in the standard 1048 library, and it is unlikely to cater to many requirements (it's only there as a 1049 base class), you will typically need to define your own :class:`~logging.Filter` 1050 subclass with an overridden :meth:`~logging.Filter.filter` method. To do this, 1051 specify the ``()`` key in the configuration dictionary for the filter, 1052 specifying a callable which will be used to create the filter (a class is the 1053 most obvious, but you can provide any callable which returns a 1054 :class:`~logging.Filter` instance). Here is a complete example:: 1055 1056 import logging 1057 import logging.config 1058 import sys 1059 1060 class MyFilter(logging.Filter): 1061 def __init__(self, param=None): 1062 self.param = param 1063 1064 def filter(self, record): 1065 if self.param is None: 1066 allow = True 1067 else: 1068 allow = self.param not in record.msg 1069 if allow: 1070 record.msg = 'changed: ' + record.msg 1071 return allow 1072 1073 LOGGING = { 1074 'version': 1, 1075 'filters': { 1076 'myfilter': { 1077 '()': MyFilter, 1078 'param': 'noshow', 1079 } 1080 }, 1081 'handlers': { 1082 'console': { 1083 'class': 'logging.StreamHandler', 1084 'filters': ['myfilter'] 1085 } 1086 }, 1087 'root': { 1088 'level': 'DEBUG', 1089 'handlers': ['console'] 1090 }, 1091 } 1092 1093 if __name__ == '__main__': 1094 logging.config.dictConfig(LOGGING) 1095 logging.debug('hello') 1096 logging.debug('hello - noshow') 1097 1098 This example shows how you can pass configuration data to the callable which 1099 constructs the instance, in the form of keyword parameters. When run, the above 1100 script will print:: 1101 1102 changed: hello 1103 1104 which shows that the filter is working as configured. 1105 1106 A couple of extra points to note: 1107 1108 * If you can't refer to the callable directly in the configuration (e.g. if it 1109 lives in a different module, and you can't import it directly where the 1110 configuration dictionary is), you can use the form ``ext://...`` as described 1111 in :ref:`logging-config-dict-externalobj`. For example, you could have used 1112 the text ``'ext://__main__.MyFilter'`` instead of ``MyFilter`` in the above 1113 example. 1114 1115 * As well as for filters, this technique can also be used to configure custom 1116 handlers and formatters. See :ref:`logging-config-dict-userdef` for more 1117 information on how logging supports using user-defined objects in its 1118 configuration, and see the other cookbook recipe :ref:`custom-handlers` above. 1119 1120 1121 .. _custom-format-exception: 1122 1123 Customized exception formatting 1124 ------------------------------- 1125 1126 There might be times when you want to do customized exception formatting - for 1127 argument's sake, let's say you want exactly one line per logged event, even 1128 when exception information is present. You can do this with a custom formatter 1129 class, as shown in the following example:: 1130 1131 import logging 1132 1133 class OneLineExceptionFormatter(logging.Formatter): 1134 def formatException(self, exc_info): 1135 """ 1136 Format an exception so that it prints on a single line. 1137 """ 1138 result = super(OneLineExceptionFormatter, self).formatException(exc_info) 1139 return repr(result) # or format into one line however you want to 1140 1141 def format(self, record): 1142 s = super(OneLineExceptionFormatter, self).format(record) 1143 if record.exc_text: 1144 s = s.replace('\n', '') + '|' 1145 return s 1146 1147 def configure_logging(): 1148 fh = logging.FileHandler('output.txt', 'w') 1149 f = OneLineExceptionFormatter('%(asctime)s|%(levelname)s|%(message)s|', 1150 '%d/%m/%Y %H:%M:%S') 1151 fh.setFormatter(f) 1152 root = logging.getLogger() 1153 root.setLevel(logging.DEBUG) 1154 root.addHandler(fh) 1155 1156 def main(): 1157 configure_logging() 1158 logging.info('Sample message') 1159 try: 1160 x = 1 / 0 1161 except ZeroDivisionError as e: 1162 logging.exception('ZeroDivisionError: %s', e) 1163 1164 if __name__ == '__main__': 1165 main() 1166 1167 When run, this produces a file with exactly two lines:: 1168 1169 28/01/2015 07:21:23|INFO|Sample message| 1170 28/01/2015 07:21:23|ERROR|ZeroDivisionError: integer division or modulo by zero|'Traceback (most recent call last):\n File "logtest7.py", line 30, in main\n x = 1 / 0\nZeroDivisionError: integer division or modulo by zero'| 1171 1172 While the above treatment is simplistic, it points the way to how exception 1173 information can be formatted to your liking. The :mod:`traceback` module may be 1174 helpful for more specialized needs. 