Home | History | Annotate | Download | only in zlib
      1 /* trees.c -- output deflated data using Huffman coding
      2  * Copyright (C) 1995-2017 Jean-loup Gailly
      3  * detect_data_type() function provided freely by Cosmin Truta, 2006
      4  * For conditions of distribution and use, see copyright notice in zlib.h
      5  */
      6 
      7 /*
      8  *  ALGORITHM
      9  *
     10  *      The "deflation" process uses several Huffman trees. The more
     11  *      common source values are represented by shorter bit sequences.
     12  *
     13  *      Each code tree is stored in a compressed form which is itself
     14  * a Huffman encoding of the lengths of all the code strings (in
     15  * ascending order by source values).  The actual code strings are
     16  * reconstructed from the lengths in the inflate process, as described
     17  * in the deflate specification.
     18  *
     19  *  REFERENCES
     20  *
     21  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
     22  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
     23  *
     24  *      Storer, James A.
     25  *          Data Compression:  Methods and Theory, pp. 49-50.
     26  *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
     27  *
     28  *      Sedgewick, R.
     29  *          Algorithms, p290.
     30  *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
     31  */
     32 
     33 /* @(#) $Id$ */
     34 
     35 /* #define GEN_TREES_H */
     36 
     37 #include "deflate.h"
     38 
     39 #ifdef ZLIB_DEBUG
     40 #  include <ctype.h>
     41 #endif
     42 
     43 /* ===========================================================================
     44  * Constants
     45  */
     46 
     47 #define MAX_BL_BITS 7
     48 /* Bit length codes must not exceed MAX_BL_BITS bits */
     49 
     50 #define END_BLOCK 256
     51 /* end of block literal code */
     52 
     53 #define REP_3_6      16
     54 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
     55 
     56 #define REPZ_3_10    17
     57 /* repeat a zero length 3-10 times  (3 bits of repeat count) */
     58 
     59 #define REPZ_11_138  18
     60 /* repeat a zero length 11-138 times  (7 bits of repeat count) */
     61 
     62 local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
     63    = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
     64 
     65 local const int extra_dbits[D_CODES] /* extra bits for each distance code */
     66    = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
     67 
     68 local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
     69    = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
     70 
     71 local const uch bl_order[BL_CODES]
     72    = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
     73 /* The lengths of the bit length codes are sent in order of decreasing
     74  * probability, to avoid transmitting the lengths for unused bit length codes.
     75  */
     76 
     77 /* ===========================================================================
     78  * Local data. These are initialized only once.
     79  */
     80 
     81 #define DIST_CODE_LEN  512 /* see definition of array dist_code below */
     82 
     83 #if defined(GEN_TREES_H) || !defined(STDC)
     84 /* non ANSI compilers may not accept trees.h */
     85 
     86 local ct_data static_ltree[L_CODES+2];
     87 /* The static literal tree. Since the bit lengths are imposed, there is no
     88  * need for the L_CODES extra codes used during heap construction. However
     89  * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
     90  * below).
     91  */
     92 
     93 local ct_data static_dtree[D_CODES];
     94 /* The static distance tree. (Actually a trivial tree since all codes use
     95  * 5 bits.)
     96  */
     97 
     98 uch _dist_code[DIST_CODE_LEN];
     99 /* Distance codes. The first 256 values correspond to the distances
    100  * 3 .. 258, the last 256 values correspond to the top 8 bits of
    101  * the 15 bit distances.
    102  */
    103 
    104 uch _length_code[MAX_MATCH-MIN_MATCH+1];
    105 /* length code for each normalized match length (0 == MIN_MATCH) */
    106 
    107 local int base_length[LENGTH_CODES];
    108 /* First normalized length for each code (0 = MIN_MATCH) */
    109 
    110 local int base_dist[D_CODES];
    111 /* First normalized distance for each code (0 = distance of 1) */
    112 
    113 #else
    114 #  include "trees.h"
    115 #endif /* GEN_TREES_H */
    116 
    117 struct static_tree_desc_s {
    118     const ct_data *static_tree;  /* static tree or NULL */
    119     const intf *extra_bits;      /* extra bits for each code or NULL */
    120     int     extra_base;          /* base index for extra_bits */
    121     int     elems;               /* max number of elements in the tree */
    122     int     max_length;          /* max bit length for the codes */
    123 };
    124 
    125 local const static_tree_desc  static_l_desc =
    126 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
    127 
    128 local const static_tree_desc  static_d_desc =
    129 {static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
    130 
    131 local const static_tree_desc  static_bl_desc =
    132 {(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
    133 
    134 /* ===========================================================================
    135  * Local (static) routines in this file.
    136  */
    137 
    138 local void tr_static_init OF((void));
    139 local void init_block     OF((deflate_state *s));
    140 local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k));
    141 local void gen_bitlen     OF((deflate_state *s, tree_desc *desc));
    142 local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count));
    143 local void build_tree     OF((deflate_state *s, tree_desc *desc));
    144 local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code));
    145 local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code));
    146 local int  build_bl_tree  OF((deflate_state *s));
    147 local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
    148                               int blcodes));
    149 local void compress_block OF((deflate_state *s, const ct_data *ltree,
    150                               const ct_data *dtree));
    151 local int  detect_data_type OF((deflate_state *s));
    152 local unsigned bi_reverse OF((unsigned value, int length));
    153 local void bi_windup      OF((deflate_state *s));
    154 local void bi_flush       OF((deflate_state *s));
    155 
    156 #ifdef GEN_TREES_H
    157 local void gen_trees_header OF((void));
    158 #endif
    159 
    160 #ifndef ZLIB_DEBUG
    161 #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
    162    /* Send a code of the given tree. c and tree must not have side effects */
    163 
    164 #else /* !ZLIB_DEBUG */
    165 #  define send_code(s, c, tree) \
    166      { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
    167        send_bits(s, tree[c].Code, tree[c].Len); }
    168 #endif
    169 
    170 /* ===========================================================================
    171  * Output a short LSB first on the stream.
