Home | History | Annotate | Download | only in howto
      1 .. _sortinghowto:
      2 
      3 Sorting HOW TO
      4 **************
      5 
      6 :Author: Andrew Dalke and Raymond Hettinger
      7 :Release: 0.1
      8 
      9 
     10 Python lists have a built-in :meth:`list.sort` method that modifies the list
     11 in-place.  There is also a :func:`sorted` built-in function that builds a new
     12 sorted list from an iterable.
     13 
     14 In this document, we explore the various techniques for sorting data using Python.
     15 
     16 
     17 Sorting Basics
     18 ==============
     19 
     20 A simple ascending sort is very easy: just call the :func:`sorted` function. It
     21 returns a new sorted list::
     22 
     23     >>> sorted([5, 2, 3, 1, 4])
     24     [1, 2, 3, 4, 5]
     25 
     26 You can also use the :meth:`list.sort` method. It modifies the list
     27 in-place (and returns ``None`` to avoid confusion). Usually it's less convenient
     28 than :func:`sorted` - but if you don't need the original list, it's slightly
     29 more efficient.
     30 
     31     >>> a = [5, 2, 3, 1, 4]
     32     >>> a.sort()
     33     >>> a
     34     [1, 2, 3, 4, 5]
     35 
     36 Another difference is that the :meth:`list.sort` method is only defined for
     37 lists. In contrast, the :func:`sorted` function accepts any iterable.
     38 
     39     >>> sorted({1: 'D', 2: 'B', 3: 'B', 4: 'E', 5: 'A'})
     40     [1, 2, 3, 4, 5]
     41 
     42 Key Functions
     43 =============
     44 
     45 Both :meth:`list.sort` and :func:`sorted` have a *key* parameter to specify a
     46 function to be called on each list element prior to making comparisons.
     47 
     48 For example, here's a case-insensitive string comparison:
     49 
     50     >>> sorted("This is a test string from Andrew".split(), key=str.lower)
     51     ['a', 'Andrew', 'from', 'is', 'string', 'test', 'This']
     52 
     53 The value of the *key* parameter should be a function that takes a single argument
     54 and returns a key to use for sorting purposes. This technique is fast because
     55 the key function is called exactly once for each input record.
     56 
     57 A common pattern is to sort complex objects using some of the object's indices
     58 as keys. For example:
     59 
     60     >>> student_tuples = [
     61     ...     ('john', 'A', 15),
     62     ...     ('jane', 'B', 12),
     63     ...     ('dave', 'B', 10),
     64     ... ]
     65     >>> sorted(student_tuples, key=lambda student: student[2])   # sort by age
     66     [('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]
     67 
     68 The same technique works for objects with named attributes. For example:
     69 
     70     >>> class Student:
     71     ...     def __init__(self, name, grade, age):
     72     ...         self.name = name
     73     ...         self.grade = grade
     74     ...         self.age = age
     75     ...     def __repr__(self):
     76     ...         return repr((self.name, self.grade, self.age))
     77 
     78     >>> student_objects = [
     79     ...     Student('john', 'A', 15),
     80     ...     Student('jane', 'B', 12),
     81     ...     Student('dave', 'B', 10),
     82     ... ]
     83     >>> sorted(student_objects, key=lambda student: student.age)   # sort by age
     84     [('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]
     85 
     86 Operator Module Functions
     87 =========================
     88 
     89 The key-function patterns shown above are very common, so Python provides
     90 convenience functions to make accessor functions easier and faster. The
     91 :mod:`operator` module has :func:`~operator.itemgetter`,
     92 :func:`~operator.attrgetter`, and a :func:`~operator.methodcaller` function.
