Home | History | Annotate | Download | only in core
      1 /*
      2  * Copyright 2013 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #include "SkMipMap.h"
      9 #include "SkBitmap.h"
     10 #include "SkColorData.h"
     11 #include "SkHalf.h"
     12 #include "SkImageInfoPriv.h"
     13 #include "SkMathPriv.h"
     14 #include "SkNx.h"
     15 #include "SkPM4fPriv.h"
     16 #include "SkSRGB.h"
     17 #include "SkTypes.h"
     18 
     19 //
     20 // ColorTypeFilter is the "Type" we pass to some downsample template functions.
     21 // It controls how we expand a pixel into a large type, with space between each component,
     22 // so we can then perform our simple filter (either box or triangle) and store the intermediates
     23 // in the expanded type.
     24 //
     25 
     26 struct ColorTypeFilter_8888 {
     27     typedef uint32_t Type;
     28     static Sk4h Expand(uint32_t x) {
     29         return SkNx_cast<uint16_t>(Sk4b::Load(&x));
     30     }
     31     static uint32_t Compact(const Sk4h& x) {
     32         uint32_t r;
     33         SkNx_cast<uint8_t>(x).store(&r);
     34         return r;
     35     }
     36 };
     37 
     38 struct ColorTypeFilter_S32 {
     39     typedef uint32_t Type;
     40     static Sk4h Expand(uint32_t x) {
     41         return Sk4h(sk_linear12_from_srgb[(x      ) & 0xFF],
     42                     sk_linear12_from_srgb[(x >>  8) & 0xFF],
     43                     sk_linear12_from_srgb[(x >> 16) & 0xFF],
     44                                           (x >> 24) <<   4);
     45     }
     46     static uint32_t Compact(const Sk4h& x) {
     47         return sk_linear12_to_srgb[x[0]]       |
     48                sk_linear12_to_srgb[x[1]] <<  8 |
     49                sk_linear12_to_srgb[x[2]] << 16 |
     50                (x[3] >> 4)               << 24;
     51     }
     52 };
     53 
     54 struct ColorTypeFilter_565 {
     55     typedef uint16_t Type;
     56     static uint32_t Expand(uint16_t x) {
     57         return (x & ~SK_G16_MASK_IN_PLACE) | ((x & SK_G16_MASK_IN_PLACE) << 16);
     58     }
     59     static uint16_t Compact(uint32_t x) {
     60         return (x & ~SK_G16_MASK_IN_PLACE) | ((x >> 16) & SK_G16_MASK_IN_PLACE);
     61     }
     62 };
     63 
     64 struct ColorTypeFilter_4444 {
     65     typedef uint16_t Type;
     66     static uint32_t Expand(uint16_t x) {
     67         return (x & 0xF0F) | ((x & ~0xF0F) << 12);
     68     }
     69     static uint16_t Compact(uint32_t x) {
     70         return (x & 0xF0F) | ((x >> 12) & ~0xF0F);
     71     }
     72 };
     73 
     74 struct ColorTypeFilter_8 {
     75     typedef uint8_t Type;
     76     static unsigned Expand(unsigned x) {
     77         return x;
     78     }
     79     static uint8_t Compact(unsigned x) {
     80         return (uint8_t)x;
     81     }
     82 };
     83 
     84 struct ColorTypeFilter_F16 {
     85     typedef uint64_t Type; // SkHalf x4
     86     static Sk4f Expand(uint64_t x) {
     87         return SkHalfToFloat_finite_ftz(x);
     88     }
     89     static uint64_t Compact(const Sk4f& x) {
     90         uint64_t r;
     91         SkFloatToHalf_finite_ftz(x).store(&r);
     92         return r;
     93     }
     94 };
     95 
     96 template <typename T> T add_121(const T& a, const T& b, const T& c) {
     97     return a + b + b + c;
     98 }
     99 
    100 template <typename T> T shift_right(const T& x, int bits) {
    101     return x >> bits;
    102 }
    103 
    104 Sk4f shift_right(const Sk4f& x, int bits) {
    105     return x * (1.0f / (1 << bits));
    106 }
    107 
    108 template <typename T> T shift_left(const T& x, int bits) {
    109     return x << bits;
    110 }
    111 
    112 Sk4f shift_left(const Sk4f& x, int bits) {
    113     return x * (1 << bits);
    114 }
    115 
    116 //
    117 //  To produce each mip level, we need to filter down by 1/2 (e.g. 100x100 -> 50,50)
    118 //  If the starting dimension is odd, we floor the size of the lower level (e.g. 101 -> 50)
    119 //  In those (odd) cases, we use a triangle filter, with 1-pixel overlap between samplings,
    120 //  else for even cases, we just use a 2x box filter.