    172  * IN assertion: there is enough room in pendingBuf.
    173  */
    174 #define put_short(s, w) { \
    175     put_byte(s, (uch)((w) & 0xff)); \
    176     put_byte(s, (uch)((ush)(w) >> 8)); \
    177 }
    178 
    179 /* ===========================================================================
    180  * Send a value on a given number of bits.
    181  * IN assertion: length <= 16 and value fits in length bits.
    182  */
    183 #ifdef ZLIB_DEBUG
    184 local void send_bits      OF((deflate_state *s, int value, int length));
    185 
    186 local void send_bits(s, value, length)
    187     deflate_state *s;
    188     int value;  /* value to send */
    189     int length; /* number of bits */
    190 {
    191     Tracevv((stderr," l %2d v %4x ", length, value));
    192     Assert(length > 0 && length <= 15, "invalid length");
    193     s->bits_sent += (ulg)length;
    194 
    195     /* If not enough room in bi_buf, use (valid) bits from bi_buf and
    196      * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
    197      * unused bits in value.
    198      */
    199     if (s->bi_valid > (int)Buf_size - length) {
    200         s->bi_buf |= (ush)value << s->bi_valid;
    201         put_short(s, s->bi_buf);
    202         s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
    203         s->bi_valid += length - Buf_size;
    204     } else {
    205         s->bi_buf |= (ush)value << s->bi_valid;
    206         s->bi_valid += length;
    207     }
    208 }
    209 #else /* !ZLIB_DEBUG */
    210 
    211 #define send_bits(s, value, length) \
    212 { int len = length;\
    213   if (s->bi_valid > (int)Buf_size - len) {\
    214     int val = (int)value;\
    215     s->bi_buf |= (ush)val << s->bi_valid;\
    216     put_short(s, s->bi_buf);\
    217     s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
    218     s->bi_valid += len - Buf_size;\
    219   } else {\
    220     s->bi_buf |= (ush)(value) << s->bi_valid;\
    221     s->bi_valid += len;\
    222   }\
    223 }
    224 #endif /* ZLIB_DEBUG */
    225 
    226 
    227 /* the arguments must not have side effects */
    228 
    229 /* ===========================================================================
    230  * Initialize the various 'constant' tables.
    231  */
    232 local void tr_static_init()
    233 {
    234 #if defined(GEN_TREES_H) || !defined(STDC)
    235     static int static_init_done = 0;
    236     int n;        /* iterates over tree elements */
    237     int bits;     /* bit counter */
    238     int length;   /* length value */
    239     int code;     /* code value */
    240     int dist;     /* distance index */
    241     ush bl_count[MAX_BITS+1];
    242     /* number of codes at each bit length for an optimal tree */
    243 
    244     if (static_init_done) return;
    245 
    246     /* For some embedded targets, global variables are not initialized: */
    247 #ifdef NO_INIT_GLOBAL_POINTERS
    248     static_l_desc.static_tree = static_ltree;
    249     static_l_desc.extra_bits = extra_lbits;
    250     static_d_desc.static_tree = static_dtree;
    251     static_d_desc.extra_bits = extra_dbits;
    252     static_bl_desc.extra_bits = extra_blbits;
    253 #endif
    254 
    255     /* Initialize the mapping length (0..255) -> length code (0..28) */
    256     length = 0;
    257     for (code = 0; code < LENGTH_CODES-1; code++) {
    258         base_length[code] = length;
    259         for (n = 0; n < (1<<extra_lbits[code]); n++) {
    260             _length_code[length++] = (uch)code;
    261         }
    262     }
    263     Assert (length == 256, "tr_static_init: length != 256");
    264     /* Note that the length 255 (match length 258) can be represented
    265      * in two different ways: code 284 + 5 bits or code 285, so we
    266      * overwrite length_code[255] to use the best encoding:
    267      */
    268     _length_code[length-1] = (uch)code;
    269 
    270     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
    271     dist = 0;
    272     for (code = 0 ; code < 16; code++) {
    273         base_dist[code] = dist;
    274         for (n = 0; n < (1<<extra_dbits[code]); n++) {
    275             _dist_code[dist++] = (uch)code;
    276         }
    277     }
    278     Assert (dist == 256, "tr_static_init: dist != 256");
    279     dist >>= 7; /* from now on, all distances are divided by 128 */
    280     for ( ; code < D_CODES; code++) {
    281         base_dist[code] = dist << 7;
    282         for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
    283             _dist_code[256 + dist++] = (uch)code;
    284         }
    285     }
    286     Assert (dist == 256, "tr_static_init: 256+dist != 512");
    287 
    288     /* Construct the codes of the static literal tree */
    289     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
    290     n = 0;
    291     while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
    292     while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
    293     while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
    294     while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
    295     /* Codes 286 and 287 do not exist, but we must include them in the
    296      * tree construction to get a canonical Huffman tree (longest code
    297      * all ones)
    298      */
    299     gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
    300 
    301     /* The static distance tree is trivial: */
    302     for (n = 0; n < D_CODES; n++) {
    303         static_dtree[n].Len = 5;
    304         static_dtree[n].Code = bi_reverse((unsigned)n, 5);
    305     }
    306     static_init_done = 1;
    307 
    308 #  ifdef GEN_TREES_H
    309     gen_trees_header();
    310 #  endif
    311 #endif /* defined(GEN_TREES_H) || !defined(STDC) */
    312 }
    313 
    314 /* ===========================================================================
    315  * Genererate the file trees.h describing the static trees.
