Home | History | Annotate | Download | only in core
      1 /*
      2  * Copyright 2015 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #include "SkPoint3.h"
      9 
     10 // Returns the square of the Euclidian distance to (x,y,z).
     11 static inline float get_length_squared(float x, float y, float z) {
     12     return x * x + y * y + z * z;
     13 }
     14 
     15 // Calculates the square of the Euclidian distance to (x,y,z) and stores it in
     16 // *lengthSquared.  Returns true if the distance is judged to be "nearly zero".
     17 //
     18 // This logic is encapsulated in a helper method to make it explicit that we
     19 // always perform this check in the same manner, to avoid inconsistencies
     20 // (see http://code.google.com/p/skia/issues/detail?id=560 ).
     21 static inline bool is_length_nearly_zero(float x, float y, float z, float *lengthSquared) {
     22     *lengthSquared = get_length_squared(x, y, z);
     23     return *lengthSquared <= (SK_ScalarNearlyZero * SK_ScalarNearlyZero);
     24 }
     25 
     26 SkScalar SkPoint3::Length(SkScalar x, SkScalar y, SkScalar z) {
     27     float magSq = get_length_squared(x, y, z);
     28     if (SkScalarIsFinite(magSq)) {
     29         return sk_float_sqrt(magSq);
     30     } else {
     31         double xx = x;
     32         double yy = y;
     33         double zz = z;
     34         return (float)sqrt(xx * xx + yy * yy + zz * zz);
     35     }
     36 }
     37 
     38 /*
     39  *  We have to worry about 2 tricky conditions:
     40  *  1. underflow of magSq (compared against nearlyzero^2)
     41  *  2. overflow of magSq (compared w/ isfinite)
     42  *
     43  *  If we underflow, we return false. If we overflow, we compute again using
     44  *  doubles, which is much slower (3x in a desktop test) but will not overflow.
     45  */
     46 bool SkPoint3::normalize() {
     47     float magSq;
     48     if (is_length_nearly_zero(fX, fY, fZ, &magSq)) {
     49         this->set(0, 0, 0);
     50         return false;
     51     }
     52 
     53     float scale;
     54     if (SkScalarIsFinite(magSq)) {
     55         scale = 1.0f / sk_float_sqrt(magSq);
     56     } else {
     57         // our magSq step overflowed to infinity, so use doubles instead.
     58         // much slower, but needed when x, y or z is very large, otherwise we
     59         // divide by inf. and return (0,0,0) vector.
     60         double xx = fX;
     61         double yy = fY;
     62         double zz = fZ;
     63 #ifdef SK_CPU_FLUSH_TO_ZERO
     64         // The iOS ARM processor discards small denormalized numbers to go faster.
     65         // Casting this to a float would cause the scale to go to zero. Keeping it
     66         // as a double for the multiply keeps the scale non-zero.
     67         double dscale = 1.0f / sqrt(xx * xx + yy * yy + zz * zz);
     68         fX = x * dscale;
     69         fY = y * dscale;
     70         fZ = z * dscale;
     71         return true;
     72 #else
     73         scale = (float)(1.0f / sqrt(xx * xx + yy * yy + zz * zz));
     74 #endif
     75     }
     76     fX *= scale;
     77     fY *= scale;
     78     fZ *= scale;
     79     return true;
     80 }
     81