1175 1176 .. _spoken-messages: 1177 1178 Speaking logging messages 1179 ------------------------- 1180 1181 There might be situations when it is desirable to have logging messages rendered 1182 in an audible rather than a visible format. This is easy to do if you have text- 1183 to-speech (TTS) functionality available in your system, even if it doesn't have 1184 a Python binding. Most TTS systems have a command line program you can run, and 1185 this can be invoked from a handler using :mod:`subprocess`. It's assumed here 1186 that TTS command line programs won't expect to interact with users or take a 1187 long time to complete, and that the frequency of logged messages will be not so 1188 high as to swamp the user with messages, and that it's acceptable to have the 1189 messages spoken one at a time rather than concurrently, The example implementation 1190 below waits for one message to be spoken before the next is processed, and this 1191 might cause other handlers to be kept waiting. Here is a short example showing 1192 the approach, which assumes that the ``espeak`` TTS package is available:: 1193 1194 import logging 1195 import subprocess 1196 import sys 1197 1198 class TTSHandler(logging.Handler): 1199 def emit(self, record): 1200 msg = self.format(record) 1201 # Speak slowly in a female English voice 1202 cmd = ['espeak', '-s150', '-ven+f3', msg] 1203 p = subprocess.Popen(cmd, stdout=subprocess.PIPE, 1204 stderr=subprocess.STDOUT) 1205 # wait for the program to finish 1206 p.communicate() 1207 1208 def configure_logging(): 1209 h = TTSHandler() 1210 root = logging.getLogger() 1211 root.addHandler(h) 1212 # the default formatter just returns the message 1213 root.setLevel(logging.DEBUG) 1214 1215 def main(): 1216 logging.info('Hello') 1217 logging.debug('Goodbye') 1218 1219 if __name__ == '__main__': 1220 configure_logging() 1221 sys.exit(main()) 1222 1223 When run, this script should say "Hello" and then "Goodbye" in a female voice. 1224 1225 The above approach can, of course, be adapted to other TTS systems and even 1226 other systems altogether which can process messages via external programs run 1227 from a command line. 1228 1229 .. _buffered-logging: 1230 1231 Buffering logging messages and outputting them conditionally 1232 ------------------------------------------------------------ 1233 1234 There might be situations where you want to log messages in a temporary area 1235 and only output them if a certain condition occurs. For example, you may want to 1236 start logging debug events in a function, and if the function completes without 1237 errors, you don't want to clutter the log with the collected debug information, 1238 but if there is an error, you want all the debug information to be output as well 1239 as the error. 1240 1241 Here is an example which shows how you could do this using a decorator for your 1242 functions where you want logging to behave this way. It makes use of the 1243 :class:`logging.handlers.MemoryHandler`, which allows buffering of logged events 1244 until some condition occurs, at which point the buffered events are ``flushed`` 1245 - passed to another handler (the ``target`` handler) for processing. By default, 1246 the ``MemoryHandler`` flushed when its buffer gets filled up or an event whose 1247 level is greater than or equal to a specified threshold is seen. You can use this 1248 recipe with a more specialised subclass of ``MemoryHandler`` if you want custom 1249 flushing behavior. 1250 1251 The example script has a simple function, ``foo``, which just cycles through 1252 all the logging levels, writing to ``sys.stderr`` to say what level it's about 1253 to log at, and then actually logging a message at that level. You can pass a 1254 parameter to ``foo`` which, if true, will log at ERROR and CRITICAL levels - 1255 otherwise, it only logs at DEBUG, INFO and WARNING levels. 1256 1257 The script just arranges to decorate ``foo`` with a decorator which will do the 1258 conditional logging that's required. The decorator takes a logger as a parameter 1259 and attaches a memory handler for the duration of the call to the decorated 1260 function. The decorator can be additionally parameterised using a target handler, 1261 a level at which flushing should occur, and a capacity for the buffer. These 1262 default to a :class:`~logging.StreamHandler` which writes to ``sys.stderr``, 1263 ``logging.ERROR`` and ``100`` respectively. 