    121 //
    122 //  This produces 4 possible isotropic filters: 2x2 2x3 3x2 3x3 where WxH indicates the number of
    123 //  src pixels we need to sample in each dimension to produce 1 dst pixel.
    124 //
    125 //  OpenGL expects a full mipmap stack to contain anisotropic space as well.
    126 //  This means a 100x1 image would continue down to a 50x1 image, 25x1 image...
    127 //  Because of this, we need 4 more anisotropic filters: 1x2, 1x3, 2x1, 3x1.
    128 
    129 template <typename F> void downsample_1_2(void* dst, const void* src, size_t srcRB, int count) {
    130     SkASSERT(count > 0);
    131     auto p0 = static_cast<const typename F::Type*>(src);
    132     auto p1 = (const typename F::Type*)((const char*)p0 + srcRB);
    133     auto d = static_cast<typename F::Type*>(dst);
    134 
    135     for (int i = 0; i < count; ++i) {
    136         auto c00 = F::Expand(p0[0]);
    137         auto c10 = F::Expand(p1[0]);
    138 
    139         auto c = c00 + c10;
    140         d[i] = F::Compact(shift_right(c, 1));
    141         p0 += 2;
    142         p1 += 2;
    143     }
    144 }
    145 
    146 template <typename F> void downsample_1_3(void* dst, const void* src, size_t srcRB, int count) {
    147     SkASSERT(count > 0);
    148     auto p0 = static_cast<const typename F::Type*>(src);
    149     auto p1 = (const typename F::Type*)((const char*)p0 + srcRB);
    150     auto p2 = (const typename F::Type*)((const char*)p1 + srcRB);
    151     auto d = static_cast<typename F::Type*>(dst);
    152 
    153     for (int i = 0; i < count; ++i) {
    154         auto c00 = F::Expand(p0[0]);
    155         auto c10 = F::Expand(p1[0]);
    156         auto c20 = F::Expand(p2[0]);
    157 
    158         auto c = add_121(c00, c10, c20);
    159         d[i] = F::Compact(shift_right(c, 2));
    160         p0 += 2;
    161         p1 += 2;
    162         p2 += 2;
    163     }
    164 }
    165 
    166 template <typename F> void downsample_2_1(void* dst, const void* src, size_t srcRB, int count) {
    167     SkASSERT(count > 0);
    168     auto p0 = static_cast<const typename F::Type*>(src);
    169     auto d = static_cast<typename F::Type*>(dst);
    170 
    171     for (int i = 0; i < count; ++i) {
    172         auto c00 = F::Expand(p0[0]);
    173         auto c01 = F::Expand(p0[1]);
    174 
    175         auto c = c00 + c01;
    176         d[i] = F::Compact(shift_right(c, 1));
    177         p0 += 2;
    178     }
    179 }
    180 
    181 template <typename F> void downsample_2_2(void* dst, const void* src, size_t srcRB, int count) {
    182     SkASSERT(count > 0);
    183     auto p0 = static_cast<const typename F::Type*>(src);
    184     auto p1 = (const typename F::Type*)((const char*)p0 + srcRB);
    185     auto d = static_cast<typename F::Type*>(dst);
    186 
    187     for (int i = 0; i < count; ++i) {
    188         auto c00 = F::Expand(p0[0]);
    189         auto c01 = F::Expand(p0[1]);
    190         auto c10 = F::Expand(p1[0]);
    191         auto c11 = F::Expand(p1[1]);
    192 
    193         auto c = c00 + c10 + c01 + c11;
    194         d[i] = F::Compact(shift_right(c, 2));
    195         p0 += 2;
    196         p1 += 2;
    197     }
    198 }
    199 
    200 template <typename F> void downsample_2_3(void* dst, const void* src, size_t srcRB, int count) {
    201     SkASSERT(count > 0);
    202     auto p0 = static_cast<const typename F::Type*>(src);
    203     auto p1 = (const typename F::Type*)((const char*)p0 + srcRB);
    204     auto p2 = (const typename F::Type*)((const char*)p1 + srcRB);
    205     auto d = static_cast<typename F::Type*>(dst);
    206 
    207     for (int i = 0; i < count; ++i) {
    208         auto c00 = F::Expand(p0[0]);
    209         auto c01 = F::Expand(p0[1]);
    210         auto c10 = F::Expand(p1[0]);
    211         auto c11 = F::Expand(p1[1]);
    212         auto c20 = F::Expand(p2[0]);
    213         auto c21 = F::Expand(p2[1]);
    214 
    215         auto c = add_121(c00, c10, c20) + add_121(c01, c11, c21);
    216         d[i] = F::Compact(shift_right(c, 3));
    217         p0 += 2;
    218         p1 += 2;
    219         p2 += 2;
    220     }
    221 }
    222 
    223 template <typename F> void downsample_3_1(void* dst, const void* src, size_t srcRB, int count) {
    224     SkASSERT(count > 0);
    225     auto p0 = static_cast<const typename F::Type*>(src);
    226     auto d = static_cast<typename F::Type*>(dst);
    227 
    228     auto c02 = F::Expand(p0[0]);
    229     for (int i = 0; i < count; ++i) {
    230         auto c00 = c02;
    231         auto c01 = F::Expand(p0[1]);
    232              c02 = F::Expand(p0[2]);
    233 
    234         auto c = add_121(c00, c01, c02);
    235         d[i] = F::Compact(shift_right(c, 2));
    236         p0 += 2;
    237     }
    238 }
    239 
    240 template <typename F> void downsample_3_2(void* dst, const void* src, size_t srcRB, int count) {
    241     SkASSERT(count > 0);
    242     auto p0 = static_cast<const typename F::Type*>(src);
    243     auto p1 = (const typename F::Type*)((const char*)p0 + srcRB);
    244     auto d = static_cast<typename F::Type*>(dst);
    245 
    246     // Given pixels:
    247     // a0 b0 c0 d0 e0 ...
