Home | History | Annotate | Download | only in core
      1 /*
      2  * Copyright 2013 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #include "SkBuffer.h"
      9 #include "SkNx.h"
     10 #include "SkOnce.h"
     11 #include "SkPath.h"
     12 #include "SkPathRef.h"
     13 #include "SkPathPriv.h"
     14 #include "SkSafeMath.h"
     15 
     16 // Conic weights must be 0 < weight <= finite
     17 static bool validate_conic_weights(const SkScalar weights[], int count) {
     18     for (int i = 0; i < count; ++i) {
     19         if (weights[i] <= 0 || !SkScalarIsFinite(weights[i])) {
     20             return false;
     21         }
     22     }
     23     return true;
     24 }
     25 
     26 //////////////////////////////////////////////////////////////////////////////
     27 SkPathRef::Editor::Editor(sk_sp<SkPathRef>* pathRef,
     28                           int incReserveVerbs,
     29                           int incReservePoints)
     30 {
     31     if ((*pathRef)->unique()) {
     32         (*pathRef)->incReserve(incReserveVerbs, incReservePoints);
     33     } else {
     34         SkPathRef* copy = new SkPathRef;
     35         copy->copy(**pathRef, incReserveVerbs, incReservePoints);
     36         pathRef->reset(copy);
     37     }
     38     fPathRef = pathRef->get();
     39     fPathRef->callGenIDChangeListeners();
     40     fPathRef->fGenerationID = 0;
     41     SkDEBUGCODE(sk_atomic_inc(&fPathRef->fEditorsAttached);)
     42 }
     43 
     44 //////////////////////////////////////////////////////////////////////////////
     45 
     46 SkPathRef::~SkPathRef() {
     47     // Deliberately don't validate() this path ref, otherwise there's no way
     48     // to read one that's not valid and then free its memory without asserting.
     49     this->callGenIDChangeListeners();
     50     sk_free(fPoints);
     51 
     52     SkDEBUGCODE(fPoints = nullptr;)
     53     SkDEBUGCODE(fVerbs = nullptr;)
     54     SkDEBUGCODE(fVerbCnt = 0x9999999;)
     55     SkDEBUGCODE(fPointCnt = 0xAAAAAAA;)
     56     SkDEBUGCODE(fPointCnt = 0xBBBBBBB;)
     57     SkDEBUGCODE(fGenerationID = 0xEEEEEEEE;)
     58     SkDEBUGCODE(fEditorsAttached = 0x7777777;)
     59 }
     60 
     61 static SkPathRef* gEmpty = nullptr;
     62 
     63 SkPathRef* SkPathRef::CreateEmpty() {
     64     static SkOnce once;
     65     once([]{
     66         gEmpty = new SkPathRef;
     67         gEmpty->computeBounds();   // Avoids races later to be the first to do this.
     68     });
     69     return SkRef(gEmpty);
     70 }
     71 
     72 static void transform_dir_and_start(const SkMatrix& matrix, bool isRRect, bool* isCCW,
     73                                     unsigned* start) {
     74     int inStart = *start;
     75     int rm = 0;
     76     if (isRRect) {
     77         // Degenerate rrect indices to oval indices and remember the remainder.
     78         // Ovals have one index per side whereas rrects have two.
     79         rm = inStart & 0b1;
     80         inStart /= 2;
     81     }
     82     // Is the antidiagonal non-zero (otherwise the diagonal is zero)
     83     int antiDiag;
     84     // Is the non-zero value in the top row (either kMScaleX or kMSkewX) negative
     85     int topNeg;
     86     // Are the two non-zero diagonal or antidiagonal values the same sign.
     87     int sameSign;
     88     if (matrix.get(SkMatrix::kMScaleX) != 0) {
     89         antiDiag = 0b00;
     90         if (matrix.get(SkMatrix::kMScaleX) > 0) {
     91             topNeg = 0b00;
     92             sameSign = matrix.get(SkMatrix::kMScaleY) > 0 ? 0b01 : 0b00;
     93         } else {
     94             topNeg = 0b10;
     95             sameSign = matrix.get(SkMatrix::kMScaleY) > 0 ? 0b00 : 0b01;
     96         }
     97     } else {
     98         antiDiag = 0b01;
     99         if (matrix.get(SkMatrix::kMSkewX) > 0) {
    100             topNeg = 0b00;
    101             sameSign = matrix.get(SkMatrix::kMSkewY) > 0 ? 0b01 : 0b00;
    102         } else {
    103             topNeg = 0b10;
    104             sameSign = matrix.get(SkMatrix::kMSkewY) > 0 ? 0b00 : 0b01;
    105         }
    106     }
    107     if (sameSign != antiDiag) {
    108         // This is a rotation (and maybe scale). The direction is unchanged.
