Home | History | Annotate | Download | only in crypto
      1 /*-
      2  * Copyright 2009 Colin Percival
      3  * All rights reserved.
      4  *
      5  * Redistribution and use in source and binary forms, with or without
      6  * modification, are permitted provided that the following conditions
      7  * are met:
      8  * 1. Redistributions of source code must retain the above copyright
      9  *    notice, this list of conditions and the following disclaimer.
     10  * 2. Redistributions in binary form must reproduce the above copyright
     11  *    notice, this list of conditions and the following disclaimer in the
     12  *    documentation and/or other materials provided with the distribution.
     13  *
     14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     24  * SUCH DAMAGE.
     25  *
     26  * This file was originally written by Colin Percival as part of the Tarsnap
     27  * online backup system.
     28  */
     29 #include "scrypt_platform.h"
     30 
     31 #include <arm_neon.h>
     32 
     33 #include <errno.h>
     34 #include <stdint.h>
     35 #include <limits.h>
     36 #include <stdlib.h>
     37 #include <string.h>
     38 
     39 #ifdef USE_OPENSSL_PBKDF2
     40 #include <openssl/evp.h>
     41 #else
     42 #include "sha256.h"
     43 #endif
     44 #include "sysendian.h"
     45 
     46 #include "crypto_scrypt.h"
     47 
     48 #include "crypto_scrypt-neon-salsa208.h"
     49 
     50 static void blkcpy(void *, void *, size_t);
     51 static void blkxor(void *, void *, size_t);
     52 void crypto_core_salsa208_armneon2(void *);
     53 static void blockmix_salsa8(uint8x16_t *, uint8x16_t *, uint8x16_t *, size_t);
     54 static uint64_t integerify(void *, size_t);
     55 static void smix(uint8_t *, size_t, uint64_t, void *, void *);
     56 
     57 static void
     58 blkcpy(void * dest, void * src, size_t len)
     59 {
     60 	uint8x16_t * D = dest;
     61 	uint8x16_t * S = src;
     62 	size_t L = len / 16;
     63 	size_t i;
     64 
     65 	for (i = 0; i < L; i++)
     66 		D[i] = S[i];
     67 }
     68 
     69 static void
     70 blkxor(void * dest, void * src, size_t len)
     71 {
     72 	uint8x16_t * D = dest;
     73 	uint8x16_t * S = src;
     74 	size_t L = len / 16;
     75 	size_t i;
     76 
     77 	for (i = 0; i < L; i++)
     78 		D[i] = veorq_u8(D[i], S[i]);
     79 }
     80 
     81 /**
     82  * blockmix_salsa8(B, Y, r):
     83  * Compute B = BlockMix_{salsa20/8, r}(B).  The input B must be 128r bytes in
     84  * length; the temporary space Y must also be the same size.
     85  */
     86 static void
     87 blockmix_salsa8(uint8x16_t * Bin, uint8x16_t * Bout, uint8x16_t * X, size_t r)
     88 {
     89 	size_t i;
     90 
     91 	/* 1: X <-- B_{2r - 1} */
     92 	blkcpy(X, &Bin[8 * r - 4], 64);
     93 
     94 	/* 2: for i = 0 to 2r - 1 do */
     95 	for (i = 0; i < r; i++) {
     96 		/* 3: X <-- H(X \xor B_i) */
     97 		blkxor(X, &Bin[i * 8], 64);
     98                 salsa20_8_intrinsic((void *) X);
     99 
    100 		/* 4: Y_i <-- X */
    101 		/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
    102 		blkcpy(&Bout[i * 4], X, 64);
    103 
    104 		/* 3: X <-- H(X \xor B_i) */
    105 		blkxor(X, &Bin[i * 8 + 4], 64);
    106                 salsa20_8_intrinsic((void *) X);
    107 
    108 		/* 4: Y_i <-- X */
    109 		/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
    110 		blkcpy(&Bout[(r + i) * 4], X, 64);
    111 	}
    112 }
    113 
    114 /**
    115  * integerify(B, r):
    116  * Return the result of parsing B_{2r-1} as a little-endian integer.
