Home | History | Annotate | Download | only in core
      1 /*
      2  * Copyright 2008 The Android Open Source Project
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 
      9 #include "SkMathPriv.h"
     10 #include "SkPointPriv.h"
     11 
     12 #if 0
     13 void SkIPoint::rotateCW(SkIPoint* dst) const {
     14     SkASSERT(dst);
     15 
     16     // use a tmp in case this == dst
     17     int32_t tmp = fX;
     18     dst->fX = -fY;
     19     dst->fY = tmp;
     20 }
     21 
     22 void SkIPoint::rotateCCW(SkIPoint* dst) const {
     23     SkASSERT(dst);
     24 
     25     // use a tmp in case this == dst
     26     int32_t tmp = fX;
     27     dst->fX = fY;
     28     dst->fY = -tmp;
     29 }
     30 #endif
     31 
     32 ///////////////////////////////////////////////////////////////////////////////
     33 
     34 void SkPoint::scale(SkScalar scale, SkPoint* dst) const {
     35     SkASSERT(dst);
     36     dst->set(fX * scale, fY * scale);
     37 }
     38 
     39 bool SkPoint::normalize() {
     40     return this->setLength(fX, fY, SK_Scalar1);
     41 }
     42 
     43 bool SkPoint::setNormalize(SkScalar x, SkScalar y) {
     44     return this->setLength(x, y, SK_Scalar1);
     45 }
     46 
     47 bool SkPoint::setLength(SkScalar length) {
     48     return this->setLength(fX, fY, length);
     49 }
     50 
     51 // Returns the square of the Euclidian distance to (dx,dy).
     52 static inline float getLengthSquared(float dx, float dy) {
     53     return dx * dx + dy * dy;
     54 }
     55 
     56 // Calculates the square of the Euclidian distance to (dx,dy) and stores it in
     57 // *lengthSquared.  Returns true if the distance is judged to be "nearly zero".
     58 //
     59 // This logic is encapsulated in a helper method to make it explicit that we
     60 // always perform this check in the same manner, to avoid inconsistencies
     61 // (see http://code.google.com/p/skia/issues/detail?id=560 ).
     62 static inline bool is_length_nearly_zero(float dx, float dy,
     63                                          float *lengthSquared) {
     64     *lengthSquared = getLengthSquared(dx, dy);
     65     return *lengthSquared <= (SK_ScalarNearlyZero * SK_ScalarNearlyZero);
     66 }
     67 
     68 SkScalar SkPoint::Normalize(SkPoint* pt) {
     69     float x = pt->fX;
     70     float y = pt->fY;
     71     float mag2;
     72     if (is_length_nearly_zero(x, y, &mag2)) {
     73         pt->set(0, 0);
     74         return 0;
     75     }
     76 
     77     float mag, scale;
     78     if (SkScalarIsFinite(mag2)) {
     79         mag = sk_float_sqrt(mag2);
     80         scale = 1 / mag;
     81     } else {
     82         // our mag2 step overflowed to infinity, so use doubles instead.
     83         // much slower, but needed when x or y are very large, other wise we
     84         // divide by inf. and return (0,0) vector.
     85         double xx = x;
     86         double yy = y;
     87         double magmag = sqrt(xx * xx + yy * yy);
     88         mag = (float)magmag;
     89         // we perform the divide with the double magmag, to stay exactly the
     90         // same as setLength. It would be faster to perform the divide with
     91         // mag, but it is possible that mag has overflowed to inf. but still
     92         // have a non-zero value for scale (thanks to denormalized numbers).
     93         scale = (float)(1 / magmag);
     94     }
     95     pt->set(x * scale, y * scale);
     96     return mag;
     97 }
     98 
     99 SkScalar SkPoint::Length(SkScalar dx, SkScalar dy) {
    100     float mag2 = dx * dx + dy * dy;
    101     if (SkScalarIsFinite(mag2)) {
    102         return sk_float_sqrt(mag2);
    103     } else {
    104         double xx = dx;
    105         double yy = dy;
    106         return sk_double_to_float(sqrt(xx * xx + yy * yy));
    107     }
    108 }
    109 
    110 /*
    111  *  We have to worry about 2 tricky conditions:
    112  *  1. underflow of mag2 (compared against nearlyzero^2)
    113  *  2. overflow of mag2 (compared w/ isfinite)
    114  *
    115  *  If we underflow, we return false. If we overflow, we compute again using
    116  *  doubles, which is much slower (3x in a desktop test) but will not overflow.