    109         // Trust me on the start computation (or draw yourself some pictures)
    110         *start = (inStart + 4 - (topNeg | antiDiag)) % 4;
    111         SkASSERT(*start < 4);
    112         if (isRRect) {
    113             *start = 2 * *start + rm;
    114         }
    115     } else {
    116         // This is a mirror (and maybe scale). The direction is reversed.
    117         *isCCW = !*isCCW;
    118         // Trust me on the start computation (or draw yourself some pictures)
    119         *start = (6 + (topNeg | antiDiag) - inStart) % 4;
    120         SkASSERT(*start < 4);
    121         if (isRRect) {
    122             *start = 2 * *start + (rm ? 0 : 1);
    123         }
    124     }
    125 }
    126 
    127 void SkPathRef::CreateTransformedCopy(sk_sp<SkPathRef>* dst,
    128                                       const SkPathRef& src,
    129                                       const SkMatrix& matrix) {
    130     SkDEBUGCODE(src.validate();)
    131     if (matrix.isIdentity()) {
    132         if (dst->get() != &src) {
    133             src.ref();
    134             dst->reset(const_cast<SkPathRef*>(&src));
    135             SkDEBUGCODE((*dst)->validate();)
    136         }
    137         return;
    138     }
    139 
    140     if (!(*dst)->unique()) {
    141         dst->reset(new SkPathRef);
    142     }
    143 
    144     if (dst->get() != &src) {
    145         (*dst)->resetToSize(src.fVerbCnt, src.fPointCnt, src.fConicWeights.count());
    146         sk_careful_memcpy((*dst)->verbsMemWritable(), src.verbsMemBegin(),
    147                            src.fVerbCnt * sizeof(uint8_t));
    148         (*dst)->fConicWeights = src.fConicWeights;
    149     }
    150 
    151     SkASSERT((*dst)->countPoints() == src.countPoints());
    152     SkASSERT((*dst)->countVerbs() == src.countVerbs());
    153     SkASSERT((*dst)->fConicWeights.count() == src.fConicWeights.count());
    154 
    155     // Need to check this here in case (&src == dst)
    156     bool canXformBounds = !src.fBoundsIsDirty && matrix.rectStaysRect() && src.countPoints() > 1;
    157 
    158     matrix.mapPoints((*dst)->fPoints, src.points(), src.fPointCnt);
    159 
    160     /*
    161      *  Here we optimize the bounds computation, by noting if the bounds are
    162      *  already known, and if so, we just transform those as well and mark
    163      *  them as "known", rather than force the transformed path to have to
    164      *  recompute them.
    165      *
    166      *  Special gotchas if the path is effectively empty (<= 1 point) or
    167      *  if it is non-finite. In those cases bounds need to stay empty,
    168      *  regardless of the matrix.
    169      */
    170     if (canXformBounds) {
    171         (*dst)->fBoundsIsDirty = false;
    172         if (src.fIsFinite) {
    173             matrix.mapRect(&(*dst)->fBounds, src.fBounds);
    174             if (!((*dst)->fIsFinite = (*dst)->fBounds.isFinite())) {
    175                 (*dst)->fBounds.setEmpty();
    176             }
    177         } else {
    178             (*dst)->fIsFinite = false;
    179             (*dst)->fBounds.setEmpty();
    180         }
    181     } else {
    182         (*dst)->fBoundsIsDirty = true;
    183     }
    184 
    185     (*dst)->fSegmentMask = src.fSegmentMask;
    186 
    187     // It's an oval only if it stays a rect.
    188     bool rectStaysRect = matrix.rectStaysRect();
    189     (*dst)->fIsOval = src.fIsOval && rectStaysRect;
    190     (*dst)->fIsRRect = src.fIsRRect && rectStaysRect;
    191     if ((*dst)->fIsOval || (*dst)->fIsRRect) {
    192         unsigned start = src.fRRectOrOvalStartIdx;
    193         bool isCCW = SkToBool(src.fRRectOrOvalIsCCW);
    194         transform_dir_and_start(matrix, (*dst)->fIsRRect, &isCCW, &start);
    195         (*dst)->fRRectOrOvalIsCCW = isCCW;
    196         (*dst)->fRRectOrOvalStartIdx = start;
    197     }
    198 
    199     SkDEBUGCODE((*dst)->validate();)
    200 }
    201 
    202 static bool validate_verb_sequence(const uint8_t verbs[], int vCount) {
    203     // verbs are stored backwards, but we need to visit them in logical order to determine if
    204     // they form a valid sequence.
