1 :mod:`dis` --- Disassembler for Python bytecode 2 =============================================== 3 4 .. module:: dis 5 :synopsis: Disassembler for Python bytecode. 6 7 **Source code:** :source:`Lib/dis.py` 8 9 -------------- 10 11 The :mod:`dis` module supports the analysis of CPython :term:`bytecode` by 12 disassembling it. The CPython bytecode which this module takes as an input is 13 defined in the file :file:`Include/opcode.h` and used by the compiler and the 14 interpreter. 15 16 .. impl-detail:: 17 18 Bytecode is an implementation detail of the CPython interpreter! No 19 guarantees are made that bytecode will not be added, removed, or changed 20 between versions of Python. Use of this module should not be considered to 21 work across Python VMs or Python releases. 22 23 Example: Given the function :func:`myfunc`:: 24 25 def myfunc(alist): 26 return len(alist) 27 28 the following command can be used to get the disassembly of :func:`myfunc`:: 29 30 >>> dis.dis(myfunc) 31 2 0 LOAD_GLOBAL 0 (len) 32 3 LOAD_FAST 0 (alist) 33 6 CALL_FUNCTION 1 34 9 RETURN_VALUE 35 36 (The "2" is a line number). 37 38 The :mod:`dis` module defines the following functions and constants: 39 40 41 .. function:: dis([bytesource]) 42 43 Disassemble the *bytesource* object. *bytesource* can denote either a module, 44 a class, a method, a function, or a code object. For a module, it 45 disassembles all functions. For a class, it disassembles all methods. For a 46 single code sequence, it prints one line per bytecode instruction. If no 47 object is provided, it disassembles the last traceback. 48 49 50 .. function:: distb([tb]) 51 52 Disassembles the top-of-stack function of a traceback, using the last 53 traceback if none was passed. The instruction causing the exception is 54 indicated. 55 56 57 .. function:: disassemble(code[, lasti]) 58 59 Disassembles a code object, indicating the last instruction if *lasti* was 60 provided. The output is divided in the following columns: 61 62 #. the line number, for the first instruction of each line 63 #. the current instruction, indicated as ``-->``, 64 #. a labelled instruction, indicated with ``>>``, 65 #. the address of the instruction, 66 #. the operation code name, 67 #. operation parameters, and 68 #. interpretation of the parameters in parentheses. 69 70 The parameter interpretation recognizes local and global variable names, 71 constant values, branch targets, and compare operators. 72 73 74 .. function:: disco(code[, lasti]) 75 76 A synonym for :func:`disassemble`. It is more convenient to type, and kept 77 for compatibility with earlier Python releases. 78 79 80 .. function:: findlinestarts(code) 81 82 This generator function uses the ``co_firstlineno`` and ``co_lnotab`` 83 attributes of the code object *code* to find the offsets which are starts of 84 lines in the source code. They are generated as ``(offset, lineno)`` pairs. 85 86 87 .. function:: findlabels(code) 88 89 Detect all offsets in the code object *code* which are jump targets, and 90 return a list of these offsets. 91 92 93 .. data:: opname 94 95 Sequence of operation names, indexable using the bytecode. 96 97 98 .. data:: opmap 99 100 Dictionary mapping operation names to bytecodes. 101 102 103 .. data:: cmp_op 104 105 Sequence of all compare operation names. 106 107 108 .. data:: hasconst 109 110 Sequence of bytecodes that have a constant parameter. 111 112 113 .. data:: hasfree 114 115 Sequence of bytecodes that access a free variable. 116 117 118 .. data:: hasname 119 120 Sequence of bytecodes that access an attribute by name. 121 122 123 .. data:: hasjrel 124 125 Sequence of bytecodes that have a relative jump target. 126 127 128 .. data:: hasjabs 129 130 Sequence of bytecodes that have an absolute jump target. 131 132 133 .. data:: haslocal 134 135 Sequence of bytecodes that access a local variable. 