    248     // a1 b1 c1 d1 e1 ...
    249     // We want:
    250     // (a0 + 2*b0 + c0 + a1 + 2*b1 + c1) / 8
    251     // (c0 + 2*d0 + e0 + c1 + 2*d1 + e1) / 8
    252     // ...
    253 
    254     auto c0 = F::Expand(p0[0]);
    255     auto c1 = F::Expand(p1[0]);
    256     auto c = c0 + c1;
    257     for (int i = 0; i < count; ++i) {
    258         auto a = c;
    259 
    260         auto b0 = F::Expand(p0[1]);
    261         auto b1 = F::Expand(p1[1]);
    262         auto b = b0 + b0 + b1 + b1;
    263 
    264         c0 = F::Expand(p0[2]);
    265         c1 = F::Expand(p1[2]);
    266         c = c0 + c1;
    267 
    268         auto sum = a + b + c;
    269         d[i] = F::Compact(shift_right(sum, 3));
    270         p0 += 2;
    271         p1 += 2;
    272     }
    273 }
    274 
    275 template <typename F> void downsample_3_3(void* dst, const void* src, size_t srcRB, int count) {
    276     SkASSERT(count > 0);
    277     auto p0 = static_cast<const typename F::Type*>(src);
    278     auto p1 = (const typename F::Type*)((const char*)p0 + srcRB);
    279     auto p2 = (const typename F::Type*)((const char*)p1 + srcRB);
    280     auto d = static_cast<typename F::Type*>(dst);
    281 
    282     // Given pixels:
    283     // a0 b0 c0 d0 e0 ...
    284     // a1 b1 c1 d1 e1 ...
    285     // a2 b2 c2 d2 e2 ...
    286     // We want:
    287     // (a0 + 2*b0 + c0 + 2*a1 + 4*b1 + 2*c1 + a2 + 2*b2 + c2) / 16
    288     // (c0 + 2*d0 + e0 + 2*c1 + 4*d1 + 2*e1 + c2 + 2*d2 + e2) / 16
    289     // ...
    290 
    291     auto c0 = F::Expand(p0[0]);
    292     auto c1 = F::Expand(p1[0]);
    293     auto c2 = F::Expand(p2[0]);
    294     auto c = add_121(c0, c1, c2);
    295     for (int i = 0; i < count; ++i) {
    296         auto a = c;
    297 
    298         auto b0 = F::Expand(p0[1]);
    299         auto b1 = F::Expand(p1[1]);
    300         auto b2 = F::Expand(p2[1]);
    301         auto b = shift_left(add_121(b0, b1, b2), 1);
    302 
    303         c0 = F::Expand(p0[2]);
    304         c1 = F::Expand(p1[2]);
    305         c2 = F::Expand(p2[2]);
    306         c = add_121(c0, c1, c2);
    307 
    308         auto sum = a + b + c;
    309         d[i] = F::Compact(shift_right(sum, 4));
    310         p0 += 2;
    311         p1 += 2;
    312         p2 += 2;
    313     }
    314 }
    315 
    316 ///////////////////////////////////////////////////////////////////////////////////////////////////
    317 
    318 // Some sRGB specific performance optimizations.
    319 
    320 void downsample_2_2_srgb(void* dst, const void* src, size_t srcRB, int count) {
    321     const uint8_t* p0 = ((const uint8_t*) src);
    322     const uint8_t* p1 = ((const uint8_t*) src) + srcRB;
    323     uint8_t* d = (uint8_t*) dst;
    324 
    325     // Given pixels:
    326     // a0 b0 c0 d0 ...
    327     // a1 b1 c1 d1 ...
    328     // We want:
    329     // (a0 + b0 + a1 + b1) / 4
    330     // (c0 + d0 + c1 + d1) / 4
    331     // ...