    316  */
    317 #ifdef GEN_TREES_H
    318 #  ifndef ZLIB_DEBUG
    319 #    include <stdio.h>
    320 #  endif
    321 
    322 #  define SEPARATOR(i, last, width) \
    323       ((i) == (last)? "\n};\n\n" :    \
    324        ((i) % (width) == (width)-1 ? ",\n" : ", "))
    325 
    326 void gen_trees_header()
    327 {
    328     FILE *header = fopen("trees.h", "w");
    329     int i;
    330 
    331     Assert (header != NULL, "Can't open trees.h");
    332     fprintf(header,
    333             "/* header created automatically with -DGEN_TREES_H */\n\n");
    334 
    335     fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
    336     for (i = 0; i < L_CODES+2; i++) {
    337         fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
    338                 static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
    339     }
    340 
    341     fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
    342     for (i = 0; i < D_CODES; i++) {
    343         fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
    344                 static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
    345     }
    346 
    347     fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n");
    348     for (i = 0; i < DIST_CODE_LEN; i++) {
    349         fprintf(header, "%2u%s", _dist_code[i],
    350                 SEPARATOR(i, DIST_CODE_LEN-1, 20));
    351     }
    352 
    353     fprintf(header,
    354         "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
    355     for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
    356         fprintf(header, "%2u%s", _length_code[i],
    357                 SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
    358     }
    359 
    360     fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
    361     for (i = 0; i < LENGTH_CODES; i++) {
    362         fprintf(header, "%1u%s", base_length[i],
    363                 SEPARATOR(i, LENGTH_CODES-1, 20));
    364     }
    365 
    366     fprintf(header, "local const int base_dist[D_CODES] = {\n");
    367     for (i = 0; i < D_CODES; i++) {
    368         fprintf(header, "%5u%s", base_dist[i],
    369                 SEPARATOR(i, D_CODES-1, 10));
    370     }
    371 
    372     fclose(header);
    373 }
    374 #endif /* GEN_TREES_H */
    375 
    376 /* ===========================================================================
    377  * Initialize the tree data structures for a new zlib stream.
    378  */
    379 void ZLIB_INTERNAL _tr_init(s)
    380     deflate_state *s;
    381 {
    382     tr_static_init();
    383 
    384     s->l_desc.dyn_tree = s->dyn_ltree;
    385     s->l_desc.stat_desc = &static_l_desc;
    386 
    387     s->d_desc.dyn_tree = s->dyn_dtree;
    388     s->d_desc.stat_desc = &static_d_desc;
    389 
    390     s->bl_desc.dyn_tree = s->bl_tree;
    391     s->bl_desc.stat_desc = &static_bl_desc;
    392 
    393     s->bi_buf = 0;
    394     s->bi_valid = 0;
    395 #ifdef ZLIB_DEBUG
    396     s->compressed_len = 0L;
    397     s->bits_sent = 0L;
    398 #endif
    399 
    400     /* Initialize the first block of the first file: */
    401     init_block(s);
    402 }
    403 
    404 /* ===========================================================================
    405  * Initialize a new block.
    406  */
    407 local void init_block(s)
    408     deflate_state *s;
    409 {
    410     int n; /* iterates over tree elements */
    411 
    412     /* Initialize the trees. */
    413     for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
    414     for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
    415     for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
    416 
    417     s->dyn_ltree[END_BLOCK].Freq = 1;
    418     s->opt_len = s->static_len = 0L;
    419     s->last_lit = s->matches = 0;
    420 }
    421 
    422 #define SMALLEST 1
    423 /* Index within the heap array of least frequent node in the Huffman tree */
    424 
    425 
    426 /* ===========================================================================
    427  * Remove the smallest element from the heap and recreate the heap with
    428  * one less element. Updates heap and heap_len.
    429  */
    430 #define pqremove(s, tree, top) \
    431 {\
    432     top = s->heap[SMALLEST]; \
    433     s->heap[SMALLEST] = s->heap[s->heap_len--]; \
    434     pqdownheap(s, tree, SMALLEST); \
    435 }
    436 
    437 /* ===========================================================================
    438  * Compares to subtrees, using the tree depth as tie breaker when
    439  * the subtrees have equal frequency. This minimizes the worst case length.
    440  */
    441 #define smaller(tree, n, m, depth) \
    442    (tree[n].Freq < tree[m].Freq || \
    443    (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
    444 
    445 /* ===========================================================================
    446  * Restore the heap property by moving down the tree starting at node k,
    447  * exchanging a node with the smallest of its two sons if necessary, stopping
    448  * when the heap property is re-established (each father smaller than its
    449  * two sons).
    450  */
    451 local void pqdownheap(s, tree, k)
    452     deflate_state *s;
    453     ct_data *tree;  /* the tree to restore */
    454     int k;               /* node to move down */
    455 {
    456     int v = s->heap[k];
    457     int j = k << 1;  /* left son of k */
    458     while (j <= s->heap_len) {
    459         /* Set j to the smallest of the two sons: */
    460         if (j < s->heap_len &&
    461             smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
    462             j++;
    463         }
    464         /* Exit if v is smaller than both sons */
    465         if (smaller(tree, v, s->heap[j], s->depth)) break;
    466 
    467         /* Exchange v with the smallest son */
    468         s->heap[k] = s->heap[j];  k = j;
    469 
    470         /* And continue down the tree, setting j to the left son of k */
    471         j <<= 1;
    472     }
    473     s->heap[k] = v;
    474 }
    475 
    476 /* ===========================================================================
    477  * Compute the optimal bit lengths for a tree and update the total bit length
    478  * for the current block.