136 137 138 .. data:: hascompare 139 140 Sequence of bytecodes of Boolean operations. 141 142 143 .. _bytecodes: 144 145 Python Bytecode Instructions 146 ---------------------------- 147 148 The Python compiler currently generates the following bytecode instructions. 149 150 151 .. opcode:: STOP_CODE () 152 153 Indicates end-of-code to the compiler, not used by the interpreter. 154 155 156 .. opcode:: NOP () 157 158 Do nothing code. Used as a placeholder by the bytecode optimizer. 159 160 161 .. opcode:: POP_TOP () 162 163 Removes the top-of-stack (TOS) item. 164 165 166 .. opcode:: ROT_TWO () 167 168 Swaps the two top-most stack items. 169 170 171 .. opcode:: ROT_THREE () 172 173 Lifts second and third stack item one position up, moves top down to position 174 three. 175 176 177 .. opcode:: ROT_FOUR () 178 179 Lifts second, third and forth stack item one position up, moves top down to 180 position four. 181 182 183 .. opcode:: DUP_TOP () 184 185 Duplicates the reference on top of the stack. 186 187 Unary Operations take the top of the stack, apply the operation, and push the 188 result back on the stack. 189 190 191 .. opcode:: UNARY_POSITIVE () 192 193 Implements ``TOS = +TOS``. 194 195 196 .. opcode:: UNARY_NEGATIVE () 197 198 Implements ``TOS = -TOS``. 199 200 201 .. opcode:: UNARY_NOT () 202 203 Implements ``TOS = not TOS``. 204 205 206 .. opcode:: UNARY_CONVERT () 207 208 Implements ``TOS = `TOS```. 209 210 211 .. opcode:: UNARY_INVERT () 212 213 Implements ``TOS = ~TOS``. 214 215 216 .. opcode:: GET_ITER () 217 218 Implements ``TOS = iter(TOS)``. 219 220 Binary operations remove the top of the stack (TOS) and the second top-most 221 stack item (TOS1) from the stack. They perform the operation, and put the 222 result back on the stack. 223 224 225 .. opcode:: BINARY_POWER () 226 227 Implements ``TOS = TOS1 ** TOS``. 228 229 230 .. opcode:: BINARY_MULTIPLY () 231 232 Implements ``TOS = TOS1 * TOS``. 233 234 235 .. opcode:: BINARY_DIVIDE () 236 237 Implements ``TOS = TOS1 / TOS`` when ``from __future__ import division`` is 238 not in effect. 239 240 241 .. opcode:: BINARY_FLOOR_DIVIDE () 242 243 Implements ``TOS = TOS1 // TOS``. 244 245 246 .. opcode:: BINARY_TRUE_DIVIDE () 247 248 Implements ``TOS = TOS1 / TOS`` when ``from __future__ import division`` is 249 in effect. 250 251 252 .. opcode:: BINARY_MODULO () 253 254 Implements ``TOS = TOS1 % TOS``. 255 256 257 .. opcode:: BINARY_ADD () 258 259 Implements ``TOS = TOS1 + TOS``. 260 261 262 .. opcode:: BINARY_SUBTRACT () 263 264 Implements ``TOS = TOS1 - TOS``. 265 266 267 .. opcode:: BINARY_SUBSCR () 268 269 Implements ``TOS = TOS1[TOS]``. 270 271 272 .. opcode:: BINARY_LSHIFT () 273 274 Implements ``TOS = TOS1 << TOS``. 275 276 277 .. opcode:: BINARY_RSHIFT () 278 279 Implements ``TOS = TOS1 >> TOS``. 280 281 282 .. opcode:: BINARY_AND () 283 284 Implements ``TOS = TOS1 & TOS``. 285 286 287 .. opcode:: BINARY_XOR () 288 289 Implements ``TOS = TOS1 ^ TOS``. 290 291 292 .. opcode:: BINARY_OR () 293 294 Implements ``TOS = TOS1 | TOS``. 295 296 In-place operations are like binary operations, in that they remove TOS and 297 TOS1, and push the result back on the stack, but the operation is done in-place 298 when TOS1 supports it, and the resulting TOS may be (but does not have to be) 299 the original TOS1. 300 301 302 .. opcode:: INPLACE_POWER () 303 304 Implements in-place ``TOS = TOS1 ** TOS``. 305 306 307 .. opcode:: INPLACE_MULTIPLY () 308 309 Implements in-place ``TOS = TOS1 * TOS``. 310 311 312 .. opcode:: INPLACE_DIVIDE () 313 314 Implements in-place ``TOS = TOS1 / TOS`` when ``from __future__ import 315 division`` is not in effect. 316 317 318 .. opcode:: INPLACE_FLOOR_DIVIDE () 319 320 Implements in-place ``TOS = TOS1 // TOS``. 321 322 323 .. opcode:: INPLACE_TRUE_DIVIDE () 324 325 Implements in-place ``TOS = TOS1 / TOS`` when ``from __future__ import 326 division`` is in effect. 