Home | History | Annotate | Download | only in private
      1 
      2 /*
      3  * Copyright 2006 The Android Open Source Project
      4  *
      5  * Use of this source code is governed by a BSD-style license that can be
      6  * found in the LICENSE file.
      7  */
      8 
      9 
     10 #ifndef SkTemplates_DEFINED
     11 #define SkTemplates_DEFINED
     12 
     13 #include "SkMath.h"
     14 #include "SkMalloc.h"
     15 #include "SkTLogic.h"
     16 #include "SkTypes.h"
     17 #include <limits.h>
     18 #include <memory>
     19 #include <new>
     20 
     21 /** \file SkTemplates.h
     22 
     23     This file contains light-weight template classes for type-safe and exception-safe
     24     resource management.
     25 */
     26 
     27 /**
     28  *  Marks a local variable as known to be unused (to avoid warnings).
     29  *  Note that this does *not* prevent the local variable from being optimized away.
     30  */
     31 template<typename T> inline void sk_ignore_unused_variable(const T&) { }
     32 
     33 /**
     34  *  Returns a pointer to a D which comes immediately after S[count].
     35  */
     36 template <typename D, typename S> static D* SkTAfter(S* ptr, size_t count = 1) {
     37     return reinterpret_cast<D*>(ptr + count);
     38 }
     39 
     40 /**
     41  *  Returns a pointer to a D which comes byteOffset bytes after S.
     42  */
     43 template <typename D, typename S> static D* SkTAddOffset(S* ptr, size_t byteOffset) {
     44     // The intermediate char* has the same cv-ness as D as this produces better error messages.
     45     // This relies on the fact that reinterpret_cast can add constness, but cannot remove it.
     46     return reinterpret_cast<D*>(reinterpret_cast<sknonstd::same_cv_t<char, D>*>(ptr) + byteOffset);
     47 }
     48 
     49 template <typename R, typename T, R (*P)(T*)> struct SkFunctionWrapper {
     50     R operator()(T* t) { return P(t); }
     51 };
     52 
     53 /** \class SkAutoTCallVProc
     54 
     55     Call a function when this goes out of scope. The template uses two
     56     parameters, the object, and a function that is to be called in the destructor.
     57     If release() is called, the object reference is set to null. If the object
     58     reference is null when the destructor is called, we do not call the
     59     function.
     60 */
     61 template <typename T, void (*P)(T*)> class SkAutoTCallVProc
     62     : public std::unique_ptr<T, SkFunctionWrapper<void, T, P>> {
     63 public:
     64     SkAutoTCallVProc(T* obj): std::unique_ptr<T, SkFunctionWrapper<void, T, P>>(obj) {}
     65 
     66     operator T*() const { return this->get(); }
     67 };
     68 
     69 /** \class SkAutoTCallIProc
     70 
     71 Call a function when this goes out of scope. The template uses two
     72 parameters, the object, and a function that is to be called in the destructor.
     73 If release() is called, the object reference is set to null. If the object
     74 reference is null when the destructor is called, we do not call the
     75 function.
     76 */
     77 template <typename T, int (*P)(T*)> class SkAutoTCallIProc
     78     : public std::unique_ptr<T, SkFunctionWrapper<int, T, P>> {
     79 public:
     80     SkAutoTCallIProc(T* obj): std::unique_ptr<T, SkFunctionWrapper<int, T, P>>(obj) {}
     81 
     82     operator T*() const { return this->get(); }
     83 };
     84 
     85 /** Allocate an array of T elements, and free the array in the destructor
     86  */
     87 template <typename T> class SkAutoTArray : SkNoncopyable {
     88 public:
     89     SkAutoTArray() {
     90         fArray = nullptr;
     91         SkDEBUGCODE(fCount = 0;)
     92     }
     93     /** Allocate count number of T elements
     94      */
     95     explicit SkAutoTArray(int count) {
     96         SkASSERT(count >= 0);
     97         fArray = nullptr;
     98         if (count) {
     99             fArray = new T[count];
    100         }
    101         SkDEBUGCODE(fCount = count;)
    102     }
    103 
    104     /** Reallocates given a new count. Reallocation occurs even if new count equals old count.