    205 
    206     bool needsMoveTo = true;
    207     bool invalidSequence = false;
    208 
    209     for (int i = vCount - 1; i >= 0; --i) {
    210         switch (verbs[i]) {
    211             case SkPath::kMove_Verb:
    212                 needsMoveTo = false;
    213                 break;
    214             case SkPath::kLine_Verb:
    215             case SkPath::kQuad_Verb:
    216             case SkPath::kConic_Verb:
    217             case SkPath::kCubic_Verb:
    218                 invalidSequence |= needsMoveTo;
    219                 break;
    220             case SkPath::kClose_Verb:
    221                 needsMoveTo = true;
    222                 break;
    223             default:
    224                 return false;   // unknown verb
    225         }
    226     }
    227     return !invalidSequence;
    228 }
    229 
    230 // Given the verb array, deduce the required number of pts and conics,
    231 // or if an invalid verb is encountered, return false.
    232 static bool deduce_pts_conics(const uint8_t verbs[], int vCount, int* ptCountPtr,
    233                               int* conicCountPtr) {
    234     // When there is at least one verb, the first is required to be kMove_Verb.
    235     if (0 < vCount && verbs[vCount-1] != SkPath::kMove_Verb) {
    236         return false;
    237     }
    238 
    239     SkSafeMath safe;
    240     int ptCount = 0;
    241     int conicCount = 0;
    242     for (int i = 0; i < vCount; ++i) {
    243         switch (verbs[i]) {
    244             case SkPath::kMove_Verb:
    245             case SkPath::kLine_Verb:
    246                 ptCount = safe.addInt(ptCount, 1);
    247                 break;
    248             case SkPath::kConic_Verb:
    249                 conicCount += 1;
    250                 // fall-through
    251             case SkPath::kQuad_Verb:
    252                 ptCount = safe.addInt(ptCount, 2);
    253                 break;
    254             case SkPath::kCubic_Verb:
    255                 ptCount = safe.addInt(ptCount, 3);
    256                 break;
    257             case SkPath::kClose_Verb:
    258                 break;
    259             default:
    260                 return false;
    261         }
    262     }
    263     if (!safe) {
    264         return false;
    265     }
    266     *ptCountPtr = ptCount;
    267     *conicCountPtr = conicCount;
    268     return true;
    269 }
    270 
    271 SkPathRef* SkPathRef::CreateFromBuffer(SkRBuffer* buffer) {
    272     std::unique_ptr<SkPathRef> ref(new SkPathRef);
    273 
    274     int32_t packed;
    275     if (!buffer->readS32(&packed)) {
    276         return nullptr;
    277     }
    278 
    279     ref->fIsFinite = (packed >> kIsFinite_SerializationShift) & 1;
    280 
    281     int32_t verbCount, pointCount, conicCount;
    282     if (!buffer->readU32(&(ref->fGenerationID)) ||
    283         !buffer->readS32(&verbCount)            || (verbCount  < 0) ||
    284         !buffer->readS32(&pointCount)           || (pointCount < 0) ||
    285         !buffer->readS32(&conicCount)           || (conicCount < 0))
    286     {
    287         return nullptr;
    288     }
    289 
    290     uint64_t pointSize64 = sk_64_mul(pointCount, sizeof(SkPoint));
    291     uint64_t conicSize64 = sk_64_mul(conicCount, sizeof(SkScalar));
    292     if (!SkTFitsIn<size_t>(pointSize64) || !SkTFitsIn<size_t>(conicSize64)) {
    293         return nullptr;
    294     }
    295 
    296     size_t verbSize = verbCount * sizeof(uint8_t);
    297     size_t pointSize = SkToSizeT(pointSize64);
    298     size_t conicSize = SkToSizeT(conicSize64);
    299 
    300     {
    301         uint64_t requiredBufferSize = sizeof(SkRect);
    302         requiredBufferSize += verbSize;
    303         requiredBufferSize += pointSize;
    304         requiredBufferSize += conicSize;
    305         if (buffer->available() < requiredBufferSize) {
    306             return nullptr;
    307         }
    308     }
    309 
    310     ref->resetToSize(verbCount, pointCount, conicCount);
    311     SkASSERT(verbCount  == ref->countVerbs());
    312     SkASSERT(pointCount == ref->countPoints());
    313     SkASSERT(conicCount == ref->fConicWeights.count());
    314 
    315     if (!buffer->read(ref->verbsMemWritable(), verbSize) ||
    316         !buffer->read(ref->fPoints, pointSize) ||
    317         !buffer->read(ref->fConicWeights.begin(), conicSize) ||
    318         !buffer->read(&ref->fBounds, sizeof(SkRect))) {
    319         return nullptr;
    320     }
    321 
    322     // Check that the verbs are valid, and imply the correct number of pts and conics
    323     {
    324         int pCount, cCount;
    325         if (!validate_verb_sequence(ref->verbsMemBegin(), ref->countVerbs())) {
    326             return nullptr;
    327         }
    328         if (!deduce_pts_conics(ref->verbsMemBegin(), ref->countVerbs(), &pCount, &cCount) ||
    329             pCount != ref->countPoints() || cCount != ref->fConicWeights.count()) {
    330             return nullptr;
    331         }
    332         if (!validate_conic_weights(ref->fConicWeights.begin(), ref->fConicWeights.count())) {
    333             return nullptr;
    334         }
    335         // Check that the bounds match the serialized bounds.