327 328 329 .. opcode:: INPLACE_MODULO () 330 331 Implements in-place ``TOS = TOS1 % TOS``. 332 333 334 .. opcode:: INPLACE_ADD () 335 336 Implements in-place ``TOS = TOS1 + TOS``. 337 338 339 .. opcode:: INPLACE_SUBTRACT () 340 341 Implements in-place ``TOS = TOS1 - TOS``. 342 343 344 .. opcode:: INPLACE_LSHIFT () 345 346 Implements in-place ``TOS = TOS1 << TOS``. 347 348 349 .. opcode:: INPLACE_RSHIFT () 350 351 Implements in-place ``TOS = TOS1 >> TOS``. 352 353 354 .. opcode:: INPLACE_AND () 355 356 Implements in-place ``TOS = TOS1 & TOS``. 357 358 359 .. opcode:: INPLACE_XOR () 360 361 Implements in-place ``TOS = TOS1 ^ TOS``. 362 363 364 .. opcode:: INPLACE_OR () 365 366 Implements in-place ``TOS = TOS1 | TOS``. 367 368 The slice opcodes take up to three parameters. 369 370 371 .. opcode:: SLICE+0 () 372 373 Implements ``TOS = TOS[:]``. 374 375 376 .. opcode:: SLICE+1 () 377 378 Implements ``TOS = TOS1[TOS:]``. 379 380 381 .. opcode:: SLICE+2 () 382 383 Implements ``TOS = TOS1[:TOS]``. 384 385 386 .. opcode:: SLICE+3 () 387 388 Implements ``TOS = TOS2[TOS1:TOS]``. 389 390 Slice assignment needs even an additional parameter. As any statement, they put 391 nothing on the stack. 392 393 394 .. opcode:: STORE_SLICE+0 () 395 396 Implements ``TOS[:] = TOS1``. 397 398 399 .. opcode:: STORE_SLICE+1 () 400 401 Implements ``TOS1[TOS:] = TOS2``. 402 403 404 .. opcode:: STORE_SLICE+2 () 405 406 Implements ``TOS1[:TOS] = TOS2``. 407 408 409 .. opcode:: STORE_SLICE+3 () 410 411 Implements ``TOS2[TOS1:TOS] = TOS3``. 412 413 414 .. opcode:: DELETE_SLICE+0 () 415 416 Implements ``del TOS[:]``. 417 418 419 .. opcode:: DELETE_SLICE+1 () 420 421 Implements ``del TOS1[TOS:]``. 422 423 424 .. opcode:: DELETE_SLICE+2 () 425 426 Implements ``del TOS1[:TOS]``. 427 428 429 .. opcode:: DELETE_SLICE+3 () 430 431 Implements ``del TOS2[TOS1:TOS]``. 432 433 434 .. opcode:: STORE_SUBSCR () 435 436 Implements ``TOS1[TOS] = TOS2``. 437 438 439 .. opcode:: DELETE_SUBSCR () 440 441 Implements ``del TOS1[TOS]``. 442 443 Miscellaneous opcodes. 444 445 446 .. opcode:: PRINT_EXPR () 447 448 Implements the expression statement for the interactive mode. TOS is removed 449 from the stack and printed. In non-interactive mode, an expression statement 450 is terminated with :opcode:`POP_TOP`. 451 452 453 .. opcode:: PRINT_ITEM () 454 455 Prints TOS to the file-like object bound to ``sys.stdout``. There is one 456 such instruction for each item in the :keyword:`print` statement. 457 458 459 .. opcode:: PRINT_ITEM_TO () 460 461 Like ``PRINT_ITEM``, but prints the item second from TOS to the file-like 462 object at TOS. This is used by the extended print statement. 463 464 465 .. opcode:: PRINT_NEWLINE () 466 467 Prints a new line on ``sys.stdout``. This is generated as the last operation 468 of a :keyword:`print` statement, unless the statement ends with a comma. 469 470 471 .. opcode:: PRINT_NEWLINE_TO () 472 473 Like ``PRINT_NEWLINE``, but prints the new line on the file-like object on 474 the TOS. This is used by the extended print statement. 475 476 477 .. opcode:: BREAK_LOOP () 478 479 Terminates a loop due to a :keyword:`break` statement. 480 481 482 .. opcode:: CONTINUE_LOOP (target) 483 484 Continues a loop due to a :keyword:`continue` statement. *target* is the 485 address to jump to (which should be a :opcode:`FOR_ITER` instruction). 486 487 488 .. opcode:: LIST_APPEND (i) 489 490 Calls ``list.append(TOS[-i], TOS)``. Used to implement list comprehensions. 491 While the appended value is popped off, the list object remains on the stack 492 so that it is available for further iterations of the loop. 493 494 495 .. opcode:: LOAD_LOCALS () 496 497 Pushes a reference to the locals of the current scope on the stack. This is 498 used in the code for a class definition: After the class body is evaluated, 499 the locals are passed to the class definition. 500 501 502 .. opcode:: RETURN_VALUE () 503 504 Returns with TOS to the caller of the function. 