    332     while (count >= 2) {
    333         Sk8h a0c0 = Sk8h(sk_linear12_from_srgb[p0[ 0]],
    334                          sk_linear12_from_srgb[p0[ 1]],
    335                          sk_linear12_from_srgb[p0[ 2]],
    336                          p0[ 3] << 4                  ,
    337                          sk_linear12_from_srgb[p0[ 8]],
    338                          sk_linear12_from_srgb[p0[ 9]],
    339                          sk_linear12_from_srgb[p0[10]],
    340                          p0[11] << 4                 );
    341         Sk8h b0d0 = Sk8h(sk_linear12_from_srgb[p0[ 4]],
    342                          sk_linear12_from_srgb[p0[ 5]],
    343                          sk_linear12_from_srgb[p0[ 6]],
    344                          p0[ 7] << 4                  ,
    345                          sk_linear12_from_srgb[p0[12]],
    346                          sk_linear12_from_srgb[p0[13]],
    347                          sk_linear12_from_srgb[p0[14]],
    348                          p0[15] << 4                 );
    349         Sk8h a1c1 = Sk8h(sk_linear12_from_srgb[p1[ 0]],
    350                          sk_linear12_from_srgb[p1[ 1]],
    351                          sk_linear12_from_srgb[p1[ 2]],
    352                          p1[ 3] << 4                  ,
    353                          sk_linear12_from_srgb[p1[ 8]],
    354                          sk_linear12_from_srgb[p1[ 9]],
    355                          sk_linear12_from_srgb[p1[10]],
    356                          p1[11] << 4                 );
    357         Sk8h b1d1 = Sk8h(sk_linear12_from_srgb[p1[ 4]],
    358                          sk_linear12_from_srgb[p1[ 5]],
    359                          sk_linear12_from_srgb[p1[ 6]],
    360                          p1[ 7] << 4                  ,
    361                          sk_linear12_from_srgb[p1[12]],
    362                          sk_linear12_from_srgb[p1[13]],
    363                          sk_linear12_from_srgb[p1[14]],
    364                          p1[15] << 4                 );
    365 
    366         Sk8h avg = (a0c0 + b0d0 + a1c1 + b1d1) >> 2;
    367         d[0] = sk_linear12_to_srgb[avg[0]];
    368         d[1] = sk_linear12_to_srgb[avg[1]];
    369         d[2] = sk_linear12_to_srgb[avg[2]];
    370         d[3] = avg[3] >> 4;
    371         d[4] = sk_linear12_to_srgb[avg[4]];
    372         d[5] = sk_linear12_to_srgb[avg[5]];
    373         d[6] = sk_linear12_to_srgb[avg[6]];
    374         d[7] = avg[7] >> 4;
    375 
    376         p0 += 16;
    377         p1 += 16;
    378         d += 8;
    379         count -= 2;
    380     }
    381 
    382     if (count) {
    383         downsample_2_2<ColorTypeFilter_S32>(d, p0, srcRB, count);
    384     }
    385 }
    386 
    387 void downsample_2_3_srgb(void* dst, const void* src, size_t srcRB, int count) {
    388     const uint8_t* p0 = ((const uint8_t*) src);
    389     const uint8_t* p1 = p0 + srcRB;
    390     const uint8_t* p2 = p1 + srcRB;
    391     uint8_t* d = (uint8_t*) dst;
    392 
    393     // Given pixels:
    394     // a0 b0 c0 d0 ...
    395     // a1 b1 c1 d1 ...
    396     // a2 b2 c2 d2 ...
    397     // We want:
    398     // (a0 + b0 + 2*a1 + 2*b1 + a2 + b2) / 8
    399     // (c0 + d0 + 2*c1 + 2*d1 + c2 + d2) / 8
    400     // ...