    336         SkRect bounds;
    337         if (ComputePtBounds(&bounds, *ref) != SkToBool(ref->fIsFinite) || bounds != ref->fBounds) {
    338             return nullptr;
    339         }
    340 
    341         // call this after validate_verb_sequence, since it relies on valid verbs
    342         ref->fSegmentMask = ref->computeSegmentMask();
    343     }
    344 
    345     ref->fBoundsIsDirty = false;
    346 
    347     return ref.release();
    348 }
    349 
    350 void SkPathRef::Rewind(sk_sp<SkPathRef>* pathRef) {
    351     if ((*pathRef)->unique()) {
    352         SkDEBUGCODE((*pathRef)->validate();)
    353         (*pathRef)->callGenIDChangeListeners();
    354         (*pathRef)->fBoundsIsDirty = true;  // this also invalidates fIsFinite
    355         (*pathRef)->fVerbCnt = 0;
    356         (*pathRef)->fPointCnt = 0;
    357         (*pathRef)->fFreeSpace = (*pathRef)->currSize();
    358         (*pathRef)->fGenerationID = 0;
    359         (*pathRef)->fConicWeights.rewind();
    360         (*pathRef)->fSegmentMask = 0;
    361         (*pathRef)->fIsOval = false;
    362         (*pathRef)->fIsRRect = false;
    363         SkDEBUGCODE((*pathRef)->validate();)
    364     } else {
    365         int oldVCnt = (*pathRef)->countVerbs();
    366         int oldPCnt = (*pathRef)->countPoints();
    367         pathRef->reset(new SkPathRef);
    368         (*pathRef)->resetToSize(0, 0, 0, oldVCnt, oldPCnt);
    369     }
    370 }
    371 
    372 bool SkPathRef::operator== (const SkPathRef& ref) const {
    373     SkDEBUGCODE(this->validate();)
    374     SkDEBUGCODE(ref.validate();)
    375 
    376     // We explicitly check fSegmentMask as a quick-reject. We could skip it,
    377     // since it is only a cache of info in the fVerbs, but its a fast way to
    378     // notice a difference
    379     if (fSegmentMask != ref.fSegmentMask) {
    380         return false;
    381     }
    382 
    383     bool genIDMatch = fGenerationID && fGenerationID == ref.fGenerationID;
    384 #ifdef SK_RELEASE
    385     if (genIDMatch) {
    386         return true;
    387     }
    388 #endif
    389     if (fPointCnt != ref.fPointCnt ||
    390         fVerbCnt != ref.fVerbCnt) {
    391         SkASSERT(!genIDMatch);
    392         return false;
    393     }
    394     if (0 == ref.fVerbCnt) {
    395         SkASSERT(0 == ref.fPointCnt);
    396         return true;
    397     }
    398     SkASSERT(this->verbsMemBegin() && ref.verbsMemBegin());
    399     if (0 != memcmp(this->verbsMemBegin(),
    400                     ref.verbsMemBegin(),
    401                     ref.fVerbCnt * sizeof(uint8_t))) {
    402         SkASSERT(!genIDMatch);
    403         return false;
    404     }
    405     SkASSERT(this->points() && ref.points());
    406     if (0 != memcmp(this->points(),
    407                     ref.points(),
    408                     ref.fPointCnt * sizeof(SkPoint))) {
    409         SkASSERT(!genIDMatch);
    410         return false;
    411     }
    412     if (fConicWeights != ref.fConicWeights) {
    413         SkASSERT(!genIDMatch);
    414         return false;
    415     }
    416     return true;
    417 }
    418 
    419 void SkPathRef::writeToBuffer(SkWBuffer* buffer) const {
    420     SkDEBUGCODE(this->validate();)
    421     SkDEBUGCODE(size_t beforePos = buffer->pos();)
    422 
    423     // Call getBounds() to ensure (as a side-effect) that fBounds
    424     // and fIsFinite are computed.
    425     const SkRect& bounds = this->getBounds();
    426 
    427     // We store fSegmentMask for older readers, but current readers can't trust it, so they
    428     // don't read it.
    429     int32_t packed = ((fIsFinite & 1) << kIsFinite_SerializationShift) |
    430                      (fSegmentMask << kSegmentMask_SerializationShift);
    431     buffer->write32(packed);
    432 
    433     // TODO: write gen ID here. Problem: We don't know if we're cross process or not from
    434     // SkWBuffer. Until this is fixed we write 0.