505 506 507 .. opcode:: YIELD_VALUE () 508 509 Pops ``TOS`` and yields it from a :term:`generator`. 510 511 512 .. opcode:: IMPORT_STAR () 513 514 Loads all symbols not starting with ``'_'`` directly from the module TOS to 515 the local namespace. The module is popped after loading all names. This 516 opcode implements ``from module import *``. 517 518 519 .. opcode:: EXEC_STMT () 520 521 Implements ``exec TOS2,TOS1,TOS``. The compiler fills missing optional 522 parameters with ``None``. 523 524 525 .. opcode:: POP_BLOCK () 526 527 Removes one block from the block stack. Per frame, there is a stack of 528 blocks, denoting nested loops, try statements, and such. 529 530 531 .. opcode:: END_FINALLY () 532 533 Terminates a :keyword:`finally` clause. The interpreter recalls whether the 534 exception has to be re-raised, or whether the function returns, and continues 535 with the outer-next block. 536 537 538 .. opcode:: BUILD_CLASS () 539 540 Creates a new class object. TOS is the methods dictionary, TOS1 the tuple of 541 the names of the base classes, and TOS2 the class name. 542 543 544 .. opcode:: SETUP_WITH (delta) 545 546 This opcode performs several operations before a with block starts. First, 547 it loads :meth:`~object.__exit__` from the context manager and pushes it onto 548 the stack for later use by :opcode:`WITH_CLEANUP`. Then, 549 :meth:`~object.__enter__` is called, and a finally block pointing to *delta* 550 is pushed. Finally, the result of calling the enter method is pushed onto 551 the stack. The next opcode will either ignore it (:opcode:`POP_TOP`), or 552 store it in (a) variable(s) (:opcode:`STORE_FAST`, :opcode:`STORE_NAME`, or 553 :opcode:`UNPACK_SEQUENCE`). 554 555 556 .. opcode:: WITH_CLEANUP () 557 558 Cleans up the stack when a :keyword:`with` statement block exits. On top of 559 the stack are 1--3 values indicating how/why the finally clause was entered: 560 561 * TOP = ``None`` 562 * (TOP, SECOND) = (``WHY_{RETURN,CONTINUE}``), retval 563 * TOP = ``WHY_*``; no retval below it 564 * (TOP, SECOND, THIRD) = exc_info() 565 566 Under them is EXIT, the context manager's :meth:`__exit__` bound method. 567 568 In the last case, ``EXIT(TOP, SECOND, THIRD)`` is called, otherwise 569 ``EXIT(None, None, None)``. 570 571 EXIT is removed from the stack, leaving the values above it in the same 572 order. In addition, if the stack represents an exception, *and* the function 573 call returns a 'true' value, this information is "zapped", to prevent 574 ``END_FINALLY`` from re-raising the exception. (But non-local gotos should 575 still be resumed.) 576 577 .. XXX explain the WHY stuff! 578 579 580 All of the following opcodes expect arguments. An argument is two bytes, with 581 the more significant byte last. 582 583 .. opcode:: STORE_NAME (namei) 584 585 Implements ``name = TOS``. *namei* is the index of *name* in the attribute 586 :attr:`co_names` of the code object. The compiler tries to use ``STORE_FAST`` 587 or ``STORE_GLOBAL`` if possible. 588 589 590 .. opcode:: DELETE_NAME (namei) 591 592 Implements ``del name``, where *namei* is the index into :attr:`co_names` 593 attribute of the code object. 594 595 596 .. opcode:: UNPACK_SEQUENCE (count) 597 598 Unpacks TOS into *count* individual values, which are put onto the stack 599 right-to-left. 600 601 602 .. opcode:: DUP_TOPX (count) 603 604 Duplicate *count* items, keeping them in the same order. Due to 605 implementation limits, *count* should be between 1 and 5 inclusive. 606 607 608 .. opcode:: STORE_ATTR (namei) 609 610 Implements ``TOS.name = TOS1``, where *namei* is the index of name in 611 :attr:`co_names`. 612 613 614 .. opcode:: DELETE_ATTR (namei) 615 616 Implements ``del TOS.name``, using *namei* as index into :attr:`co_names`. 617 618 619 .. opcode:: STORE_GLOBAL (namei) 620 621 Works as ``STORE_NAME``, but stores the name as a global. 