    401     while (count >= 2) {
    402         Sk8h a0c0 = Sk8h(sk_linear12_from_srgb[p0[ 0]],
    403                          sk_linear12_from_srgb[p0[ 1]],
    404                          sk_linear12_from_srgb[p0[ 2]],
    405                          p0[ 3] << 4                  ,
    406                          sk_linear12_from_srgb[p0[ 8]],
    407                          sk_linear12_from_srgb[p0[ 9]],
    408                          sk_linear12_from_srgb[p0[10]],
    409                          p0[11] << 4                 );
    410         Sk8h b0d0 = Sk8h(sk_linear12_from_srgb[p0[ 4]],
    411                          sk_linear12_from_srgb[p0[ 5]],
    412                          sk_linear12_from_srgb[p0[ 6]],
    413                          p0[ 7] << 4                  ,
    414                          sk_linear12_from_srgb[p0[12]],
    415                          sk_linear12_from_srgb[p0[13]],
    416                          sk_linear12_from_srgb[p0[14]],
    417                          p0[15] << 4                 );
    418         Sk8h a1c1 = Sk8h(sk_linear12_from_srgb[p1[ 0]],
    419                          sk_linear12_from_srgb[p1[ 1]],
    420                          sk_linear12_from_srgb[p1[ 2]],
    421                          p1[ 3] << 4                  ,
    422                          sk_linear12_from_srgb[p1[ 8]],
    423                          sk_linear12_from_srgb[p1[ 9]],
    424                          sk_linear12_from_srgb[p1[10]],
    425                          p1[11] << 4                 );
    426         Sk8h b1d1 = Sk8h(sk_linear12_from_srgb[p1[ 4]],
    427                          sk_linear12_from_srgb[p1[ 5]],
    428                          sk_linear12_from_srgb[p1[ 6]],
    429                          p1[ 7] << 4                  ,
    430                          sk_linear12_from_srgb[p1[12]],
    431                          sk_linear12_from_srgb[p1[13]],
    432                          sk_linear12_from_srgb[p1[14]],
    433                          p1[15] << 4                 );
    434         Sk8h a2c2 = Sk8h(sk_linear12_from_srgb[p2[ 0]],
    435                          sk_linear12_from_srgb[p2[ 1]],
    436                          sk_linear12_from_srgb[p2[ 2]],
    437                          p2[ 3] << 4                  ,
    438                          sk_linear12_from_srgb[p2[ 8]],
    439                          sk_linear12_from_srgb[p2[ 9]],
    440                          sk_linear12_from_srgb[p2[10]],
    441                          p2[11] << 4                 );
    442         Sk8h b2d2 = Sk8h(sk_linear12_from_srgb[p2[ 4]],
    443                          sk_linear12_from_srgb[p2[ 5]],
    444                          sk_linear12_from_srgb[p2[ 6]],
    445                          p2[ 7] << 4                  ,
    446                          sk_linear12_from_srgb[p2[12]],
    447                          sk_linear12_from_srgb[p2[13]],
    448                          sk_linear12_from_srgb[p2[14]],
    449                          p2[15] << 4                 );
    450 
    451         Sk8h avg = (a0c0 + b0d0 + a1c1 + a1c1 + b1d1 + b1d1 + a2c2 + b2d2) >> 3;
    452         d[0] = sk_linear12_to_srgb[avg[0]];
    453         d[1] = sk_linear12_to_srgb[avg[1]];
    454         d[2] = sk_linear12_to_srgb[avg[2]];
    455         d[3] = avg[3] >> 4;
    456         d[4] = sk_linear12_to_srgb[avg[4]];
    457         d[5] = sk_linear12_to_srgb[avg[5]];
    458         d[6] = sk_linear12_to_srgb[avg[6]];
    459         d[7] = avg[7] >> 4;
    460 
    461         p0 += 16;
    462         p1 += 16;
    463         p2 += 16;
    464         d += 8;
    465         count -= 2;
    466     }
    467 
    468     if (count) {
    469         downsample_2_3<ColorTypeFilter_S32>(d, p0, srcRB, count);
    470     }
    471 }
    472 
    473 ///////////////////////////////////////////////////////////////////////////////////////////////////
    474 
    475 size_t SkMipMap::AllocLevelsSize(int levelCount, size_t pixelSize) {
    476     if (levelCount < 0) {
    477         return 0;
    478     }
    479     int64_t size = sk_64_mul(levelCount + 1, sizeof(Level)) + pixelSize;
    480     if (!sk_64_isS32(size)) {
    481         return 0;
    482     }
    483     return sk_64_asS32(size);
    484 }
    485 
    486 SkMipMap* SkMipMap::Build(const SkPixmap& src, SkDestinationSurfaceColorMode colorMode,
    487                           SkDiscardableFactoryProc fact) {
    488     typedef void FilterProc(void*, const void* srcPtr, size_t srcRB, int count);
    489 
    490     FilterProc* proc_1_2 = nullptr;