     93 
     94 Using those functions, the above examples become simpler and faster:
     95 
     96     >>> from operator import itemgetter, attrgetter
     97 
     98     >>> sorted(student_tuples, key=itemgetter(2))
     99     [('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]
    100 
    101     >>> sorted(student_objects, key=attrgetter('age'))
    102     [('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]
    103 
    104 The operator module functions allow multiple levels of sorting. For example, to
    105 sort by *grade* then by *age*:
    106 
    107     >>> sorted(student_tuples, key=itemgetter(1,2))
    108     [('john', 'A', 15), ('dave', 'B', 10), ('jane', 'B', 12)]
    109 
    110     >>> sorted(student_objects, key=attrgetter('grade', 'age'))
    111     [('john', 'A', 15), ('dave', 'B', 10), ('jane', 'B', 12)]
    112 
    113 Ascending and Descending
    114 ========================
    115 
    116 Both :meth:`list.sort` and :func:`sorted` accept a *reverse* parameter with a
    117 boolean value. This is used to flag descending sorts. For example, to get the
    118 student data in reverse *age* order:
    119 
    120     >>> sorted(student_tuples, key=itemgetter(2), reverse=True)
    121     [('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)]
    122 
    123     >>> sorted(student_objects, key=attrgetter('age'), reverse=True)
    124     [('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)]
    125 
    126 Sort Stability and Complex Sorts
    127 ================================
    128 
    129 Sorts are guaranteed to be `stable
    130 <https://en.wikipedia.org/wiki/Sorting_algorithm#Stability>`_\. That means that
    131 when multiple records have the same key, their original order is preserved.
    132 
    133     >>> data = [('red', 1), ('blue', 1), ('red', 2), ('blue', 2)]
    134     >>> sorted(data, key=itemgetter(0))
    135     [('blue', 1), ('blue', 2), ('red', 1), ('red', 2)]
    136 
    137 Notice how the two records for *blue* retain their original order so that
    138 ``('blue', 1)`` is guaranteed to precede ``('blue', 2)``.
    139 
    140 This wonderful property lets you build complex sorts in a series of sorting
    141 steps. For example, to sort the student data by descending *grade* and then
    142 ascending *age*, do the *age* sort first and then sort again using *grade*:
    143 
    144     >>> s = sorted(student_objects, key=attrgetter('age'))     # sort on secondary key
    145     >>> sorted(s, key=attrgetter('grade'), reverse=True)       # now sort on primary key, descending
    146     [('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]
    147 
    148 The `Timsort <https://en.wikipedia.org/wiki/Timsort>`_ algorithm used in Python
    149 does multiple sorts efficiently because it can take advantage of any ordering
    150 already present in a dataset.
    151 
    152 The Old Way Using Decorate-Sort-Undecorate
    153 ==========================================
    154 
    155 This idiom is called Decorate-Sort-Undecorate after its three steps:
    156 
    157 * First, the initial list is decorated with new values that control the sort order.
    158 
    159 * Second, the decorated list is sorted.
    160 
    161 * Finally, the decorations are removed, creating a list that contains only the
    162   initial values in the new order.
    163 
    164 For example, to sort the student data by *grade* using the DSU approach:
    165 
    166     >>> decorated = [(student.grade, i, student) for i, student in enumerate(student_objects)]
    167     >>> decorated.sort()
    168     >>> [student for grade, i, student in decorated]               # undecorate
    169     [('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)]
    170 
    171 This idiom works because tuples are compared lexicographically; the first items
    172 are compared; if they are the same then the second items are compared, and so
    173 on.
    174 
    175 It is not strictly necessary in all cases to include the index *i* in the
    176 decorated list, but including it gives two benefits:
    177 
    178 * The sort is stable -- if two items have the same key, their order will be
    179   preserved in the sorted list.
    180 
    181 * The original items do not have to be comparable because the ordering of the
    182   decorated tuples will be determined by at most the first two items. So for
    183   example the original list could contain complex numbers which cannot be sorted
    184   directly.
    185 
    186 Another name for this idiom is
    187 `Schwartzian transform <https://en.wikipedia.org/wiki/Schwartzian_transform>`_\,
    188 after Randal L. Schwartz, who popularized it among Perl programmers.
    189 
    190 Now that Python sorting provides key-functions, this technique is not often needed.
    191 
    192 
    193 The Old Way Using the *cmp* Parameter
    194 =====================================
    195 
    196 Many constructs given in this HOWTO assume Python 2.4 or later. Before that,
    197 there was no :func:`sorted` builtin and :meth:`list.sort` took no keyword
    198 arguments. Instead, all of the Py2.x versions supported a *cmp* parameter to
    199 handle user specified comparison functions.