622 623 624 .. opcode:: DELETE_GLOBAL (namei) 625 626 Works as ``DELETE_NAME``, but deletes a global name. 627 628 629 .. opcode:: LOAD_CONST (consti) 630 631 Pushes ``co_consts[consti]`` onto the stack. 632 633 634 .. opcode:: LOAD_NAME (namei) 635 636 Pushes the value associated with ``co_names[namei]`` onto the stack. 637 638 639 .. opcode:: BUILD_TUPLE (count) 640 641 Creates a tuple consuming *count* items from the stack, and pushes the 642 resulting tuple onto the stack. 643 644 645 .. opcode:: BUILD_LIST (count) 646 647 Works as ``BUILD_TUPLE``, but creates a list. 648 649 650 .. opcode:: BUILD_SET (count) 651 652 Works as ``BUILD_TUPLE``, but creates a set. 653 654 .. versionadded:: 2.7 655 656 657 .. opcode:: BUILD_MAP (count) 658 659 Pushes a new dictionary object onto the stack. The dictionary is pre-sized 660 to hold *count* entries. 661 662 663 .. opcode:: LOAD_ATTR (namei) 664 665 Replaces TOS with ``getattr(TOS, co_names[namei])``. 666 667 668 .. opcode:: COMPARE_OP (opname) 669 670 Performs a Boolean operation. The operation name can be found in 671 ``cmp_op[opname]``. 672 673 674 .. opcode:: IMPORT_NAME (namei) 675 676 Imports the module ``co_names[namei]``. TOS and TOS1 are popped and provide 677 the *fromlist* and *level* arguments of :func:`__import__`. The module 678 object is pushed onto the stack. The current namespace is not affected: for 679 a proper import statement, a subsequent ``STORE_FAST`` instruction modifies 680 the namespace. 681 682 683 .. opcode:: IMPORT_FROM (namei) 684 685 Loads the attribute ``co_names[namei]`` from the module found in TOS. The 686 resulting object is pushed onto the stack, to be subsequently stored by a 687 ``STORE_FAST`` instruction. 688 689 690 .. opcode:: JUMP_FORWARD (delta) 691 692 Increments bytecode counter by *delta*. 693 694 695 .. opcode:: POP_JUMP_IF_TRUE (target) 696 697 If TOS is true, sets the bytecode counter to *target*. TOS is popped. 698 699 700 .. opcode:: POP_JUMP_IF_FALSE (target) 701 702 If TOS is false, sets the bytecode counter to *target*. TOS is popped. 703 704 705 .. opcode:: JUMP_IF_TRUE_OR_POP (target) 706 707 If TOS is true, sets the bytecode counter to *target* and leaves TOS on the 708 stack. Otherwise (TOS is false), TOS is popped. 709 710 711 .. opcode:: JUMP_IF_FALSE_OR_POP (target) 712 713 If TOS is false, sets the bytecode counter to *target* and leaves TOS on the 714 stack. Otherwise (TOS is true), TOS is popped. 715 716 717 .. opcode:: JUMP_ABSOLUTE (target) 718 719 Set bytecode counter to *target*. 720 721 722 .. opcode:: FOR_ITER (delta) 723 724 ``TOS`` is an :term:`iterator`. Call its :meth:`!next` method. If this 725 yields a new value, push it on the stack (leaving the iterator below it). If 726 the iterator indicates it is exhausted ``TOS`` is popped, and the bytecode 727 counter is incremented by *delta*. 728 729 730 .. opcode:: LOAD_GLOBAL (namei) 731 732 Loads the global named ``co_names[namei]`` onto the stack. 733 734 735 .. opcode:: SETUP_LOOP (delta) 736 737 Pushes a block for a loop onto the block stack. The block spans from the 738 current instruction with a size of *delta* bytes. 739 740 741 .. opcode:: SETUP_EXCEPT (delta) 742 743 Pushes a try block from a try-except clause onto the block stack. *delta* 744 points to the first except block. 745 746 747 .. opcode:: SETUP_FINALLY (delta) 748 749 Pushes a try block from a try-except clause onto the block stack. *delta* 750 points to the finally block. 751 752 .. opcode:: STORE_MAP () 753 754 Store a key and value pair in a dictionary. Pops the key and value while 755 leaving the dictionary on the stack. 756 757 .. opcode:: LOAD_FAST (var_num) 758 759 Pushes a reference to the local ``co_varnames[var_num]`` onto the stack. 760 761 762 .. opcode:: STORE_FAST (var_num) 763 764 Stores TOS into the local ``co_varnames[var_num]``. 