    105      */
    106     void reset(int count) {
    107         delete[] fArray;
    108         SkASSERT(count >= 0);
    109         fArray = nullptr;
    110         if (count) {
    111             fArray = new T[count];
    112         }
    113         SkDEBUGCODE(fCount = count;)
    114     }
    115 
    116     ~SkAutoTArray() { delete[] fArray; }
    117 
    118     /** Return the array of T elements. Will be NULL if count == 0
    119      */
    120     T* get() const { return fArray; }
    121 
    122     /** Return the nth element in the array
    123      */
    124     T&  operator[](int index) const {
    125         SkASSERT((unsigned)index < (unsigned)fCount);
    126         return fArray[index];
    127     }
    128 
    129     void swap(SkAutoTArray& other) {
    130         SkTSwap(fArray, other.fArray);
    131         SkDEBUGCODE(SkTSwap(fCount, other.fCount));
    132     }
    133 
    134 private:
    135     T*  fArray;
    136     SkDEBUGCODE(int fCount;)
    137 };
    138 
    139 /** Wraps SkAutoTArray, with room for kCountRequested elements preallocated.
    140  */
    141 template <int kCountRequested, typename T> class SkAutoSTArray : SkNoncopyable {
    142 public:
    143     /** Initialize with no objects */
    144     SkAutoSTArray() {
    145         fArray = nullptr;
    146         fCount = 0;
    147     }
    148 
    149     /** Allocate count number of T elements
    150      */
    151     SkAutoSTArray(int count) {
    152         fArray = nullptr;
    153         fCount = 0;
    154         this->reset(count);
    155     }
    156 
    157     ~SkAutoSTArray() {
    158         this->reset(0);
    159     }
    160 
    161     /** Destroys previous objects in the array and default constructs count number of objects */
    162     void reset(int count) {
    163         T* start = fArray;
    164         T* iter = start + fCount;
    165         while (iter > start) {
    166             (--iter)->~T();
    167         }
    168 
    169         SkASSERT(count >= 0);
    170         if (fCount != count) {
    171             if (fCount > kCount) {
    172                 // 'fArray' was allocated last time so free it now
    173                 SkASSERT((T*) fStorage != fArray);
    174                 sk_free(fArray);
    175             }
    176 
    177             if (count > kCount) {
    178                 fArray = (T*) sk_malloc_throw(count, sizeof(T));
    179             } else if (count > 0) {
    180                 fArray = (T*) fStorage;
    181             } else {
    182                 fArray = nullptr;
    183             }
    184 
    185             fCount = count;
    186         }
    187 
    188         iter = fArray;
    189         T* stop = fArray + count;
    190         while (iter < stop) {
    191             new (iter++) T;
    192         }
    193     }
    194 
    195     /** Return the number of T elements in the array
    196      */
    197     int count() const { return fCount; }
    198 
    199     /** Return the array of T elements. Will be NULL if count == 0
    200      */
    201     T* get() const { return fArray; }
    202 
    203     T* begin() { return fArray; }
    204 
    205     const T* begin() const { return fArray; }
    206 
    207     T* end() { return fArray + fCount; }
    208 
    209     const T* end() const { return fArray + fCount; }
    210 
    211     /** Return the nth element in the array
    212      */
    213     T&  operator[](int index) const {
    214         SkASSERT(index < fCount);
    215         return fArray[index];
    216     }
    217 
    218 private:
    219 #if defined(SK_BUILD_FOR_GOOGLE3)
    220     // Stack frame size is limited for SK_BUILD_FOR_GOOGLE3. 4k is less than the actual max, but some functions
    221     // have multiple large stack allocations.
    222     static const int kMaxBytes = 4 * 1024;
    223     static const int kCount = kCountRequested * sizeof(T) > kMaxBytes
    224         ? kMaxBytes / sizeof(T)
    225         : kCountRequested;
    226 #else
    227     static const int kCount = kCountRequested;
    228 #endif
    229 
    230     int     fCount;
    231     T*      fArray;
    232     // since we come right after fArray, fStorage should be properly aligned
    233     char    fStorage[kCount * sizeof(T)];
    234 };
    235 
    236 /** Manages an array of T elements, freeing the array in the destructor.
    237  *  Does NOT call any constructors/destructors on T (T must be POD).