    479  * IN assertion: the fields freq and dad are set, heap[heap_max] and
    480  *    above are the tree nodes sorted by increasing frequency.
    481  * OUT assertions: the field len is set to the optimal bit length, the
    482  *     array bl_count contains the frequencies for each bit length.
    483  *     The length opt_len is updated; static_len is also updated if stree is
    484  *     not null.
    485  */
    486 local void gen_bitlen(s, desc)
    487     deflate_state *s;
    488     tree_desc *desc;    /* the tree descriptor */
    489 {
    490     ct_data *tree        = desc->dyn_tree;
    491     int max_code         = desc->max_code;
    492     const ct_data *stree = desc->stat_desc->static_tree;
    493     const intf *extra    = desc->stat_desc->extra_bits;
    494     int base             = desc->stat_desc->extra_base;
    495     int max_length       = desc->stat_desc->max_length;
    496     int h;              /* heap index */
    497     int n, m;           /* iterate over the tree elements */
    498     int bits;           /* bit length */
    499     int xbits;          /* extra bits */
    500     ush f;              /* frequency */
    501     int overflow = 0;   /* number of elements with bit length too large */
    502 
    503     for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
    504 
    505     /* In a first pass, compute the optimal bit lengths (which may
    506      * overflow in the case of the bit length tree).
    507      */
    508     tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
    509 
    510     for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
    511         n = s->heap[h];
    512         bits = tree[tree[n].Dad].Len + 1;
    513         if (bits > max_length) bits = max_length, overflow++;
    514         tree[n].Len = (ush)bits;
    515         /* We overwrite tree[n].Dad which is no longer needed */
    516 
    517         if (n > max_code) continue; /* not a leaf node */
    518 
    519         s->bl_count[bits]++;
    520         xbits = 0;
    521         if (n >= base) xbits = extra[n-base];
    522         f = tree[n].Freq;
    523         s->opt_len += (ulg)f * (unsigned)(bits + xbits);
    524         if (stree) s->static_len += (ulg)f * (unsigned)(stree[n].Len + xbits);
    525     }
    526     if (overflow == 0) return;
    527 
    528     Tracev((stderr,"\nbit length overflow\n"));
    529     /* This happens for example on obj2 and pic of the Calgary corpus */
    530 
    531     /* Find the first bit length which could increase: */
    532     do {
    533         bits = max_length-1;
    534         while (s->bl_count[bits] == 0) bits--;
    535         s->bl_count[bits]--;      /* move one leaf down the tree */
    536         s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
    537         s->bl_count[max_length]--;
    538         /* The brother of the overflow item also moves one step up,
    539          * but this does not affect bl_count[max_length]
    540          */
    541         overflow -= 2;
    542     } while (overflow > 0);
    543 
    544     /* Now recompute all bit lengths, scanning in increasing frequency.
    545      * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
    546      * lengths instead of fixing only the wrong ones. This idea is taken
    547      * from 'ar' written by Haruhiko Okumura.)
    548      */
    549     for (bits = max_length; bits != 0; bits--) {
    550         n = s->bl_count[bits];
    551         while (n != 0) {
    552             m = s->heap[--h];
    553             if (m > max_code) continue;
    554             if ((unsigned) tree[m].Len != (unsigned) bits) {
    555                 Tracev((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
    556                 s->opt_len += ((ulg)bits - tree[m].Len) * tree[m].Freq;
    557                 tree[m].Len = (ush)bits;
    558             }
    559             n--;
    560         }
    561     }
    562 }
    563 
    564 /* ===========================================================================
    565  * Generate the codes for a given tree and bit counts (which need not be
    566  * optimal).
    567  * IN assertion: the array bl_count contains the bit length statistics for
    568  * the given tree and the field len is set for all tree elements.
    569  * OUT assertion: the field code is set for all tree elements of non
    570  *     zero code length.
    571  */
    572 local void gen_codes (tree, max_code, bl_count)
    573     ct_data *tree;             /* the tree to decorate */
    574     int max_code;              /* largest code with non zero frequency */
    575     ushf *bl_count;            /* number of codes at each bit length */
    576 {
    577     ush next_code[MAX_BITS+1]; /* next code value for each bit length */
    578     unsigned code = 0;         /* running code value */
    579     int bits;                  /* bit index */
    580     int n;                     /* code index */
    581 
    582     /* The distribution counts are first used to generate the code values
    583      * without bit reversal.
    584      */
    585     for (bits = 1; bits <= MAX_BITS; bits++) {
    586         code = (code + bl_count[bits-1]) << 1;
    587         next_code[bits] = (ush)code;
    588     }
    589     /* Check that the bit counts in bl_count are consistent. The last code
    590      * must be all ones.
    591      */
    592     Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
    593             "inconsistent bit counts");
    594     Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
    595 
    596     for (n = 0;  n <= max_code; n++) {
    597         int len = tree[n].Len;
    598         if (len == 0) continue;
    599         /* Now reverse the bits */
    600         tree[n].Code = (ush)bi_reverse(next_code[len]++, len);
    601 
    602         Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
    603              n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
    604     }
    605 }
    606 
    607 /* ===========================================================================
    608  * Construct one Huffman tree and assigns the code bit strings and lengths.
    609  * Update the total bit length for the current block.
    610  * IN assertion: the field freq is set for all tree elements.
    611  * OUT assertions: the fields len and code are set to the optimal bit length
    612  *     and corresponding code. The length opt_len is updated; static_len is
    613  *     also updated if stree is not null. The field max_code is set.