    491     FilterProc* proc_1_3 = nullptr;
    492     FilterProc* proc_2_1 = nullptr;
    493     FilterProc* proc_2_2 = nullptr;
    494     FilterProc* proc_2_3 = nullptr;
    495     FilterProc* proc_3_1 = nullptr;
    496     FilterProc* proc_3_2 = nullptr;
    497     FilterProc* proc_3_3 = nullptr;
    498 
    499     const SkColorType ct = src.colorType();
    500     const SkAlphaType at = src.alphaType();
    501     const bool srgbGamma = (SkDestinationSurfaceColorMode::kGammaAndColorSpaceAware == colorMode)
    502                             && src.info().gammaCloseToSRGB();
    503 
    504     switch (ct) {
    505         case kRGBA_8888_SkColorType:
    506         case kBGRA_8888_SkColorType:
    507             if (srgbGamma) {
    508                 proc_1_2 = downsample_1_2<ColorTypeFilter_S32>;
    509                 proc_1_3 = downsample_1_3<ColorTypeFilter_S32>;
    510                 proc_2_1 = downsample_2_1<ColorTypeFilter_S32>;
    511                 proc_2_2 = downsample_2_2_srgb;
    512                 proc_2_3 = downsample_2_3_srgb;
    513                 proc_3_1 = downsample_3_1<ColorTypeFilter_S32>;
    514                 proc_3_2 = downsample_3_2<ColorTypeFilter_S32>;
    515                 proc_3_3 = downsample_3_3<ColorTypeFilter_S32>;
    516             } else {
    517                 proc_1_2 = downsample_1_2<ColorTypeFilter_8888>;
    518                 proc_1_3 = downsample_1_3<ColorTypeFilter_8888>;
    519                 proc_2_1 = downsample_2_1<ColorTypeFilter_8888>;
    520                 proc_2_2 = downsample_2_2<ColorTypeFilter_8888>;
    521                 proc_2_3 = downsample_2_3<ColorTypeFilter_8888>;
    522                 proc_3_1 = downsample_3_1<ColorTypeFilter_8888>;
    523                 proc_3_2 = downsample_3_2<ColorTypeFilter_8888>;
    524                 proc_3_3 = downsample_3_3<ColorTypeFilter_8888>;
    525             }
    526             break;
    527         case kRGB_565_SkColorType:
    528             proc_1_2 = downsample_1_2<ColorTypeFilter_565>;
    529             proc_1_3 = downsample_1_3<ColorTypeFilter_565>;
    530             proc_2_1 = downsample_2_1<ColorTypeFilter_565>;
    531             proc_2_2 = downsample_2_2<ColorTypeFilter_565>;
    532             proc_2_3 = downsample_2_3<ColorTypeFilter_565>;
    533             proc_3_1 = downsample_3_1<ColorTypeFilter_565>;
    534             proc_3_2 = downsample_3_2<ColorTypeFilter_565>;
    535             proc_3_3 = downsample_3_3<ColorTypeFilter_565>;
    536             break;
    537         case kARGB_4444_SkColorType:
    538             proc_1_2 = downsample_1_2<ColorTypeFilter_4444>;
    539             proc_1_3 = downsample_1_3<ColorTypeFilter_4444>;
    540             proc_2_1 = downsample_2_1<ColorTypeFilter_4444>;
    541             proc_2_2 = downsample_2_2<ColorTypeFilter_4444>;
    542             proc_2_3 = downsample_2_3<ColorTypeFilter_4444>;
    543             proc_3_1 = downsample_3_1<ColorTypeFilter_4444>;
    544             proc_3_2 = downsample_3_2<ColorTypeFilter_4444>;
    545             proc_3_3 = downsample_3_3<ColorTypeFilter_4444>;
    546             break;
    547         case kAlpha_8_SkColorType:
    548         case kGray_8_SkColorType:
    549             proc_1_2 = downsample_1_2<ColorTypeFilter_8>;
    550             proc_1_3 = downsample_1_3<ColorTypeFilter_8>;
    551             proc_2_1 = downsample_2_1<ColorTypeFilter_8>;
    552             proc_2_2 = downsample_2_2<ColorTypeFilter_8>;
    553             proc_2_3 = downsample_2_3<ColorTypeFilter_8>;
    554             proc_3_1 = downsample_3_1<ColorTypeFilter_8>;
    555             proc_3_2 = downsample_3_2<ColorTypeFilter_8>;
    556             proc_3_3 = downsample_3_3<ColorTypeFilter_8>;
    557             break;
    558         case kRGBA_F16_SkColorType:
    559             proc_1_2 = downsample_1_2<ColorTypeFilter_F16>;
    560             proc_1_3 = downsample_1_3<ColorTypeFilter_F16>;
    561             proc_2_1 = downsample_2_1<ColorTypeFilter_F16>;
    562             proc_2_2 = downsample_2_2<ColorTypeFilter_F16>;
    563             proc_2_3 = downsample_2_3<ColorTypeFilter_F16>;
    564             proc_3_1 = downsample_3_1<ColorTypeFilter_F16>;
    565             proc_3_2 = downsample_3_2<ColorTypeFilter_F16>;
    566             proc_3_3 = downsample_3_3<ColorTypeFilter_F16>;
    567             break;
    568         default:
    569             // TODO: We could build miplevels for kIndex8 if the levels were in 8888.
    570             //       Means using more ram, but the quality would be fine.