    117  */
    118 static uint64_t
    119 integerify(void * B, size_t r)
    120 {
    121 	uint8_t * X = (void*)((uintptr_t)(B) + (2 * r - 1) * 64);
    122 
    123 	return (le64dec(X));
    124 }
    125 
    126 /**
    127  * smix(B, r, N, V, XY):
    128  * Compute B = SMix_r(B, N).  The input B must be 128r bytes in length; the
    129  * temporary storage V must be 128rN bytes in length; the temporary storage
    130  * XY must be 256r bytes in length.  The value N must be a power of 2.
    131  */
    132 static void
    133 smix(uint8_t * B, size_t r, uint64_t N, void * V, void * XY)
    134 {
    135 	uint8x16_t * X = XY;
    136 	uint8x16_t * Y = (void *)((uintptr_t)(XY) + 128 * r);
    137         uint8x16_t * Z = (void *)((uintptr_t)(XY) + 256 * r);
    138         uint32_t * X32 = (void *)X;
    139 	uint64_t i, j;
    140         size_t k;
    141 
    142 	/* 1: X <-- B */
    143 	blkcpy(X, B, 128 * r);
    144 
    145 	/* 2: for i = 0 to N - 1 do */
    146 	for (i = 0; i < N; i += 2) {
    147 		/* 3: V_i <-- X */
    148 		blkcpy((void *)((uintptr_t)(V) + i * 128 * r), X, 128 * r);
    149 
    150 		/* 4: X <-- H(X) */
    151 		blockmix_salsa8(X, Y, Z, r);
    152 
    153 		/* 3: V_i <-- X */
    154 		blkcpy((void *)((uintptr_t)(V) + (i + 1) * 128 * r),
    155 		    Y, 128 * r);
    156 
    157 		/* 4: X <-- H(X) */
    158 		blockmix_salsa8(Y, X, Z, r);
    159 	}
    160 
    161 	/* 6: for i = 0 to N - 1 do */
    162 	for (i = 0; i < N; i += 2) {
    163 		/* 7: j <-- Integerify(X) mod N */
    164 		j = integerify(X, r) & (N - 1);
    165 
    166 		/* 8: X <-- H(X \xor V_j) */
    167 		blkxor(X, (void *)((uintptr_t)(V) + j * 128 * r), 128 * r);
    168 		blockmix_salsa8(X, Y, Z, r);
    169 
    170 		/* 7: j <-- Integerify(X) mod N */
    171 		j = integerify(Y, r) & (N - 1);
    172 
    173 		/* 8: X <-- H(X \xor V_j) */
    174 		blkxor(Y, (void *)((uintptr_t)(V) + j * 128 * r), 128 * r);
    175 		blockmix_salsa8(Y, X, Z, r);
    176 	}
    177 
    178 	/* 10: B' <-- X */
    179 	blkcpy(B, X, 128 * r);
    180 }
    181 
    182 /**
    183  * crypto_scrypt(passwd, passwdlen, salt, saltlen, N, r, p, buf, buflen):
    184  * Compute scrypt(passwd[0 .. passwdlen - 1], salt[0 .. saltlen - 1], N, r,
    185  * p, buflen) and write the result into buf.  The parameters r, p, and buflen
    186  * must satisfy r * p < 2^30 and buflen <= (2^32 - 1) * 32.  The parameter N
    187  * must be a power of 2.
    188  *
    189  * Return 0 on success; or -1 on error.