    614  */
    615 local void build_tree(s, desc)
    616     deflate_state *s;
    617     tree_desc *desc; /* the tree descriptor */
    618 {
    619     ct_data *tree         = desc->dyn_tree;
    620     const ct_data *stree  = desc->stat_desc->static_tree;
    621     int elems             = desc->stat_desc->elems;
    622     int n, m;          /* iterate over heap elements */
    623     int max_code = -1; /* largest code with non zero frequency */
    624     int node;          /* new node being created */
    625 
    626     /* Construct the initial heap, with least frequent element in
    627      * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
    628      * heap[0] is not used.
    629      */
    630     s->heap_len = 0, s->heap_max = HEAP_SIZE;
    631 
    632     for (n = 0; n < elems; n++) {
    633         if (tree[n].Freq != 0) {
    634             s->heap[++(s->heap_len)] = max_code = n;
    635             s->depth[n] = 0;
    636         } else {
    637             tree[n].Len = 0;
    638         }
    639     }
    640 
    641     /* The pkzip format requires that at least one distance code exists,
    642      * and that at least one bit should be sent even if there is only one
    643      * possible code. So to avoid special checks later on we force at least
    644      * two codes of non zero frequency.
    645      */
    646     while (s->heap_len < 2) {
    647         node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
    648         tree[node].Freq = 1;
    649         s->depth[node] = 0;
    650         s->opt_len--; if (stree) s->static_len -= stree[node].Len;
    651         /* node is 0 or 1 so it does not have extra bits */
    652     }
    653     desc->max_code = max_code;
    654 
    655     /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
    656      * establish sub-heaps of increasing lengths:
    657      */
    658     for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
    659 
    660     /* Construct the Huffman tree by repeatedly combining the least two
    661      * frequent nodes.
    662      */
    663     node = elems;              /* next internal node of the tree */
    664     do {
    665         pqremove(s, tree, n);  /* n = node of least frequency */
    666         m = s->heap[SMALLEST]; /* m = node of next least frequency */
    667 
    668         s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
    669         s->heap[--(s->heap_max)] = m;
    670 
    671         /* Create a new node father of n and m */
    672         tree[node].Freq = tree[n].Freq + tree[m].Freq;
    673         s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
    674                                 s->depth[n] : s->depth[m]) + 1);
    675         tree[n].Dad = tree[m].Dad = (ush)node;
    676 #ifdef DUMP_BL_TREE
    677         if (tree == s->bl_tree) {
    678             fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
    679                     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
    680         }
    681 #endif
    682         /* and insert the new node in the heap */
    683         s->heap[SMALLEST] = node++;
    684         pqdownheap(s, tree, SMALLEST);
    685 
    686     } while (s->heap_len >= 2);
    687 
    688     s->heap[--(s->heap_max)] = s->heap[SMALLEST];
    689 
    690     /* At this point, the fields freq and dad are set. We can now
    691      * generate the bit lengths.
    692      */
    693     gen_bitlen(s, (tree_desc *)desc);
    694 
    695     /* The field len is now set, we can generate the bit codes */
    696     gen_codes ((ct_data *)tree, max_code, s->bl_count);
    697 }
    698 
    699 /* ===========================================================================
    700  * Scan a literal or distance tree to determine the frequencies of the codes
    701  * in the bit length tree.
    702  */
    703 local void scan_tree (s, tree, max_code)
    704     deflate_state *s;
    705     ct_data *tree;   /* the tree to be scanned */
    706     int max_code;    /* and its largest code of non zero frequency */
    707 {
    708     int n;                     /* iterates over all tree elements */
    709     int prevlen = -1;          /* last emitted length */
    710     int curlen;                /* length of current code */
    711     int nextlen = tree[0].Len; /* length of next code */
    712     int count = 0;             /* repeat count of the current code */
    713     int max_count = 7;         /* max repeat count */
    714     int min_count = 4;         /* min repeat count */
    715 
    716     if (nextlen == 0) max_count = 138, min_count = 3;
    717     tree[max_code+1].Len = (ush)0xffff; /* guard */
    718 
    719     for (n = 0; n <= max_code; n++) {
    720         curlen = nextlen; nextlen = tree[n+1].Len;
    721         if (++count < max_count && curlen == nextlen) {
    722             continue;
    723         } else if (count < min_count) {
    724             s->bl_tree[curlen].Freq += count;
    725         } else if (curlen != 0) {
    726             if (curlen != prevlen) s->bl_tree[curlen].Freq++;
    727             s->bl_tree[REP_3_6].Freq++;
    728         } else if (count <= 10) {
    729             s->bl_tree[REPZ_3_10].Freq++;
    730         } else {
    731             s->bl_tree[REPZ_11_138].Freq++;
    732         }
    733         count = 0; prevlen = curlen;
    734         if (nextlen == 0) {
    735             max_count = 138, min_count = 3;
    736         } else if (curlen == nextlen) {
    737             max_count = 6, min_count = 3;
    738         } else {
    739             max_count = 7, min_count = 4;
    740         }
    741     }
    742 }
    743 
    744 /* ===========================================================================
    745  * Send a literal or distance tree in compressed form, using the codes in
    746  * bl_tree.