    117  */
    118 bool SkPoint::setLength(float x, float y, float length) {
    119     float mag2;
    120     if (is_length_nearly_zero(x, y, &mag2)) {
    121         this->set(0, 0);
    122         return false;
    123     }
    124 
    125     float scale;
    126     if (SkScalarIsFinite(mag2)) {
    127         scale = length / sk_float_sqrt(mag2);
    128     } else {
    129         // our mag2 step overflowed to infinity, so use doubles instead.
    130         // much slower, but needed when x or y are very large, other wise we
    131         // divide by inf. and return (0,0) vector.
    132         double xx = x;
    133         double yy = y;
    134     #ifdef SK_CPU_FLUSH_TO_ZERO
    135         // The iOS ARM processor discards small denormalized numbers to go faster.
    136         // Casting this to a float would cause the scale to go to zero. Keeping it
    137         // as a double for the multiply keeps the scale non-zero.
    138         double dscale = length / sqrt(xx * xx + yy * yy);
    139         fX = x * dscale;
    140         fY = y * dscale;
    141         return true;
    142     #else
    143         scale = (float)(length / sqrt(xx * xx + yy * yy));
    144     #endif
    145     }
    146     fX = x * scale;
    147     fY = y * scale;
    148     return true;
    149 }
    150 
    151 bool SkPointPriv::SetLengthFast(SkPoint* pt, float length) {
    152     float mag2;
    153     if (is_length_nearly_zero(pt->fX, pt->fY, &mag2)) {
    154         pt->set(0, 0);
    155         return false;
    156     }
    157 
    158     float scale;
    159     if (SkScalarIsFinite(mag2)) {
    160         scale = length * sk_float_rsqrt(mag2);  // <--- this is the difference
    161     } else {
    162         // our mag2 step overflowed to infinity, so use doubles instead.
    163         // much slower, but needed when x or y are very large, other wise we
    164         // divide by inf. and return (0,0) vector.
    165         double xx = pt->fX;
    166         double yy = pt->fY;
    167         scale = (float)(length / sqrt(xx * xx + yy * yy));
    168     }
    169     pt->fX *= scale;
    170     pt->fY *= scale;
    171     return true;
    172 }
    173 
    174 
    175 ///////////////////////////////////////////////////////////////////////////////
    176 
    177 SkScalar SkPointPriv::DistanceToLineBetweenSqd(const SkPoint& pt, const SkPoint& a,
    178                                            const SkPoint& b,
    179                                            Side* side) {
    180 
    181     SkVector u = b - a;
    182     SkVector v = pt - a;
    183 
    184     SkScalar uLengthSqd = LengthSqd(u);
    185     SkScalar det = u.cross(v);
    186     if (side) {
    187         SkASSERT(-1 == kLeft_Side &&
    188                   0 == kOn_Side &&
    189                   1 == kRight_Side);
    190         *side = (Side) SkScalarSignAsInt(det);
    191     }
    192     SkScalar temp = det / uLengthSqd;
    193     temp *= det;
    194     return temp;
    195 }
    196 
    197 SkScalar SkPointPriv::DistanceToLineSegmentBetweenSqd(const SkPoint& pt, const SkPoint& a,
    198                                                   const SkPoint& b) {
    199     // See comments to distanceToLineBetweenSqd. If the projection of c onto
    200     // u is between a and b then this returns the same result as that
    201     // function. Otherwise, it returns the distance to the closer of a and
    202     // b. Let the projection of v onto u be v'.  There are three cases:
    203     //    1. v' points opposite to u. c is not between a and b and is closer
    204     //       to a than b.
    205     //    2. v' points along u and has magnitude less than y. c is between
    206     //       a and b and the distance to the segment is the same as distance
    207     //       to the line ab.
    208     //    3. v' points along u and has greater magnitude than u. c is not
    209     //       not between a and b and is closer to b than a.
    210     // v' = (u dot v) * u / |u|. So if (u dot v)/|u| is less than zero we're
    211     // in case 1. If (u dot v)/|u| is > |u| we are in case 3. Otherwise
    212     // we're in case 2. We actually compare (u dot v) to 0 and |u|^2 to
    213     // avoid a sqrt to compute |u|.
    214 
    215     SkVector u = b - a;
    216     SkVector v = pt - a;
    217 
    218     SkScalar uLengthSqd = LengthSqd(u);
    219     SkScalar uDotV = SkPoint::DotProduct(u, v);
    220 
    221     if (uDotV <= 0) {
    222         return LengthSqd(v);
    223     } else if (uDotV > uLengthSqd) {
    224         return DistanceToSqd(b, pt);
    225     } else {
    226         SkScalar det = u.cross(v);
    227         SkScalar temp = det / uLengthSqd;
    228         temp *= det;
    229         return temp;
    230     }
    231 }
    232