    200 
    201 In Py3.0, the *cmp* parameter was removed entirely (as part of a larger effort to
    202 simplify and unify the language, eliminating the conflict between rich
    203 comparisons and the :meth:`__cmp__` magic method).
    204 
    205 In Py2.x, sort allowed an optional function which can be called for doing the
    206 comparisons. That function should take two arguments to be compared and then
    207 return a negative value for less-than, return zero if they are equal, or return
    208 a positive value for greater-than. For example, we can do:
    209 
    210     >>> def numeric_compare(x, y):
    211     ...     return x - y
    212     >>> sorted([5, 2, 4, 1, 3], cmp=numeric_compare) # doctest: +SKIP
    213     [1, 2, 3, 4, 5]
    214 
    215 Or you can reverse the order of comparison with:
    216 
    217     >>> def reverse_numeric(x, y):
    218     ...     return y - x
    219     >>> sorted([5, 2, 4, 1, 3], cmp=reverse_numeric) # doctest: +SKIP
    220     [5, 4, 3, 2, 1]
    221 
    222 When porting code from Python 2.x to 3.x, the situation can arise when you have
    223 the user supplying a comparison function and you need to convert that to a key
    224 function. The following wrapper makes that easy to do::
    225 
    226     def cmp_to_key(mycmp):
    227         'Convert a cmp= function into a key= function'
    228         class K:
    229             def __init__(self, obj, *args):
    230                 self.obj = obj
    231             def __lt__(self, other):
    232                 return mycmp(self.obj, other.obj) < 0
    233             def __gt__(self, other):
    234                 return mycmp(self.obj, other.obj) > 0
    235             def __eq__(self, other):
    236                 return mycmp(self.obj, other.obj) == 0
    237             def __le__(self, other):
    238                 return mycmp(self.obj, other.obj) <= 0
    239             def __ge__(self, other):
    240                 return mycmp(self.obj, other.obj) >= 0
    241             def __ne__(self, other):
    242                 return mycmp(self.obj, other.obj) != 0
    243         return K
    244 
    245 To convert to a key function, just wrap the old comparison function:
    246 
    247 .. testsetup::
    248 
    249     from functools import cmp_to_key
    250 
    251 .. doctest::
    252 
    253     >>> sorted([5, 2, 4, 1, 3], key=cmp_to_key(reverse_numeric))
    254     [5, 4, 3, 2, 1]
    255 
    256 In Python 3.2, the :func:`functools.cmp_to_key` function was added to the
    257 :mod:`functools` module in the standard library.
    258 
    259 Odd and Ends
    260 ============
    261 
    262 * For locale aware sorting, use :func:`locale.strxfrm` for a key function or
    263   :func:`locale.strcoll` for a comparison function.
    264 
    265 * The *reverse* parameter still maintains sort stability (so that records with
    266   equal keys retain the original order). Interestingly, that effect can be
    267   simulated without the parameter by using the builtin :func:`reversed` function
    268   twice:
    269 
    270     >>> data = [('red', 1), ('blue', 1), ('red', 2), ('blue', 2)]
    271     >>> standard_way = sorted(data, key=itemgetter(0), reverse=True)
    272     >>> double_reversed = list(reversed(sorted(reversed(data), key=itemgetter(0))))
    273     >>> assert standard_way == double_reversed
    274     >>> standard_way
    275     [('red', 1), ('red', 2), ('blue', 1), ('blue', 2)]
    276 
    277 * The sort routines are guaranteed to use :meth:`__lt__` when making comparisons
    278   between two objects. So, it is easy to add a standard sort order to a class by
    279   defining an :meth:`__lt__` method::
    280 
    281     >>> Student.__lt__ = lambda self, other: self.age < other.age
    282     >>> sorted(student_objects)
    283     [('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]
    284 
    285 * Key functions need not depend directly on the objects being sorted. A key
    286   function can also access external resources. For instance, if the student grades
    287   are stored in a dictionary, they can be used to sort a separate list of student
    288   names:
    289 
    290     >>> students = ['dave', 'john', 'jane']
    291     >>> newgrades = {'john': 'F', 'jane':'A', 'dave': 'C'}
    292     >>> sorted(students, key=newgrades.__getitem__)
    293     ['jane', 'dave', 'john']
    294