Home | History | Annotate | Download | only in nios2
      1 /* libffi support for Altera Nios II.
      2 
      3    Copyright (c) 2013 Mentor Graphics.
      4 
      5    Permission is hereby granted, free of charge, to any person obtaining
      6    a copy of this software and associated documentation files (the
      7    ``Software''), to deal in the Software without restriction, including
      8    without limitation the rights to use, copy, modify, merge, publish,
      9    distribute, sublicense, and/or sell copies of the Software, and to
     10    permit persons to whom the Software is furnished to do so, subject to
     11    the following conditions:
     12 
     13    The above copyright notice and this permission notice shall be
     14    included in all copies or substantial portions of the Software.
     15 
     16    THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
     17    EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
     18    MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
     19    IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
     20    CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
     21    TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
     22    SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.  */
     23 
     24 
     25 #include <ffi.h>
     26 #include <ffi_common.h>
     27 
     28 #include <stdlib.h>
     29 
     30 /* The Nios II Processor Reference Handbook defines the procedure call
     31    ABI as follows.
     32 
     33    Arguments are passed as if a structure containing the types of
     34    the arguments were constructed.  The first 16 bytes are passed in r4
     35    through r7, the remainder on the stack.  The first 16 bytes of a function
     36    taking variable arguments are passed in r4-r7 in the same way.
     37 
     38    Return values of types up to 8 bytes are returned in r2 and r3.  For
     39    return values greater than 8 bytes, the caller must allocate memory for
     40    the result and pass the address as if it were argument 0.
     41 
     42    While this isn't specified explicitly in the ABI documentation, GCC
     43    promotes integral arguments smaller than int size to 32 bits.
     44 
     45    Also of note, the ABI specifies that all structure objects are
     46    aligned to 32 bits even if all their fields have a smaller natural
     47    alignment.  See FFI_AGGREGATE_ALIGNMENT.  */
     48 
     49 
     50 /* Declare the assembly language hooks.  */
     51 
     52 extern UINT64 ffi_call_sysv (void (*) (char *, extended_cif *),
     53 			     extended_cif *,
     54 			     unsigned,
     55 			     void (*fn) (void));
     56 extern void ffi_closure_sysv (void);
     57 
     58 /* Perform machine-dependent cif processing.  */
     59 
     60 ffi_status ffi_prep_cif_machdep (ffi_cif *cif)
     61 {
     62   /* We always want at least 16 bytes in the parameter block since it
     63      simplifies the low-level call function.  Also round the parameter
     64      block size up to a multiple of 4 bytes to preserve
     65      32-bit alignment of the stack pointer.  */
     66   if (cif->bytes < 16)
     67     cif->bytes = 16;
     68   else
     69     cif->bytes = (cif->bytes + 3) & ~3;
     70 
     71   return FFI_OK;
     72 }
     73 
     74 
     75 /* ffi_prep_args is called by the assembly routine to transfer arguments
     76    to the stack using the pointers in the ecif array.