    571             return nullptr;
    572     }
    573 
    574     if (src.width() <= 1 && src.height() <= 1) {
    575         return nullptr;
    576     }
    577     // whip through our loop to compute the exact size needed
    578     size_t size = 0;
    579     int countLevels = ComputeLevelCount(src.width(), src.height());
    580     for (int currentMipLevel = countLevels; currentMipLevel >= 0; currentMipLevel--) {
    581         SkISize mipSize = ComputeLevelSize(src.width(), src.height(), currentMipLevel);
    582         size += SkColorTypeMinRowBytes(ct, mipSize.fWidth) * mipSize.fHeight;
    583     }
    584 
    585     size_t storageSize = SkMipMap::AllocLevelsSize(countLevels, size);
    586     if (0 == storageSize) {
    587         return nullptr;
    588     }
    589 
    590     SkMipMap* mipmap;
    591     if (fact) {
    592         SkDiscardableMemory* dm = fact(storageSize);
    593         if (nullptr == dm) {
    594             return nullptr;
    595         }
    596         mipmap = new SkMipMap(storageSize, dm);
    597     } else {
    598         mipmap = new SkMipMap(sk_malloc_throw(storageSize), storageSize);
    599     }
    600 
    601     // init
    602     mipmap->fCS = sk_ref_sp(src.info().colorSpace());
    603     mipmap->fCount = countLevels;
    604     mipmap->fLevels = (Level*)mipmap->writable_data();
    605     SkASSERT(mipmap->fLevels);
    606 
    607     Level* levels = mipmap->fLevels;
    608     uint8_t*    baseAddr = (uint8_t*)&levels[countLevels];
    609     uint8_t*    addr = baseAddr;
    610     int         width = src.width();
    611     int         height = src.height();
    612     uint32_t    rowBytes;
    613     SkPixmap    srcPM(src);
    614 
    615     for (int i = 0; i < countLevels; ++i) {
    616         FilterProc* proc;
    617         if (height & 1) {
    618             if (height == 1) {        // src-height is 1
    619                 if (width & 1) {      // src-width is 3
    620                     proc = proc_3_1;
    621                 } else {              // src-width is 2
    622                     proc = proc_2_1;
    623                 }
    624             } else {                  // src-height is 3
    625                 if (width & 1) {
    626                     if (width == 1) { // src-width is 1
    627                         proc = proc_1_3;
    628                     } else {          // src-width is 3
    629                         proc = proc_3_3;
    630                     }
    631                 } else {              // src-width is 2
    632                     proc = proc_2_3;
    633                 }
    634             }
    635         } else {                      // src-height is 2
    636             if (width & 1) {
    637                 if (width == 1) {     // src-width is 1
    638                     proc = proc_1_2;
    639                 } else {              // src-width is 3
    640                     proc = proc_3_2;
    641                 }
    642             } else {                  // src-width is 2
    643                 proc = proc_2_2;
    644             }
    645         }
    646         width = SkTMax(1, width >> 1);
    647         height = SkTMax(1, height >> 1);
    648         rowBytes = SkToU32(SkColorTypeMinRowBytes(ct, width));
    649 
    650         // We make the Info w/o any colorspace, since that storage is not under our control, and
    651         // will not be deleted in a controlled fashion. When the caller is given the pixmap for
    652         // a given level, we augment this pixmap with fCS (which we do manage).
    653         new (&levels[i].fPixmap) SkPixmap(SkImageInfo::Make(width, height, ct, at), addr, rowBytes);
    654         levels[i].fScale  = SkSize::Make(SkIntToScalar(width)  / src.width(),
    655                                          SkIntToScalar(height) / src.height());
    656 
    657         const SkPixmap& dstPM = levels[i].fPixmap;
    658         const void* srcBasePtr = srcPM.addr();
    659         void* dstBasePtr = dstPM.writable_addr();
    660 
    661         const size_t srcRB = srcPM.rowBytes();
    662         for (int y = 0; y < height; y++) {
    663             proc(dstBasePtr, srcBasePtr, srcRB, width);
    664             srcBasePtr = (char*)srcBasePtr + srcRB * 2; // jump two rows
    665             dstBasePtr = (char*)dstBasePtr + dstPM.rowBytes();
    666         }
    667         srcPM = dstPM;
    668         addr += height * rowBytes;
    669     }
    670     SkASSERT(addr == baseAddr + size);
    671 
    672     SkASSERT(mipmap->fLevels);
    673     return mipmap;
    674 }
    675 
    676 int SkMipMap::ComputeLevelCount(int baseWidth, int baseHeight) {
    677     if (baseWidth < 1 || baseHeight < 1) {
    678         return 0;
    679     }
    680 
    681     // OpenGL's spec requires that each mipmap level have height/width equal to
    682     // max(1, floor(original_height / 2^i)
    683     // (or original_width) where i is the mipmap level.
    684     // Continue scaling down until both axes are size 1.
    685 
    686     const int largestAxis = SkTMax(baseWidth, baseHeight);
    687     if (largestAxis < 2) {
    688         // SkMipMap::Build requires a minimum size of 2.