    747  */
    748 local void send_tree (s, tree, max_code)
    749     deflate_state *s;
    750     ct_data *tree; /* the tree to be scanned */
    751     int max_code;       /* and its largest code of non zero frequency */
    752 {
    753     int n;                     /* iterates over all tree elements */
    754     int prevlen = -1;          /* last emitted length */
    755     int curlen;                /* length of current code */
    756     int nextlen = tree[0].Len; /* length of next code */
    757     int count = 0;             /* repeat count of the current code */
    758     int max_count = 7;         /* max repeat count */
    759     int min_count = 4;         /* min repeat count */
    760 
    761     /* tree[max_code+1].Len = -1; */  /* guard already set */
    762     if (nextlen == 0) max_count = 138, min_count = 3;
    763 
    764     for (n = 0; n <= max_code; n++) {
    765         curlen = nextlen; nextlen = tree[n+1].Len;
    766         if (++count < max_count && curlen == nextlen) {
    767             continue;
    768         } else if (count < min_count) {
    769             do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
    770 
    771         } else if (curlen != 0) {
    772             if (curlen != prevlen) {
    773                 send_code(s, curlen, s->bl_tree); count--;
    774             }
    775             Assert(count >= 3 && count <= 6, " 3_6?");
    776             send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
    777 
    778         } else if (count <= 10) {
    779             send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
    780 
    781         } else {
    782             send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
    783         }
    784         count = 0; prevlen = curlen;
    785         if (nextlen == 0) {
    786             max_count = 138, min_count = 3;
    787         } else if (curlen == nextlen) {
    788             max_count = 6, min_count = 3;
    789         } else {
    790             max_count = 7, min_count = 4;
    791         }
    792     }
    793 }
    794 
    795 /* ===========================================================================
    796  * Construct the Huffman tree for the bit lengths and return the index in
    797  * bl_order of the last bit length code to send.
    798  */
    799 local int build_bl_tree(s)
    800     deflate_state *s;
    801 {
    802     int max_blindex;  /* index of last bit length code of non zero freq */
    803 
    804     /* Determine the bit length frequencies for literal and distance trees */
    805     scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
    806     scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
    807 
    808     /* Build the bit length tree: */
    809     build_tree(s, (tree_desc *)(&(s->bl_desc)));
    810     /* opt_len now includes the length of the tree representations, except
    811      * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
    812      */
    813 
    814     /* Determine the number of bit length codes to send. The pkzip format
    815      * requires that at least 4 bit length codes be sent. (appnote.txt says
    816      * 3 but the actual value used is 4.)
    817      */
    818     for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
    819         if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
    820     }
    821     /* Update opt_len to include the bit length tree and counts */
    822     s->opt_len += 3*((ulg)max_blindex+1) + 5+5+4;
    823     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
    824             s->opt_len, s->static_len));
    825 
    826     return max_blindex;
    827 }
    828 
    829 /* ===========================================================================
    830  * Send the header for a block using dynamic Huffman trees: the counts, the
    831  * lengths of the bit length codes, the literal tree and the distance tree.
    832  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
    833  */
    834 local void send_all_trees(s, lcodes, dcodes, blcodes)
    835     deflate_state *s;
    836     int lcodes, dcodes, blcodes; /* number of codes for each tree */
    837 {
    838     int rank;                    /* index in bl_order */
    839 
    840     Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
    841     Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
    842             "too many codes");
    843     Tracev((stderr, "\nbl counts: "));
    844     send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
    845     send_bits(s, dcodes-1,   5);
    846     send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
    847     for (rank = 0; rank < blcodes; rank++) {
    848         Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
    849         send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
    850     }
    851     Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
    852 
    853     send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
    854     Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
    855 
    856     send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
    857     Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
    858 }
    859 
    860 /* ===========================================================================
    861  * Send a stored block
    862  */
    863 void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last)
    864     deflate_state *s;
    865     charf *buf;       /* input block */
    866     ulg stored_len;   /* length of input block */
    867     int last;         /* one if this is the last block for a file */
    868 {
    869     send_bits(s, (STORED_BLOCK<<1)+last, 3);    /* send block type */
    870     bi_windup(s);        /* align on byte boundary */
    871     put_short(s, (ush)stored_len);
    872     put_short(s, (ush)~stored_len);
    873     zmemcpy(s->pending_buf + s->pending, (Bytef *)buf, stored_len);
    874     s->pending += stored_len;
    875 #ifdef ZLIB_DEBUG
    876     s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
    877     s->compressed_len += (stored_len + 4) << 3;
    878     s->bits_sent += 2*16;
    879     s->bits_sent += stored_len<<3;
    880 #endif
    881 }
    882 
    883 /* ===========================================================================
    884  * Flush the bits in the bit buffer to pending output (leaves at most 7 bits)
    885  */
    886 void ZLIB_INTERNAL _tr_flush_bits(s)
    887     deflate_state *s;
    888 {
    889     bi_flush(s);
    890 }
    891 
    892 /* ===========================================================================
    893  * Send one empty static block to give enough lookahead for inflate.
    894  * This takes 10 bits, of which 7 may remain in the bit buffer.
    895  */
    896 void ZLIB_INTERNAL _tr_align(s)
    897     deflate_state *s;
    898 {
    899     send_bits(s, STATIC_TREES<<1, 3);
    900     send_code(s, END_BLOCK, static_ltree);
    901 #ifdef ZLIB_DEBUG
    902     s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
    903 #endif
    904     bi_flush(s);
    905 }
    906 
    907 /* ===========================================================================
    908  * Determine the best encoding for the current block: dynamic trees, static
    909  * trees or store, and write out the encoded block.