     77    Note that the stack buffer is big enough to fit all the arguments,
     78    but the first 16 bytes will be copied to registers for the actual
     79    call.  */
     80 
     81 void ffi_prep_args (char *stack, extended_cif *ecif)
     82 {
     83   char *argp = stack;
     84   unsigned int i;
     85 
     86   /* The implicit return value pointer is passed as if it were a hidden
     87      first argument.  */
     88   if (ecif->cif->rtype->type == FFI_TYPE_STRUCT
     89       && ecif->cif->rtype->size > 8)
     90     {
     91       (*(void **) argp) = ecif->rvalue;
     92       argp += 4;
     93     }
     94 
     95   for (i = 0; i < ecif->cif->nargs; i++)
     96     {
     97       void *avalue = ecif->avalue[i];
     98       ffi_type *atype = ecif->cif->arg_types[i];
     99       size_t size = atype->size;
    100       size_t alignment = atype->alignment;
    101 
    102       /* Align argp as appropriate for the argument type.  */
    103       if ((alignment - 1) & (unsigned) argp)
    104 	argp = (char *) ALIGN (argp, alignment);
    105 
    106       /* Copy the argument, promoting integral types smaller than a
    107 	 word to word size.  */
    108       if (size < sizeof (int))
    109 	{
    110 	  size = sizeof (int);
    111 	  switch (atype->type)
    112 	    {
    113 	    case FFI_TYPE_SINT8:
    114 	      *(signed int *) argp = (signed int) *(SINT8 *) avalue;
    115 	      break;
    116 
    117 	    case FFI_TYPE_UINT8:
    118 	      *(unsigned int *) argp = (unsigned int) *(UINT8 *) avalue;
    119 	      break;
    120 
    121 	    case FFI_TYPE_SINT16:
    122 	      *(signed int *) argp = (signed int) *(SINT16 *) avalue;
    123 	      break;
    124 
    125 	    case FFI_TYPE_UINT16:
    126 	      *(unsigned int *) argp = (unsigned int) *(UINT16 *) avalue;
    127 	      break;
    128 
    129 	    case FFI_TYPE_STRUCT:
    130 	      memcpy (argp, avalue, atype->size);
    131 	      break;
    132 
    133 	    default:
    134 	      FFI_ASSERT(0);
    135 	    }
    136 	}
    137       else if (size == sizeof (int))
    138 	*(unsigned int *) argp = (unsigned int) *(UINT32 *) avalue;
    139       else
    140 	memcpy (argp, avalue, size);
    141       argp += size;
    142     }
    143 }
    144 
    145 
    146 /* Call FN using the prepared CIF.  RVALUE points to space allocated by
    147    the caller for the return value, and AVALUE is an array of argument
    148    pointers.  */
    149 
    150 void ffi_call (ffi_cif *cif, void (*fn) (void), void *rvalue, void **avalue)
    151 {
    152 
    153   extended_cif ecif;
    154   UINT64 result;
    155 
    156   /* If bigret is true, this is the case where a return value of larger
    157      than 8 bytes is handled by being passed by reference as an implicit
    158      argument.  */
    159   int bigret = (cif->rtype->type == FFI_TYPE_STRUCT
    160 		&& cif->rtype->size > 8);
    161 
    162   ecif.cif = cif;
    163   ecif.avalue = avalue;
    164 
    165   /* Allocate space for return value if this is the pass-by-reference case
    166      and the caller did not provide a buffer.  */
    167   if (rvalue == NULL && bigret)
    168     ecif.rvalue = alloca (cif->rtype->size);
    169   else
    170     ecif.rvalue = rvalue;
    171 
    172   result = ffi_call_sysv (ffi_prep_args, &ecif, cif->bytes, fn);
    173 
    174   /* Now result contains the 64 bit contents returned from fn in
    175      r2 and r3.  Copy the value of the appropriate size to the user-provided
    176      rvalue buffer.  */
    177   if (rvalue && !bigret)
    178     switch (cif->rtype->size)
    179       {
    180       case 1:
    181 	*(UINT8 *)rvalue = (UINT8) result;
    182 	break;
    183       case 2:
    184 	*(UINT16 *)rvalue = (UINT16) result;
    185 	break;
    186       case 4:
    187 	*(UINT32 *)rvalue = (UINT32) result;
    188 	break;
    189       case 8:
    190 	*(UINT64 *)rvalue = (UINT64) result;
    191 	break;
    192       default:
    193 	memcpy (rvalue, (void *)&result, cif->rtype->size);
    194 	break;
    195       }
    196 }
    197 
    198 /* This function is invoked from the closure trampoline to invoke