    435     buffer->write32(0);
    436     buffer->write32(fVerbCnt);
    437     buffer->write32(fPointCnt);
    438     buffer->write32(fConicWeights.count());
    439     buffer->write(verbsMemBegin(), fVerbCnt * sizeof(uint8_t));
    440     buffer->write(fPoints, fPointCnt * sizeof(SkPoint));
    441     buffer->write(fConicWeights.begin(), fConicWeights.bytes());
    442     buffer->write(&bounds, sizeof(bounds));
    443 
    444     SkASSERT(buffer->pos() - beforePos == (size_t) this->writeSize());
    445 }
    446 
    447 uint32_t SkPathRef::writeSize() const {
    448     return uint32_t(5 * sizeof(uint32_t) +
    449                     fVerbCnt * sizeof(uint8_t) +
    450                     fPointCnt * sizeof(SkPoint) +
    451                     fConicWeights.bytes() +
    452                     sizeof(SkRect));
    453 }
    454 
    455 void SkPathRef::copy(const SkPathRef& ref,
    456                      int additionalReserveVerbs,
    457                      int additionalReservePoints) {
    458     SkDEBUGCODE(this->validate();)
    459     this->resetToSize(ref.fVerbCnt, ref.fPointCnt, ref.fConicWeights.count(),
    460                         additionalReserveVerbs, additionalReservePoints);
    461     sk_careful_memcpy(this->verbsMemWritable(), ref.verbsMemBegin(), ref.fVerbCnt*sizeof(uint8_t));
    462     sk_careful_memcpy(this->fPoints, ref.fPoints, ref.fPointCnt * sizeof(SkPoint));
    463     fConicWeights = ref.fConicWeights;
    464     fBoundsIsDirty = ref.fBoundsIsDirty;
    465     if (!fBoundsIsDirty) {
    466         fBounds = ref.fBounds;
    467         fIsFinite = ref.fIsFinite;
    468     }
    469     fSegmentMask = ref.fSegmentMask;
    470     fIsOval = ref.fIsOval;
    471     fIsRRect = ref.fIsRRect;
    472     fRRectOrOvalIsCCW = ref.fRRectOrOvalIsCCW;
    473     fRRectOrOvalStartIdx = ref.fRRectOrOvalStartIdx;
    474     SkDEBUGCODE(this->validate();)
    475 }
    476 
    477 unsigned SkPathRef::computeSegmentMask() const {
    478     const uint8_t* verbs = this->verbsMemBegin();
    479     unsigned mask = 0;
    480     for (int i = this->countVerbs() - 1; i >= 0; --i) {
    481         switch (verbs[i]) {
    482             case SkPath::kLine_Verb:  mask |= SkPath::kLine_SegmentMask; break;
    483             case SkPath::kQuad_Verb:  mask |= SkPath::kQuad_SegmentMask; break;
    484             case SkPath::kConic_Verb: mask |= SkPath::kConic_SegmentMask; break;
    485             case SkPath::kCubic_Verb: mask |= SkPath::kCubic_SegmentMask; break;
    486             default: break;
    487         }
    488     }
    489     return mask;
    490 }
    491 
    492 void SkPathRef::interpolate(const SkPathRef& ending, SkScalar weight, SkPathRef* out) const {
    493     const SkScalar* inValues = &ending.getPoints()->fX;
    494     SkScalar* outValues = &out->getPoints()->fX;
    495     int count = out->countPoints() * 2;
    496     for (int index = 0; index < count; ++index) {
    497         outValues[index] = outValues[index] * weight + inValues[index] * (1 - weight);
    498     }
    499     out->fBoundsIsDirty = true;
    500     out->fIsOval = false;
    501     out->fIsRRect = false;
    502 }
    503 
    504 SkPoint* SkPathRef::growForRepeatedVerb(int /*SkPath::Verb*/ verb,
    505                                         int numVbs,
    506                                         SkScalar** weights) {
    507     // This value is just made-up for now. When count is 4, calling memset was much
    508     // slower than just writing the loop. This seems odd, and hopefully in the
    509     // future this will appear to have been a fluke...