    910  */
    911 void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last)
    912     deflate_state *s;
    913     charf *buf;       /* input block, or NULL if too old */
    914     ulg stored_len;   /* length of input block */
    915     int last;         /* one if this is the last block for a file */
    916 {
    917     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
    918     int max_blindex = 0;  /* index of last bit length code of non zero freq */
    919 
    920     /* Build the Huffman trees unless a stored block is forced */
    921     if (s->level > 0) {
    922 
    923         /* Check if the file is binary or text */
    924         if (s->strm->data_type == Z_UNKNOWN)
    925             s->strm->data_type = detect_data_type(s);
    926 
    927         /* Construct the literal and distance trees */
    928         build_tree(s, (tree_desc *)(&(s->l_desc)));
    929         Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
    930                 s->static_len));
    931 
    932         build_tree(s, (tree_desc *)(&(s->d_desc)));
    933         Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
    934                 s->static_len));
    935         /* At this point, opt_len and static_len are the total bit lengths of
    936          * the compressed block data, excluding the tree representations.
    937          */
    938 
    939         /* Build the bit length tree for the above two trees, and get the index
    940          * in bl_order of the last bit length code to send.
    941          */
    942         max_blindex = build_bl_tree(s);
    943 
    944         /* Determine the best encoding. Compute the block lengths in bytes. */
    945         opt_lenb = (s->opt_len+3+7)>>3;
    946         static_lenb = (s->static_len+3+7)>>3;
    947 
    948         Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
    949                 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
    950                 s->last_lit));
    951 
    952         if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
    953 
    954     } else {
    955         Assert(buf != (char*)0, "lost buf");
    956         opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
    957     }
    958 
    959 #ifdef FORCE_STORED
    960     if (buf != (char*)0) { /* force stored block */
    961 #else
    962     if (stored_len+4 <= opt_lenb && buf != (char*)0) {
    963                        /* 4: two words for the lengths */
    964 #endif
    965         /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
    966          * Otherwise we can't have processed more than WSIZE input bytes since
    967          * the last block flush, because compression would have been
    968          * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
    969          * transform a block into a stored block.
    970          */
    971         _tr_stored_block(s, buf, stored_len, last);
    972 
    973 #ifdef FORCE_STATIC
    974     } else if (static_lenb >= 0) { /* force static trees */
    975 #else
    976     } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) {
    977 #endif
    978         send_bits(s, (STATIC_TREES<<1)+last, 3);
    979         compress_block(s, (const ct_data *)static_ltree,
    980                        (const ct_data *)static_dtree);
    981 #ifdef ZLIB_DEBUG
    982         s->compressed_len += 3 + s->static_len;
    983 #endif
    984     } else {
    985         send_bits(s, (DYN_TREES<<1)+last, 3);
    986         send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
    987                        max_blindex+1);
    988         compress_block(s, (const ct_data *)s->dyn_ltree,
    989                        (const ct_data *)s->dyn_dtree);
    990 #ifdef ZLIB_DEBUG
    991         s->compressed_len += 3 + s->opt_len;
    992 #endif
    993     }
    994     Assert (s->compressed_len == s->bits_sent, "bad compressed size");
    995     /* The above check is made mod 2^32, for files larger than 512 MB
    996      * and uLong implemented on 32 bits.
    997      */
    998     init_block(s);
    999 
   1000     if (last) {
   1001         bi_windup(s);
   1002 #ifdef ZLIB_DEBUG
   1003         s->compressed_len += 7;  /* align on byte boundary */
   1004 #endif
   1005     }
   1006     Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
   1007            s->compressed_len-7*last));
   1008 }
   1009 
   1010 /* ===========================================================================
   1011  * Save the match info and tally the frequency counts. Return true if
   1012  * the current block must be flushed.
   1013  */
   1014 int ZLIB_INTERNAL _tr_tally (s, dist, lc)
   1015     deflate_state *s;
   1016     unsigned dist;  /* distance of matched string */
   1017     unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
   1018 {
   1019     s->d_buf[s->last_lit] = (ush)dist;
   1020     s->l_buf[s->last_lit++] = (uch)lc;
   1021     if (dist == 0) {
   1022         /* lc is the unmatched char */
   1023         s->dyn_ltree[lc].Freq++;
   1024     } else {
   1025         s->matches++;
   1026         /* Here, lc is the match length - MIN_MATCH */
   1027         dist--;             /* dist = match distance - 1 */
   1028         Assert((ush)dist < (ush)MAX_DIST(s) &&
   1029                (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
   1030                (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
   1031 
   1032         s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
   1033         s->dyn_dtree[d_code(dist)].Freq++;
   1034     }
   1035 
   1036 #ifdef TRUNCATE_BLOCK
   1037     /* Try to guess if it is profitable to stop the current block here */
   1038     if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
   1039         /* Compute an upper bound for the compressed length */
   1040         ulg out_length = (ulg)s->last_lit*8L;
   1041         ulg in_length = (ulg)((long)s->strstart - s->block_start);
   1042         int dcode;
   1043         for (dcode = 0; dcode < D_CODES; dcode++) {
   1044             out_length += (ulg)s->dyn_dtree[dcode].Freq *
   1045                 (5L+extra_dbits[dcode]);
   1046         }
   1047         out_length >>= 3;
   1048         Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
   1049                s->last_lit, in_length, out_length,
   1050                100L - out_length*100L/in_length));
   1051         if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
   1052     }
   1053 #endif
   1054     return (s->last_lit == s->lit_bufsize-1);
   1055     /* We avoid equality with lit_bufsize because of wraparound at 64K
   1056      * on 16 bit machines and because stored blocks are restricted to
   1057      * 64K-1 bytes.