    199    CLOSURE with argument block ARGS.  Parse ARGS according to
    200    CLOSURE->cfi and invoke CLOSURE->fun.  */
    201 
    202 static UINT64
    203 ffi_closure_helper (unsigned char *args,
    204 		    ffi_closure *closure)
    205 {
    206   ffi_cif *cif = closure->cif;
    207   unsigned char *argp = args;
    208   void **parsed_args = alloca (cif->nargs * sizeof (void *));
    209   UINT64 result;
    210   void *retptr;
    211   unsigned int i;
    212 
    213   /* First figure out what to do about the return type.  If this is the
    214      big-structure-return case, the first arg is the hidden return buffer
    215      allocated by the caller.  */
    216   if (cif->rtype->type == FFI_TYPE_STRUCT
    217       && cif->rtype->size > 8)
    218     {
    219       retptr = *((void **) argp);
    220       argp += 4;
    221     }
    222   else
    223     retptr = (void *) &result;
    224 
    225   /* Fill in the array of argument pointers.  */
    226   for (i = 0; i < cif->nargs; i++)
    227     {
    228       size_t size = cif->arg_types[i]->size;
    229       size_t alignment = cif->arg_types[i]->alignment;
    230 
    231       /* Align argp as appropriate for the argument type.  */
    232       if ((alignment - 1) & (unsigned) argp)
    233 	argp = (char *) ALIGN (argp, alignment);
    234 
    235       /* Arguments smaller than an int are promoted to int.  */
    236       if (size < sizeof (int))
    237 	size = sizeof (int);
    238 
    239       /* Store the pointer.  */
    240       parsed_args[i] = argp;
    241       argp += size;
    242     }
    243 
    244   /* Call the user-supplied function.  */
    245   (closure->fun) (cif, retptr, parsed_args, closure->user_data);
    246   return result;
    247 }
    248 
    249 
    250 /* Initialize CLOSURE with a trampoline to call FUN with
    251    CIF and USER_DATA.  */
    252 ffi_status
    253 ffi_prep_closure_loc (ffi_closure* closure,
    254 		      ffi_cif* cif,
    255 		      void (*fun) (ffi_cif*, void*, void**, void*),
    256 		      void *user_data,
    257 		      void *codeloc)
    258 {
    259   unsigned int *tramp = (unsigned int *) &closure->tramp[0];
    260   int i;
    261 
    262   if (cif->abi != FFI_SYSV)
    263     return FFI_BAD_ABI;
    264 
    265   /* The trampoline looks like:
    266        movhi r8, %hi(ffi_closure_sysv)
    267        ori r8, r8, %lo(ffi_closure_sysv)
    268        movhi r9, %hi(ffi_closure_helper)
    269        ori r0, r9, %lo(ffi_closure_helper)
    270        movhi r10, %hi(closure)
    271        ori r10, r10, %lo(closure)
    272        jmp r8
    273      and then ffi_closure_sysv retrieves the closure pointer out of r10
    274      in addition to the arguments passed in the normal way for the call,
    275      and invokes ffi_closure_helper.  We encode the pointer to
    276      ffi_closure_helper in the trampoline because making a PIC call
    277      to it in ffi_closure_sysv would be messy (it would have to indirect
    278      through the GOT).  */
    279 
    280 #define HI(x) ((((unsigned int) (x)) >> 16) & 0xffff)
    281 #define LO(x) (((unsigned int) (x)) & 0xffff)
    282   tramp[0] = (0 << 27) | (8 << 22) | (HI (ffi_closure_sysv) << 6) | 0x34;
    283   tramp[1] = (8 << 27) | (8 << 22) | (LO (ffi_closure_sysv) << 6) | 0x14;
    284   tramp[2] = (0 << 27) | (9 << 22) | (HI (ffi_closure_helper) << 6) | 0x34;
    285   tramp[3] = (9 << 27) | (9 << 22) | (LO (ffi_closure_helper) << 6) | 0x14;
    286   tramp[4] = (0 << 27) | (10 << 22) | (HI (closure) << 6) | 0x34;
    287   tramp[5] = (10 << 27) | (10 << 22) | (LO (closure) << 6) | 0x14;
    288   tramp[6] = (8 << 27) | (0x0d << 11) | 0x3a;
    289 #undef HI
    290 #undef LO
    291 
    292   /* Flush the caches.
    293      See Example 9-4 in the Nios II Software Developer's Handbook.  */
    294   for (i = 0; i < 7; i++)
    295     asm volatile ("flushd 0(%0); flushi %0" :: "r"(tramp + i) : "memory");
    296   asm volatile ("flushp" ::: "memory");
    297 
    298   closure->cif = cif;
    299   closure->fun = fun;
    300   closure->user_data = user_data;
    301 
    302   return FFI_OK;
    303 }
    304 
    305