    238  */
    239 template <typename T> class SkAutoTMalloc : SkNoncopyable {
    240 public:
    241     /** Takes ownership of the ptr. The ptr must be a value which can be passed to sk_free. */
    242     explicit SkAutoTMalloc(T* ptr = nullptr) {
    243         fPtr = ptr;
    244     }
    245 
    246     /** Allocates space for 'count' Ts. */
    247     explicit SkAutoTMalloc(size_t count) {
    248         fPtr = count ? (T*)sk_malloc_throw(count, sizeof(T)) : nullptr;
    249     }
    250 
    251     SkAutoTMalloc(SkAutoTMalloc<T>&& that) : fPtr(that.release()) {}
    252 
    253     ~SkAutoTMalloc() {
    254         sk_free(fPtr);
    255     }
    256 
    257     /** Resize the memory area pointed to by the current ptr preserving contents. */
    258     void realloc(size_t count) {
    259         if (count) {
    260             fPtr = reinterpret_cast<T*>(sk_realloc_throw(fPtr, count * sizeof(T)));
    261         } else {
    262             this->reset(0);
    263         }
    264     }
    265 
    266     /** Resize the memory area pointed to by the current ptr without preserving contents. */
    267     T* reset(size_t count = 0) {
    268         sk_free(fPtr);
    269         fPtr = count ? (T*)sk_malloc_throw(count, sizeof(T)) : nullptr;
    270         return fPtr;
    271     }
    272 
    273     T* get() const { return fPtr; }
    274 
    275     operator T*() {
    276         return fPtr;
    277     }
    278 
    279     operator const T*() const {
    280         return fPtr;
    281     }
    282 
    283     T& operator[](int index) {
    284         return fPtr[index];
    285     }
    286 
    287     const T& operator[](int index) const {
    288         return fPtr[index];
    289     }
    290 
    291     SkAutoTMalloc& operator=(SkAutoTMalloc<T>&& that) {
    292         if (this != &that) {
    293             sk_free(fPtr);
    294             fPtr = that.release();
    295         }
    296         return *this;
    297     }
    298 
    299     /**
    300      *  Transfer ownership of the ptr to the caller, setting the internal
    301      *  pointer to NULL. Note that this differs from get(), which also returns
    302      *  the pointer, but it does not transfer ownership.
    303      */
    304     T* release() {
    305         T* ptr = fPtr;
    306         fPtr = nullptr;
    307         return ptr;
    308     }
    309 
    310 private:
    311     T* fPtr;
    312 };
    313 
    314 template <size_t kCountRequested, typename T> class SkAutoSTMalloc : SkNoncopyable {
    315 public:
    316     SkAutoSTMalloc() : fPtr(fTStorage) {}
    317 
    318     SkAutoSTMalloc(size_t count) {
    319         if (count > kCount) {
    320             fPtr = (T*)sk_malloc_throw(count, sizeof(T));
    321         } else if (count) {
    322             fPtr = fTStorage;
    323         } else {
    324             fPtr = nullptr;
    325         }
    326     }
    327 
    328     ~SkAutoSTMalloc() {
    329         if (fPtr != fTStorage) {
    330             sk_free(fPtr);
    331         }
    332     }
    333 
    334     // doesn't preserve contents
    335     T* reset(size_t count) {
    336         if (fPtr != fTStorage) {
    337             sk_free(fPtr);
    338         }
    339         if (count > kCount) {
    340             fPtr = (T*)sk_malloc_throw(count, sizeof(T));
    341         } else if (count) {
    342             fPtr = fTStorage;
    343         } else {
    344             fPtr = nullptr;
    345         }
    346         return fPtr;
    347     }
    348 
    349     T* get() const { return fPtr; }
    350 
    351     operator T*() {
    352         return fPtr;
    353     }
    354 
    355     operator const T*() const {
    356         return fPtr;
    357     }
    358 
    359     T& operator[](int index) {
    360         return fPtr[index];
    361     }
    362 
    363     const T& operator[](int index) const {
    364         return fPtr[index];
    365     }
    366 
    367     // Reallocs the array, can be used to shrink the allocation.  Makes no attempt to be intelligent
    368     void realloc(size_t count) {
    369         if (count > kCount) {
    370             if (fPtr == fTStorage) {
    371                 fPtr = (T*)sk_malloc_throw(count, sizeof(T));
    372                 memcpy(fPtr, fTStorage, kCount * sizeof(T));
    373             } else {
    374                 fPtr = (T*)sk_realloc_throw(fPtr, count, sizeof(T));
    375             }
    376         } else if (count) {
    377             if (fPtr != fTStorage) {
    378                 fPtr = (T*)sk_realloc_throw(fPtr, count, sizeof(T));
    379             }
    380         } else {
    381             this->reset(0);
    382         }
    383     }
    384 
    385 private:
    386     // Since we use uint32_t storage, we might be able to get more elements for free.
    387     static const size_t kCountWithPadding = SkAlign4(kCountRequested*sizeof(T)) / sizeof(T);
    388 #if defined(SK_BUILD_FOR_GOOGLE3)
    389     // Stack frame size is limited for SK_BUILD_FOR_GOOGLE3. 4k is less than the actual max, but some functions
    390     // have multiple large stack allocations.