    510     static const unsigned int kMIN_COUNT_FOR_MEMSET_TO_BE_FAST = 16;
    511 
    512     SkDEBUGCODE(this->validate();)
    513     int pCnt;
    514     bool dirtyAfterEdit = true;
    515     switch (verb) {
    516         case SkPath::kMove_Verb:
    517             pCnt = numVbs;
    518             dirtyAfterEdit = false;
    519             break;
    520         case SkPath::kLine_Verb:
    521             fSegmentMask |= SkPath::kLine_SegmentMask;
    522             pCnt = numVbs;
    523             break;
    524         case SkPath::kQuad_Verb:
    525             fSegmentMask |= SkPath::kQuad_SegmentMask;
    526             pCnt = 2 * numVbs;
    527             break;
    528         case SkPath::kConic_Verb:
    529             fSegmentMask |= SkPath::kConic_SegmentMask;
    530             pCnt = 2 * numVbs;
    531             break;
    532         case SkPath::kCubic_Verb:
    533             fSegmentMask |= SkPath::kCubic_SegmentMask;
    534             pCnt = 3 * numVbs;
    535             break;
    536         case SkPath::kClose_Verb:
    537             SkDEBUGFAIL("growForRepeatedVerb called for kClose_Verb");
    538             pCnt = 0;
    539             dirtyAfterEdit = false;
    540             break;
    541         case SkPath::kDone_Verb:
    542             SkDEBUGFAIL("growForRepeatedVerb called for kDone");
    543             // fall through
    544         default:
    545             SkDEBUGFAIL("default should not be reached");
    546             pCnt = 0;
    547             dirtyAfterEdit = false;
    548     }
    549 
    550     size_t space = numVbs * sizeof(uint8_t) + pCnt * sizeof (SkPoint);
    551     this->makeSpace(space);
    552 
    553     SkPoint* ret = fPoints + fPointCnt;
    554     uint8_t* vb = fVerbs - fVerbCnt;
    555 
    556     // cast to unsigned, so if kMIN_COUNT_FOR_MEMSET_TO_BE_FAST is defined to
    557     // be 0, the compiler will remove the test/branch entirely.
    558     if ((unsigned)numVbs >= kMIN_COUNT_FOR_MEMSET_TO_BE_FAST) {
    559         memset(vb - numVbs, verb, numVbs);
    560     } else {
    561         for (int i = 0; i < numVbs; ++i) {
    562             vb[~i] = verb;
    563         }
    564     }
    565 
    566     fVerbCnt += numVbs;
    567     fPointCnt += pCnt;
    568     fFreeSpace -= space;
    569     fBoundsIsDirty = true;  // this also invalidates fIsFinite
    570     if (dirtyAfterEdit) {
    571         fIsOval = false;
    572         fIsRRect = false;
    573     }
    574 
    575     if (SkPath::kConic_Verb == verb) {
    576         SkASSERT(weights);
    577         *weights = fConicWeights.append(numVbs);
    578     }
    579 
    580     SkDEBUGCODE(this->validate();)
    581     return ret;
    582 }
    583 
    584 SkPoint* SkPathRef::growForVerb(int /* SkPath::Verb*/ verb, SkScalar weight) {
    585     SkDEBUGCODE(this->validate();)
    586     int pCnt;
    587     bool dirtyAfterEdit = true;
    588     unsigned mask = 0;
    589     switch (verb) {
    590         case SkPath::kMove_Verb:
    591             pCnt = 1;
    592             dirtyAfterEdit = false;
    593             break;
    594         case SkPath::kLine_Verb:
    595             mask = SkPath::kLine_SegmentMask;
    596             pCnt = 1;
    597             break;
    598         case SkPath::kQuad_Verb:
    599             mask = SkPath::kQuad_SegmentMask;
    600             pCnt = 2;
    601             break;
    602         case SkPath::kConic_Verb:
    603             mask = SkPath::kConic_SegmentMask;
    604             pCnt = 2;
    605             break;
    606         case SkPath::kCubic_Verb:
    607             mask = SkPath::kCubic_SegmentMask;
    608             pCnt = 3;
    609             break;
    610         case SkPath::kClose_Verb:
    611             pCnt = 0;
    612             dirtyAfterEdit = false;
    613             break;
    614         case SkPath::kDone_Verb:
    615             SkDEBUGFAIL("growForVerb called for kDone");
    616             // fall through
    617         default:
    618             SkDEBUGFAIL("default is not reached");
    619             dirtyAfterEdit = false;
    620             pCnt = 0;
    621     }
    622     SkSafeMath safe;
    623     int newPointCnt = safe.addInt(fPointCnt, pCnt);
    624     int newVerbCnt  = safe.addInt(fVerbCnt, 1);
    625     if (!safe) {
    626         SK_ABORT("cannot grow path");
    627     }
    628     size_t space = sizeof(uint8_t) + pCnt * sizeof (SkPoint);
    629     this->makeSpace(space);
    630     this->fVerbs[~fVerbCnt] = verb;
    631     SkPoint* ret = fPoints + fPointCnt;
    632     fVerbCnt = newVerbCnt;
    633     fPointCnt = newPointCnt;
    634     fSegmentMask |= mask;
    635     fFreeSpace -= space;
    636     fBoundsIsDirty = true;  // this also invalidates fIsFinite
    637     if (dirtyAfterEdit) {
    638         fIsOval = false;
    639         fIsRRect = false;
    640     }
    641 
    642     if (SkPath::kConic_Verb == verb) {
    643         *fConicWeights.append() = weight;
    644     }
    645 
    646     SkDEBUGCODE(this->validate();)
    647     return ret;
    648 }
    649 
    650 uint32_t SkPathRef::genID() const {
    651     SkASSERT(!fEditorsAttached);
    652     static const uint32_t kMask = (static_cast<int64_t>(1) << SkPathPriv::kPathRefGenIDBitCnt) - 1;
    653     if (!fGenerationID) {
    654         if (0 == fPointCnt && 0 == fVerbCnt) {
    655             fGenerationID = kEmptyGenID;
    656         } else {
    657             static int32_t  gPathRefGenerationID;
    658             // do a loop in case our global wraps around, as we never want to return a 0 or the
    659             // empty ID
    660             do {
    661                 fGenerationID = (sk_atomic_inc(&gPathRefGenerationID) + 1) & kMask;
    662             } while (fGenerationID <= kEmptyGenID);
    663         }
    664     }
    665     return fGenerationID;
    666 }
    667 
    668 void SkPathRef::addGenIDChangeListener(GenIDChangeListener* listener) {
    669     if (nullptr == listener || this == gEmpty) {
    670         delete listener;
    671         return;
    672     }
    673     *fGenIDChangeListeners.append() = listener;
    674 }
    675 
    676 // we need to be called *before* the genID gets changed or zerod
    677 void SkPathRef::callGenIDChangeListeners() {
    678     for (int i = 0; i < fGenIDChangeListeners.count(); i++) {
    679         fGenIDChangeListeners[i]->onChange();
    680     }
    681 
    682     // Listeners get at most one shot, so whether these triggered or not, blow them away.