765 766 767 .. opcode:: DELETE_FAST (var_num) 768 769 Deletes local ``co_varnames[var_num]``. 770 771 772 .. opcode:: LOAD_CLOSURE (i) 773 774 Pushes a reference to the cell contained in slot *i* of the cell and free 775 variable storage. The name of the variable is ``co_cellvars[i]`` if *i* is 776 less than the length of *co_cellvars*. Otherwise it is ``co_freevars[i - 777 len(co_cellvars)]``. 778 779 780 .. opcode:: LOAD_DEREF (i) 781 782 Loads the cell contained in slot *i* of the cell and free variable storage. 783 Pushes a reference to the object the cell contains on the stack. 784 785 786 .. opcode:: STORE_DEREF (i) 787 788 Stores TOS into the cell contained in slot *i* of the cell and free variable 789 storage. 790 791 792 .. opcode:: SET_LINENO (lineno) 793 794 This opcode is obsolete. 795 796 797 .. opcode:: RAISE_VARARGS (argc) 798 799 Raises an exception. *argc* indicates the number of parameters to the raise 800 statement, ranging from 0 to 3. The handler will find the traceback as TOS2, 801 the parameter as TOS1, and the exception as TOS. 802 803 804 .. opcode:: CALL_FUNCTION (argc) 805 806 Calls a function. The low byte of *argc* indicates the number of positional 807 parameters, the high byte the number of keyword parameters. On the stack, the 808 opcode finds the keyword parameters first. For each keyword argument, the 809 value is on top of the key. Below the keyword parameters, the positional 810 parameters are on the stack, with the right-most parameter on top. Below the 811 parameters, the function object to call is on the stack. Pops all function 812 arguments, and the function itself off the stack, and pushes the return 813 value. 814 815 816 .. opcode:: MAKE_FUNCTION (argc) 817 818 Pushes a new function object on the stack. TOS is the code associated with 819 the function. The function object is defined to have *argc* default 820 parameters, which are found below TOS. 821 822 823 .. opcode:: MAKE_CLOSURE (argc) 824 825 Creates a new function object, sets its *func_closure* slot, and pushes it on 826 the stack. TOS is the code associated with the function, TOS1 the tuple 827 containing cells for the closure's free variables. The function also has 828 *argc* default parameters, which are found below the cells. 829 830 831 .. opcode:: BUILD_SLICE (argc) 832 833 .. index:: builtin: slice 834 835 Pushes a slice object on the stack. *argc* must be 2 or 3. If it is 2, 836 ``slice(TOS1, TOS)`` is pushed; if it is 3, ``slice(TOS2, TOS1, TOS)`` is 837 pushed. See the :func:`slice` built-in function for more information. 838 839 840 .. opcode:: EXTENDED_ARG (ext) 841 842 Prefixes any opcode which has an argument too big to fit into the default two 843 bytes. *ext* holds two additional bytes which, taken together with the 844 subsequent opcode's argument, comprise a four-byte argument, *ext* being the 845 two most-significant bytes. 846 847 848 .. opcode:: CALL_FUNCTION_VAR (argc) 849 850 Calls a function. *argc* is interpreted as in :opcode:`CALL_FUNCTION`. The 851 top element on the stack contains the variable argument list, followed by 852 keyword and positional arguments. 853 854 855 .. opcode:: CALL_FUNCTION_KW (argc) 856 857 Calls a function. *argc* is interpreted as in :opcode:`CALL_FUNCTION`. The 858 top element on the stack contains the keyword arguments dictionary, followed 859 by explicit keyword and positional arguments. 860 861 862 .. opcode:: CALL_FUNCTION_VAR_KW (argc) 863 864 Calls a function. *argc* is interpreted as in :opcode:`CALL_FUNCTION`. The 865 top element on the stack contains the keyword arguments dictionary, followed 866 by the variable-arguments tuple, followed by explicit keyword and positional 867 arguments. 868 869 870 .. opcode:: HAVE_ARGUMENT () 871 872 This is not really an opcode. It identifies the dividing line between 873 opcodes which don't take arguments ``< HAVE_ARGUMENT`` and those which do 874 ``>= HAVE_ARGUMENT``. 875