    391     static const size_t kMaxBytes = 4 * 1024;
    392     static const size_t kCount = kCountRequested * sizeof(T) > kMaxBytes
    393         ? kMaxBytes / sizeof(T)
    394         : kCountWithPadding;
    395 #else
    396     static const size_t kCount = kCountWithPadding;
    397 #endif
    398 
    399     T*          fPtr;
    400     union {
    401         uint32_t    fStorage32[SkAlign4(kCount*sizeof(T)) >> 2];
    402         T           fTStorage[1];   // do NOT want to invoke T::T()
    403     };
    404 };
    405 
    406 //////////////////////////////////////////////////////////////////////////////////////////////////
    407 
    408 /**
    409  *  Pass the object and the storage that was offered during SkInPlaceNewCheck, and this will
    410  *  safely destroy (and free if it was dynamically allocated) the object.
    411  */
    412 template <typename T> void SkInPlaceDeleteCheck(T* obj, void* storage) {
    413     if (storage == obj) {
    414         obj->~T();
    415     } else {
    416         delete obj;
    417     }
    418 }
    419 
    420 /**
    421  *  Allocates T, using storage if it is large enough, and allocating on the heap (via new) if
    422  *  storage is not large enough.
    423  *
    424  *      obj = SkInPlaceNewCheck<Type>(storage, size);
    425  *      ...
    426  *      SkInPlaceDeleteCheck(obj, storage);
    427  */
    428 template <typename T> T* SkInPlaceNewCheck(void* storage, size_t size) {
    429     return (sizeof(T) <= size) ? new (storage) T : new T;
    430 }
    431 
    432 template <typename T, typename A1, typename A2, typename A3>
    433 T* SkInPlaceNewCheck(void* storage, size_t size, const A1& a1, const A2& a2, const A3& a3) {
    434     return (sizeof(T) <= size) ? new (storage) T(a1, a2, a3) : new T(a1, a2, a3);
    435 }
    436 
    437 template <typename T, typename A1, typename A2, typename A3, typename A4>
    438 T* SkInPlaceNewCheck(void* storage, size_t size,
    439                      const A1& a1, const A2& a2, const A3& a3, const A4& a4) {
    440     return (sizeof(T) <= size) ? new (storage) T(a1, a2, a3, a4) : new T(a1, a2, a3, a4);
    441 }
    442 
    443 /**
    444  * Reserves memory that is aligned on double and pointer boundaries.
    445  * Hopefully this is sufficient for all practical purposes.
    446  */
    447 template <size_t N> class SkAlignedSStorage : SkNoncopyable {
    448 public:
    449     size_t size() const { return N; }
    450     void* get() { return fData; }
    451     const void* get() const { return fData; }
    452 
    453 private:
    454     union {
    455         void*   fPtr;
    456         double  fDouble;
    457         char    fData[N];
    458     };
    459 };
    460 
    461 /**
    462  * Reserves memory that is aligned on double and pointer boundaries.
    463  * Hopefully this is sufficient for all practical purposes. Otherwise,
    464  * we have to do some arcane trickery to determine alignment of non-POD
    465  * types. Lifetime of the memory is the lifetime of the object.
    466  */
    467 template <int N, typename T> class SkAlignedSTStorage : SkNoncopyable {
    468 public:
    469     /**
    470      * Returns void* because this object does not initialize the
    471      * memory. Use placement new for types that require a cons.
    472      */
    473     void* get() { return fStorage.get(); }
    474     const void* get() const { return fStorage.get(); }
    475 private:
    476     SkAlignedSStorage<sizeof(T)*N> fStorage;
    477 };
    478 
    479 using SkAutoFree = std::unique_ptr<void, SkFunctionWrapper<void, void, sk_free>>;
    480 
    481 template<typename C, std::size_t... Is>
    482 constexpr auto SkMakeArrayFromIndexSequence(C c, skstd::index_sequence<Is...>)
    483 -> std::array<skstd::result_of_t<C(std::size_t)>, sizeof...(Is)> {
    484     return {{ c(Is)... }};
    485 }
    486 
    487 template<size_t N, typename C> constexpr auto SkMakeArray(C c)
    488 -> std::array<skstd::result_of_t<C(std::size_t)>, N> {
    489     return SkMakeArrayFromIndexSequence(c, skstd::make_index_sequence<N>{});
    490 }
    491 
    492 #endif
    493