1264 1265 Here's the script:: 1266 1267 import logging 1268 from logging.handlers import MemoryHandler 1269 import sys 1270 1271 logger = logging.getLogger(__name__) 1272 logger.addHandler(logging.NullHandler()) 1273 1274 def log_if_errors(logger, target_handler=None, flush_level=None, capacity=None): 1275 if target_handler is None: 1276 target_handler = logging.StreamHandler() 1277 if flush_level is None: 1278 flush_level = logging.ERROR 1279 if capacity is None: 1280 capacity = 100 1281 handler = MemoryHandler(capacity, flushLevel=flush_level, target=target_handler) 1282 1283 def decorator(fn): 1284 def wrapper(*args, **kwargs): 1285 logger.addHandler(handler) 1286 try: 1287 return fn(*args, **kwargs) 1288 except Exception: 1289 logger.exception('call failed') 1290 raise 1291 finally: 1292 super(MemoryHandler, handler).flush() 1293 logger.removeHandler(handler) 1294 return wrapper 1295 1296 return decorator 1297 1298 def write_line(s): 1299 sys.stderr.write('%s\n' % s) 1300 1301 def foo(fail=False): 1302 write_line('about to log at DEBUG ...') 1303 logger.debug('Actually logged at DEBUG') 1304 write_line('about to log at INFO ...') 1305 logger.info('Actually logged at INFO') 1306 write_line('about to log at WARNING ...') 1307 logger.warning('Actually logged at WARNING') 1308 if fail: 1309 write_line('about to log at ERROR ...') 1310 logger.error('Actually logged at ERROR') 1311 write_line('about to log at CRITICAL ...') 1312 logger.critical('Actually logged at CRITICAL') 1313 return fail 1314 1315 decorated_foo = log_if_errors(logger)(foo) 1316 1317 if __name__ == '__main__': 1318 logger.setLevel(logging.DEBUG) 1319 write_line('Calling undecorated foo with False') 1320 assert not foo(False) 1321 write_line('Calling undecorated foo with True') 1322 assert foo(True) 1323 write_line('Calling decorated foo with False') 1324 assert not decorated_foo(False) 1325 write_line('Calling decorated foo with True') 1326 assert decorated_foo(True) 1327 1328 When this script is run, the following output should be observed:: 1329 1330 Calling undecorated foo with False 1331 about to log at DEBUG ... 1332 about to log at INFO ... 1333 about to log at WARNING ... 1334 Calling undecorated foo with True 1335 about to log at DEBUG ... 1336 about to log at INFO ... 1337 about to log at WARNING ... 1338 about to log at ERROR ... 1339 about to log at CRITICAL ... 1340 Calling decorated foo with False 1341 about to log at DEBUG ... 1342 about to log at INFO ... 1343 about to log at WARNING ... 1344 Calling decorated foo with True 1345 about to log at DEBUG ... 1346 about to log at INFO ... 1347 about to log at WARNING ... 1348 about to log at ERROR ... 1349 Actually logged at DEBUG 1350 Actually logged at INFO 1351 Actually logged at WARNING 1352 Actually logged at ERROR 1353 about to log at CRITICAL ... 1354 Actually logged at CRITICAL 1355 1356 As you can see, actual logging output only occurs when an event is logged whose 1357 severity is ERROR or greater, but in that case, any previous events at lower 1358 severities are also logged. 1359 1360 You can of course use the conventional means of decoration:: 1361 1362 @log_if_errors(logger) 1363 def foo(fail=False): 1364 ... 1365 1366 1367 .. _utc-formatting: 1368 1369 Formatting times using UTC (GMT) via configuration 1370 -------------------------------------------------- 1371 1372 Sometimes you want to format times using UTC, which can be done using a class 1373 such as `UTCFormatter`, shown below:: 1374 1375 import logging 1376 import time 1377 1378 class UTCFormatter(logging.Formatter): 1379 converter = time.gmtime 1380 1381 and you can then use the ``UTCFormatter`` in your code instead of 1382 :class:`~logging.Formatter`. If you want to do that via configuration, you can 1383 use the :func:`~logging.config.dictConfig` API with an approach illustrated by 1384 the following complete example:: 1385 1386 import logging 1387 import logging.config 1388 import time 1389 1390 class UTCFormatter(logging.Formatter): 1391 converter = time.gmtime 1392 1393 LOGGING = { 1394 'version': 1, 1395 'disable_existing_loggers': False, 1396 'formatters': { 1397 'utc': { 1398 '()': UTCFormatter, 1399 'format': '%(asctime)s %(message)s', 1400 }, 1401 'local': { 1402 'format': '%(asctime)s %(message)s', 1403 } 1404 }, 1405 'handlers': { 1406 'console1': { 1407 'class': 'logging.StreamHandler', 1408 'formatter': 'utc', 1409 }, 1410 'console2': { 1411 'class': 'logging.StreamHandler', 1412 'formatter': 'local', 1413 }, 1414 }, 1415 'root': { 1416 'handlers': ['console1', 'console2'], 1417 } 1418 } 1419 1420 if __name__ == '__main__': 1421 logging.config.dictConfig(LOGGING) 1422 logging.warning('The local time is %s', time.asctime()) 1423 1424 When this script is run, it should print something like:: 1425 1426 2015-10-17 12:53:29,501 The local time is Sat Oct 17 13:53:29 2015 1427 2015-10-17 13:53:29,501 The local time is Sat Oct 17 13:53:29 2015 1428 1429 showing how the time is formatted both as local time and UTC, one for each 1430 handler. 