    683     fGenIDChangeListeners.deleteAll();
    684 }
    685 
    686 SkRRect SkPathRef::getRRect() const {
    687     const SkRect& bounds = this->getBounds();
    688     SkVector radii[4] = {{0, 0}, {0, 0}, {0, 0}, {0, 0}};
    689     Iter iter(*this);
    690     SkPoint pts[4];
    691     uint8_t verb = iter.next(pts);
    692     SkASSERT(SkPath::kMove_Verb == verb);
    693     while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
    694         if (SkPath::kConic_Verb == verb) {
    695             SkVector v1_0 = pts[1] - pts[0];
    696             SkVector v2_1 = pts[2] - pts[1];
    697             SkVector dxdy;
    698             if (v1_0.fX) {
    699                 SkASSERT(!v2_1.fX && !v1_0.fY);
    700                 dxdy.set(SkScalarAbs(v1_0.fX), SkScalarAbs(v2_1.fY));
    701             } else if (!v1_0.fY) {
    702                 SkASSERT(!v2_1.fX || !v2_1.fY);
    703                 dxdy.set(SkScalarAbs(v2_1.fX), SkScalarAbs(v2_1.fY));
    704             } else {
    705                 SkASSERT(!v2_1.fY);
    706                 dxdy.set(SkScalarAbs(v2_1.fX), SkScalarAbs(v1_0.fY));
    707             }
    708             SkRRect::Corner corner =
    709                     pts[1].fX == bounds.fLeft ?
    710                         pts[1].fY == bounds.fTop ?
    711                             SkRRect::kUpperLeft_Corner : SkRRect::kLowerLeft_Corner :
    712                     pts[1].fY == bounds.fTop ?
    713                             SkRRect::kUpperRight_Corner : SkRRect::kLowerRight_Corner;
    714             SkASSERT(!radii[corner].fX && !radii[corner].fY);
    715             radii[corner] = dxdy;
    716         } else {
    717             SkASSERT((verb == SkPath::kLine_Verb
    718                     && (!(pts[1].fX - pts[0].fX) || !(pts[1].fY - pts[0].fY)))
    719                     || verb == SkPath::kClose_Verb);
    720         }
    721     }
    722     SkRRect rrect;
    723     rrect.setRectRadii(bounds, radii);
    724     return rrect;
    725 }
    726 
    727 ///////////////////////////////////////////////////////////////////////////////
    728 
    729 SkPathRef::Iter::Iter() {
    730 #ifdef SK_DEBUG
    731     fPts = nullptr;
    732     fConicWeights = nullptr;
    733 #endif
    734     // need to init enough to make next() harmlessly return kDone_Verb
    735     fVerbs = nullptr;
    736     fVerbStop = nullptr;
    737 }
    738 
    739 SkPathRef::Iter::Iter(const SkPathRef& path) {
    740     this->setPathRef(path);
    741 }
    742 
    743 void SkPathRef::Iter::setPathRef(const SkPathRef& path) {
    744     fPts = path.points();
    745     fVerbs = path.verbs();
    746     fVerbStop = path.verbsMemBegin();
    747     fConicWeights = path.conicWeights();
    748     if (fConicWeights) {
    749       fConicWeights -= 1;  // begin one behind
    750     }
    751 
    752     // Don't allow iteration through non-finite points.