   1058      */
   1059 }
   1060 
   1061 /* ===========================================================================
   1062  * Send the block data compressed using the given Huffman trees
   1063  */
   1064 local void compress_block(s, ltree, dtree)
   1065     deflate_state *s;
   1066     const ct_data *ltree; /* literal tree */
   1067     const ct_data *dtree; /* distance tree */
   1068 {
   1069     unsigned dist;      /* distance of matched string */
   1070     int lc;             /* match length or unmatched char (if dist == 0) */
   1071     unsigned lx = 0;    /* running index in l_buf */
   1072     unsigned code;      /* the code to send */
   1073     int extra;          /* number of extra bits to send */
   1074 
   1075     if (s->last_lit != 0) do {
   1076         dist = s->d_buf[lx];
   1077         lc = s->l_buf[lx++];
   1078         if (dist == 0) {
   1079             send_code(s, lc, ltree); /* send a literal byte */
   1080             Tracecv(isgraph(lc), (stderr," '%c' ", lc));
   1081         } else {
   1082             /* Here, lc is the match length - MIN_MATCH */
   1083             code = _length_code[lc];
   1084             send_code(s, code+LITERALS+1, ltree); /* send the length code */
   1085             extra = extra_lbits[code];
   1086             if (extra != 0) {
   1087                 lc -= base_length[code];
   1088                 send_bits(s, lc, extra);       /* send the extra length bits */
   1089             }
   1090             dist--; /* dist is now the match distance - 1 */
   1091             code = d_code(dist);
   1092             Assert (code < D_CODES, "bad d_code");
   1093 
   1094             send_code(s, code, dtree);       /* send the distance code */
   1095             extra = extra_dbits[code];
   1096             if (extra != 0) {
   1097                 dist -= (unsigned)base_dist[code];
   1098                 send_bits(s, dist, extra);   /* send the extra distance bits */
   1099             }
   1100         } /* literal or match pair ? */
   1101 
   1102         /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
   1103         Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
   1104                "pendingBuf overflow");
   1105 
   1106     } while (lx < s->last_lit);
   1107 
   1108     send_code(s, END_BLOCK, ltree);
   1109 }
   1110 
   1111 /* ===========================================================================
   1112  * Check if the data type is TEXT or BINARY, using the following algorithm:
   1113  * - TEXT if the two conditions below are satisfied:
   1114  *    a) There are no non-portable control characters belonging to the
   1115  *       "black list" (0..6, 14..25, 28..31).
   1116  *    b) There is at least one printable character belonging to the
   1117  *       "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
   1118  * - BINARY otherwise.
   1119  * - The following partially-portable control characters form a
   1120  *   "gray list" that is ignored in this detection algorithm:
   1121  *   (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
   1122  * IN assertion: the fields Freq of dyn_ltree are set.
   1123  */
   1124 local int detect_data_type(s)
   1125     deflate_state *s;
   1126 {
   1127     /* black_mask is the bit mask of black-listed bytes
   1128      * set bits 0..6, 14..25, and 28..31
   1129      * 0xf3ffc07f = binary 11110011111111111100000001111111
   1130      */
   1131     unsigned long black_mask = 0xf3ffc07fUL;
   1132     int n;
   1133 
   1134     /* Check for non-textual ("black-listed") bytes. */
   1135     for (n = 0; n <= 31; n++, black_mask >>= 1)
   1136         if ((black_mask & 1) && (s->dyn_ltree[n].Freq != 0))
   1137             return Z_BINARY;
   1138 
   1139     /* Check for textual ("white-listed") bytes. */
   1140     if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0
   1141             || s->dyn_ltree[13].Freq != 0)
   1142         return Z_TEXT;
   1143     for (n = 32; n < LITERALS; n++)
   1144         if (s->dyn_ltree[n].Freq != 0)
   1145             return Z_TEXT;
   1146 
   1147     /* There are no "black-listed" or "white-listed" bytes:
   1148      * this stream either is empty or has tolerated ("gray-listed") bytes only.
   1149      */
   1150     return Z_BINARY;
   1151 }
   1152 
   1153 /* ===========================================================================
   1154  * Reverse the first len bits of a code, using straightforward code (a faster
   1155  * method would use a table)
   1156  * IN assertion: 1 <= len <= 15
   1157  */
   1158 local unsigned bi_reverse(code, len)
   1159     unsigned code; /* the value to invert */
   1160     int len;       /* its bit length */
   1161 {
   1162     register unsigned res = 0;
   1163     do {
   1164         res |= code & 1;
   1165         code >>= 1, res <<= 1;
   1166     } while (--len > 0);
   1167     return res >> 1;
   1168 }
   1169 
   1170 /* ===========================================================================
   1171  * Flush the bit buffer, keeping at most 7 bits in it.
   1172  */
   1173 local void bi_flush(s)
   1174     deflate_state *s;
   1175 {
   1176     if (s->bi_valid == 16) {
   1177         put_short(s, s->bi_buf);
   1178         s->bi_buf = 0;
   1179         s->bi_valid = 0;
   1180     } else if (s->bi_valid >= 8) {
   1181         put_byte(s, (Byte)s->bi_buf);
   1182         s->bi_buf >>= 8;
   1183         s->bi_valid -= 8;
   1184     }
   1185 }
   1186 
   1187 /* ===========================================================================
   1188  * Flush the bit buffer and align the output on a byte boundary
   1189  */
   1190 local void bi_windup(s)
   1191     deflate_state *s;
   1192 {
   1193     if (s->bi_valid > 8) {
   1194         put_short(s, s->bi_buf);
   1195     } else if (s->bi_valid > 0) {
   1196         put_byte(s, (Byte)s->bi_buf);
   1197     }
   1198     s->bi_buf = 0;
   1199     s->bi_valid = 0;
   1200 #ifdef ZLIB_DEBUG
   1201     s->bits_sent = (s->bits_sent+7) & ~7;
   1202 #endif
   1203 }
   1204