1431 1432 1433 .. _context-manager: 1434 1435 Using a context manager for selective logging 1436 --------------------------------------------- 1437 1438 There are times when it would be useful to temporarily change the logging 1439 configuration and revert it back after doing something. For this, a context 1440 manager is the most obvious way of saving and restoring the logging context. 1441 Here is a simple example of such a context manager, which allows you to 1442 optionally change the logging level and add a logging handler purely in the 1443 scope of the context manager:: 1444 1445 import logging 1446 import sys 1447 1448 class LoggingContext(object): 1449 def __init__(self, logger, level=None, handler=None, close=True): 1450 self.logger = logger 1451 self.level = level 1452 self.handler = handler 1453 self.close = close 1454 1455 def __enter__(self): 1456 if self.level is not None: 1457 self.old_level = self.logger.level 1458 self.logger.setLevel(self.level) 1459 if self.handler: 1460 self.logger.addHandler(self.handler) 1461 1462 def __exit__(self, et, ev, tb): 1463 if self.level is not None: 1464 self.logger.setLevel(self.old_level) 1465 if self.handler: 1466 self.logger.removeHandler(self.handler) 1467 if self.handler and self.close: 1468 self.handler.close() 1469 # implicit return of None => don't swallow exceptions 1470 1471 If you specify a level value, the logger's level is set to that value in the 1472 scope of the with block covered by the context manager. If you specify a 1473 handler, it is added to the logger on entry to the block and removed on exit 1474 from the block. You can also ask the manager to close the handler for you on 1475 block exit - you could do this if you don't need the handler any more. 1476 1477 To illustrate how it works, we can add the following block of code to the 1478 above:: 1479 1480 if __name__ == '__main__': 1481 logger = logging.getLogger('foo') 1482 logger.addHandler(logging.StreamHandler()) 1483 logger.setLevel(logging.INFO) 1484 logger.info('1. This should appear just once on stderr.') 1485 logger.debug('2. This should not appear.') 1486 with LoggingContext(logger, level=logging.DEBUG): 1487 logger.debug('3. This should appear once on stderr.') 1488 logger.debug('4. This should not appear.') 1489 h = logging.StreamHandler(sys.stdout) 1490 with LoggingContext(logger, level=logging.DEBUG, handler=h, close=True): 1491 logger.debug('5. This should appear twice - once on stderr and once on stdout.') 1492 logger.info('6. This should appear just once on stderr.') 1493 logger.debug('7. This should not appear.') 1494 1495 We initially set the logger's level to ``INFO``, so message #1 appears and 1496 message #2 doesn't. We then change the level to ``DEBUG`` temporarily in the 1497 following ``with`` block, and so message #3 appears. After the block exits, the 1498 logger's level is restored to ``INFO`` and so message #4 doesn't appear. In the 1499 next ``with`` block, we set the level to ``DEBUG`` again but also add a handler 1500 writing to ``sys.stdout``. Thus, message #5 appears twice on the console (once 1501 via ``stderr`` and once via ``stdout``). After the ``with`` statement's 1502 completion, the status is as it was before so message #6 appears (like message 1503 #1) whereas message #7 doesn't (just like message #2). 1504 1505 If we run the resulting script, the result is as follows: 1506 1507 .. code-block:: shell-session 1508 1509 $ python logctx.py 1510 1. This should appear just once on stderr. 1511 3. This should appear once on stderr. 1512 5. This should appear twice - once on stderr and once on stdout. 1513 5. This should appear twice - once on stderr and once on stdout. 1514 6. This should appear just once on stderr. 1515 1516 If we run it again, but pipe ``stderr`` to ``/dev/null``, we see the following, 1517 which is the only message written to ``stdout``: 1518 1519 .. code-block:: shell-session 1520 1521 $ python logctx.py 2>/dev/null 1522 5. This should appear twice - once on stderr and once on stdout. 1523 1524 Once again, but piping ``stdout`` to ``/dev/null``, we get: 1525 1526 .. code-block:: shell-session 1527 1528 $ python logctx.py >/dev/null 1529 1. This should appear just once on stderr. 1530 3. This should appear once on stderr. 1531 5. This should appear twice - once on stderr and once on stdout. 1532 6. This should appear just once on stderr. 1533 1534 In this case, the message #5 printed to ``stdout`` doesn't appear, as expected. 1535 1536 Of course, the approach described here can be generalised, for example to attach 1537 logging filters temporarily. Note that the above code works in Python 2 as well 1538 as Python 3. 1539