    689         return 0;
    690     }
    691     const int leadingZeros = SkCLZ(static_cast<uint32_t>(largestAxis));
    692     // If the value 00011010 has 3 leading 0s then it has 5 significant bits
    693     // (the bits which are not leading zeros)
    694     const int significantBits = (sizeof(uint32_t) * 8) - leadingZeros;
    695     // This is making the assumption that the size of a byte is 8 bits
    696     // and that sizeof(uint32_t)'s implementation-defined behavior is 4.
    697     int mipLevelCount = significantBits;
    698 
    699     // SkMipMap does not include the base mip level.
    700     // For example, it contains levels 1-x instead of 0-x.
    701     // This is because the image used to create SkMipMap is the base level.
    702     // So subtract 1 from the mip level count.
    703     if (mipLevelCount > 0) {
    704         --mipLevelCount;
    705     }
    706 
    707     return mipLevelCount;
    708 }
    709 
    710 SkISize SkMipMap::ComputeLevelSize(int baseWidth, int baseHeight, int level) {
    711     if (baseWidth < 1 || baseHeight < 1) {
    712         return SkISize::Make(0, 0);
    713     }
    714 
    715     int maxLevelCount = ComputeLevelCount(baseWidth, baseHeight);
    716     if (level >= maxLevelCount || level < 0) {
    717         return SkISize::Make(0, 0);
    718     }
    719     // OpenGL's spec requires that each mipmap level have height/width equal to
    720     // max(1, floor(original_height / 2^i)
    721     // (or original_width) where i is the mipmap level.
    722 
    723     // SkMipMap does not include the base mip level.
    724     // For example, it contains levels 1-x instead of 0-x.
    725     // This is because the image used to create SkMipMap is the base level.
    726     // So subtract 1 from the mip level to get the index stored by SkMipMap.
    727     int width = SkTMax(1, baseWidth >> (level + 1));
    728     int height = SkTMax(1, baseHeight >> (level + 1));
    729 
    730     return SkISize::Make(width, height);
    731 }
    732 
    733 ///////////////////////////////////////////////////////////////////////////////
    734 
    735 bool SkMipMap::extractLevel(const SkSize& scaleSize, Level* levelPtr) const {
    736     if (nullptr == fLevels) {
    737         return false;
    738     }
    739 
    740     SkASSERT(scaleSize.width() >= 0 && scaleSize.height() >= 0);
    741 
    742 #ifndef SK_SUPPORT_LEGACY_ANISOTROPIC_MIPMAP_SCALE
    743     // Use the smallest scale to match the GPU impl.
    744     const SkScalar scale = SkTMin(scaleSize.width(), scaleSize.height());
    745 #else
    746     // Ideally we'd pick the smaller scale, to match Ganesh.  But ignoring one of the
    747     // scales can produce some atrocious results, so for now we use the geometric mean.
    748     // (https://bugs.chromium.org/p/skia/issues/detail?id=4863)
    749     const SkScalar scale = SkScalarSqrt(scaleSize.width() * scaleSize.height());
    750 #endif
    751 
    752     if (scale >= SK_Scalar1 || scale <= 0 || !SkScalarIsFinite(scale)) {
    753         return false;
    754     }
    755 
    756     SkScalar L = -SkScalarLog2(scale);
    757     if (!SkScalarIsFinite(L)) {
    758         return false;
    759     }
    760     SkASSERT(L >= 0);
    761     int level = SkScalarFloorToInt(L);
    762 
    763     SkASSERT(level >= 0);
    764     if (level <= 0) {
    765         return false;
    766     }
    767 
    768     if (level > fCount) {
    769         level = fCount;
    770     }
    771     if (levelPtr) {
    772         *levelPtr = fLevels[level - 1];
    773         // need to augment with our colorspace
    774         levelPtr->fPixmap.setColorSpace(fCS);
    775     }
    776     return true;
    777 }
    778 
    779 // Helper which extracts a pixmap from the src bitmap
    780 //
    781 SkMipMap* SkMipMap::Build(const SkBitmap& src, SkDestinationSurfaceColorMode colorMode,
    782                           SkDiscardableFactoryProc fact) {
    783     SkPixmap srcPixmap;
    784     if (!src.peekPixels(&srcPixmap)) {
    785         return nullptr;
    786     }
    787     return Build(srcPixmap, colorMode, fact);
    788 }
    789 
    790 int SkMipMap::countLevels() const {
    791     return fCount;
    792 }
    793 
    794 bool SkMipMap::getLevel(int index, Level* levelPtr) const {
    795     if (nullptr == fLevels) {
    796         return false;
    797     }
    798     if (index < 0) {
    799         return false;
    800     }
    801     if (index > fCount - 1) {
    802         return false;
    803     }
    804     if (levelPtr) {
    805         *levelPtr = fLevels[index];
    806     }
    807     return true;
    808 }
    809