    190  */
    191 int
    192 crypto_scrypt(const uint8_t * passwd, size_t passwdlen,
    193     const uint8_t * salt, size_t saltlen, uint64_t N, uint32_t r, uint32_t p,
    194     uint8_t * buf, size_t buflen)
    195 {
    196 	void * B0, * V0, * XY0;
    197 	uint8_t * B;
    198 	uint32_t * V;
    199 	uint32_t * XY;
    200 	uint32_t i;
    201 
    202 	/* Sanity-check parameters. */
    203 #if SIZE_MAX > UINT32_MAX
    204 	if (buflen > (((uint64_t)(1) << 32) - 1) * 32) {
    205 		errno = EFBIG;
    206 		goto err0;
    207 	}
    208 #endif
    209 	if ((uint64_t)(r) * (uint64_t)(p) >= (1 << 30)) {
    210 		errno = EFBIG;
    211 		goto err0;
    212 	}
    213 	if (((N & (N - 1)) != 0) || (N == 0)) {
    214 		errno = EINVAL;
    215 		goto err0;
    216 	}
    217 	if ((r > SIZE_MAX / 128 / p) ||
    218 #if SIZE_MAX / 256 <= UINT32_MAX
    219 	    (r > SIZE_MAX / 256) ||
    220 #endif
    221 	    (N > SIZE_MAX / 128 / r)) {
    222 		errno = ENOMEM;
    223 		goto err0;
    224 	}
    225 
    226 	/* Allocate memory. */
    227 #ifdef HAVE_POSIX_MEMALIGN
    228 	if ((errno = posix_memalign(&B0, 64, 128 * r * p)) != 0)
    229 		goto err0;
    230 	B = (uint8_t *)(B0);
    231 	if ((errno = posix_memalign(&XY0, 64, 256 * r + 64)) != 0)
    232 		goto err1;
    233 	XY = (uint32_t *)(XY0);
    234 #ifndef MAP_ANON
    235 	if ((errno = posix_memalign(&V0, 64, 128 * r * N)) != 0)
    236 		goto err2;
    237 	V = (uint32_t *)(V0);
    238 #endif
    239 #else
    240 	if ((B0 = malloc(128 * r * p + 63)) == NULL)
    241 		goto err0;
    242 	B = (uint8_t *)(((uintptr_t)(B0) + 63) & ~ (uintptr_t)(63));
    243 	if ((XY0 = malloc(256 * r + 64 + 63)) == NULL)
    244 		goto err1;
    245 	XY = (uint32_t *)(((uintptr_t)(XY0) + 63) & ~ (uintptr_t)(63));
    246 #ifndef MAP_ANON
    247 	if ((V0 = malloc(128 * r * N + 63)) == NULL)
    248 		goto err2;
    249 	V = (uint32_t *)(((uintptr_t)(V0) + 63) & ~ (uintptr_t)(63));
    250 #endif
    251 #endif
    252 #ifdef MAP_ANON
    253 	if ((V0 = mmap(NULL, 128 * r * N, PROT_READ | PROT_WRITE,
    254 #ifdef MAP_NOCORE
    255 	    MAP_ANON | MAP_PRIVATE | MAP_NOCORE,
    256 #else
    257 	    MAP_ANON | MAP_PRIVATE,
    258 #endif
    259 	    -1, 0)) == MAP_FAILED)
    260 		goto err2;
    261 	V = (uint32_t *)(V0);
    262 #endif
    263 
    264 	/* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */
    265 #ifdef USE_OPENSSL_PBKDF2
    266 	PKCS5_PBKDF2_HMAC((const char *)passwd, passwdlen, salt, saltlen, 1, EVP_sha256(), p * 128 * r, B);
    267 #else
    268 	PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, 1, B, p * 128 * r);
    269 #endif
    270 
    271 	/* 2: for i = 0 to p - 1 do */
    272 	for (i = 0; i < p; i++) {
    273 		/* 3: B_i <-- MF(B_i, N) */
    274 		smix(&B[i * 128 * r], r, N, V, XY);
    275 	}
    276 
    277 	/* 5: DK <-- PBKDF2(P, B, 1, dkLen) */
    278 #ifdef USE_OPENSSL_PBKDF2
    279 	PKCS5_PBKDF2_HMAC((const char *)passwd, passwdlen, B, p * 128 * r, 1, EVP_sha256(), buflen, buf);
    280 #else
    281 	PBKDF2_SHA256(passwd, passwdlen, B, p * 128 * r, 1, buf, buflen);
    282 #endif
    283 
    284 	/* Free memory. */
    285 #ifdef MAP_ANON
    286 	if (munmap(V0, 128 * r * N))
    287 		goto err2;
    288 #else
    289 	free(V0);
    290 #endif
    291 	free(XY0);
    292 	free(B0);
    293 
    294 	/* Success! */
    295 	return (0);
    296 
    297 err2:
    298 	free(XY0);
    299 err1:
    300 	free(B0);
    301 err0:
    302 	/* Failure! */
    303 	return (-1);
    304 }
    305