    753     if (!path.isFinite()) {
    754         fVerbStop = fVerbs;
    755     }
    756 }
    757 
    758 uint8_t SkPathRef::Iter::next(SkPoint pts[4]) {
    759     SkASSERT(pts);
    760     if (fVerbs == fVerbStop) {
    761         return (uint8_t) SkPath::kDone_Verb;
    762     }
    763 
    764     // fVerbs points one beyond next verb so decrement first.
    765     unsigned verb = *(--fVerbs);
    766     const SkPoint* srcPts = fPts;
    767 
    768     switch (verb) {
    769         case SkPath::kMove_Verb:
    770             pts[0] = srcPts[0];
    771             srcPts += 1;
    772             break;
    773         case SkPath::kLine_Verb:
    774             pts[0] = srcPts[-1];
    775             pts[1] = srcPts[0];
    776             srcPts += 1;
    777             break;
    778         case SkPath::kConic_Verb:
    779             fConicWeights += 1;
    780             // fall-through
    781         case SkPath::kQuad_Verb:
    782             pts[0] = srcPts[-1];
    783             pts[1] = srcPts[0];
    784             pts[2] = srcPts[1];
    785             srcPts += 2;
    786             break;
    787         case SkPath::kCubic_Verb:
    788             pts[0] = srcPts[-1];
    789             pts[1] = srcPts[0];
    790             pts[2] = srcPts[1];
    791             pts[3] = srcPts[2];
    792             srcPts += 3;
    793             break;
    794         case SkPath::kClose_Verb:
    795             break;
    796         case SkPath::kDone_Verb:
    797             SkASSERT(fVerbs == fVerbStop);
    798             break;
    799     }
    800     fPts = srcPts;
    801     return (uint8_t) verb;
    802 }
    803 
    804 uint8_t SkPathRef::Iter::peek() const {
    805     const uint8_t* next = fVerbs - 1;
    806     return next <= fVerbStop ? (uint8_t) SkPath::kDone_Verb : *next;
    807 }
    808 
    809 
    810 bool SkPathRef::isValid() const {
    811     if (static_cast<ptrdiff_t>(fFreeSpace) < 0) {
    812         return false;
    813     }
    814     if (reinterpret_cast<intptr_t>(fVerbs) - reinterpret_cast<intptr_t>(fPoints) < 0) {
    815         return false;
    816     }
    817     if ((nullptr == fPoints) != (nullptr == fVerbs)) {
    818         return false;
    819     }
    820     if (nullptr == fPoints && 0 != fFreeSpace) {
    821         return false;
    822     }
    823     if (nullptr == fPoints && fPointCnt) {
    824         return false;
    825     }
    826     if (nullptr == fVerbs && fVerbCnt) {
    827         return false;
    828     }
    829     if (this->currSize() !=
    830                 fFreeSpace + sizeof(SkPoint) * fPointCnt + sizeof(uint8_t) * fVerbCnt) {
    831         return false;
    832     }
    833 
    834     if (fIsOval || fIsRRect) {
    835         // Currently we don't allow both of these to be set, even though ovals are ro
    836         if (fIsOval == fIsRRect) {
    837             return false;
    838         }
    839         if (fIsOval) {
    840             if (fRRectOrOvalStartIdx >= 4) {
    841                 return false;
    842             }
    843         } else {
    844             if (fRRectOrOvalStartIdx >= 8) {
    845                 return false;
    846             }
    847         }
    848     }
    849 
    850     if (!fBoundsIsDirty && !fBounds.isEmpty()) {
    851         bool isFinite = true;
    852         Sk2s leftTop = Sk2s(fBounds.fLeft, fBounds.fTop);
    853         Sk2s rightBot = Sk2s(fBounds.fRight, fBounds.fBottom);
    854         for (int i = 0; i < fPointCnt; ++i) {
    855             Sk2s point = Sk2s(fPoints[i].fX, fPoints[i].fY);
    856 #ifdef SK_DEBUG
    857             if (fPoints[i].isFinite() &&
    858                 ((point < leftTop).anyTrue() || (point > rightBot).anyTrue())) {
    859                 SkDebugf("bounds: %f %f %f %f\n",
    860                          fBounds.fLeft, fBounds.fTop, fBounds.fRight, fBounds.fBottom);
    861                 for (int j = 0; j < fPointCnt; ++j) {
    862                     if (i == j) {
    863                         SkDebugf("*");
    864                     }
    865                     SkDebugf("%f %f\n", fPoints[j].fX, fPoints[j].fY);
    866                 }
    867             }
    868 #endif
    869 
    870             if (fPoints[i].isFinite() && (point < leftTop).anyTrue() && !(point > rightBot).anyTrue())
    871                 return false;
    872             if (!fPoints[i].isFinite()) {
    873                 isFinite = false;
    874             }
    875         }
    876         if (SkToBool(fIsFinite) != isFinite) {
    877             return false;
    878         }
    879     }
    880     return true;
    881 }
    882