Home | History | Annotate | Download | only in core
      1 /*
      2  * Copyright 2006 The Android Open Source Project
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 
      9 #include "SkEdge.h"
     10 #include "SkFDot6.h"
     11 #include "SkMathPriv.h"
     12 
     13 /*
     14     In setLine, setQuadratic, setCubic, the first thing we do is to convert
     15     the points into FDot6. This is modulated by the shift parameter, which
     16     will either be 0, or something like 2 for antialiasing.
     17 
     18     In the float case, we want to turn the float into .6 by saying pt * 64,
     19     or pt * 256 for antialiasing. This is implemented as 1 << (shift + 6).
     20 
     21     In the fixed case, we want to turn the fixed into .6 by saying pt >> 10,
     22     or pt >> 8 for antialiasing. This is implemented as pt >> (10 - shift).
     23 */
     24 
     25 static inline SkFixed SkFDot6ToFixedDiv2(SkFDot6 value) {
     26     // we want to return SkFDot6ToFixed(value >> 1), but we don't want to throw
     27     // away data in value, so just perform a modify up-shift
     28     return SkLeftShift(value, 16 - 6 - 1);
     29 }
     30 
     31 /////////////////////////////////////////////////////////////////////////
     32 
     33 int SkEdge::setLine(const SkPoint& p0, const SkPoint& p1, const SkIRect* clip,
     34                     int shift) {
     35     SkFDot6 x0, y0, x1, y1;
     36 
     37     {
     38 #ifdef SK_RASTERIZE_EVEN_ROUNDING
     39         x0 = SkScalarRoundToFDot6(p0.fX, shift);
     40         y0 = SkScalarRoundToFDot6(p0.fY, shift);
     41         x1 = SkScalarRoundToFDot6(p1.fX, shift);
     42         y1 = SkScalarRoundToFDot6(p1.fY, shift);
     43 #else
     44         float scale = float(1 << (shift + 6));
     45         x0 = int(p0.fX * scale);
     46         y0 = int(p0.fY * scale);
     47         x1 = int(p1.fX * scale);
     48         y1 = int(p1.fY * scale);
     49 #endif
     50     }
     51 
     52     int winding = 1;
     53 
     54     if (y0 > y1) {
     55         SkTSwap(x0, x1);
     56         SkTSwap(y0, y1);
     57         winding = -1;
     58     }
     59 
     60     int top = SkFDot6Round(y0);
     61     int bot = SkFDot6Round(y1);
     62 
     63     // are we a zero-height line?
     64     if (top == bot) {
     65         return 0;
     66     }
     67     // are we completely above or below the clip?
     68     if (clip && (top >= clip->fBottom || bot <= clip->fTop)) {
     69         return 0;
     70     }
     71 
     72     SkFixed slope = SkFDot6Div(x1 - x0, y1 - y0);
     73     const SkFDot6 dy  = SkEdge_Compute_DY(top, y0);
     74 
     75     fX          = SkFDot6ToFixed(x0 + SkFixedMul(slope, dy));   // + SK_Fixed1/2
     76     fDX         = slope;
     77     fFirstY     = top;
     78     fLastY      = bot - 1;
     79     fCurveCount = 0;
     80     fWinding    = SkToS8(winding);
     81     fCurveShift = 0;
     82 
     83     if (clip) {
     84         this->chopLineWithClip(*clip);
     85     }
     86     return 1;
     87 }
     88 
     89 // called from a curve subclass
     90 int SkEdge::updateLine(SkFixed x0, SkFixed y0, SkFixed x1, SkFixed y1)
     91 {
     92     SkASSERT(fWinding == 1 || fWinding == -1);
     93     SkASSERT(fCurveCount != 0);
     94 //    SkASSERT(fCurveShift != 0);
     95 
     96     y0 >>= 10;
     97     y1 >>= 10;
     98 
     99     SkASSERT(y0 <= y1);
    100 
    101     int top = SkFDot6Round(y0);
    102     int bot = SkFDot6Round(y1);
    103 
    104 //  SkASSERT(top >= fFirstY);
    105 
    106     // are we a zero-height line?
    107     if (top == bot)
    108         return 0;
    109 
    110     x0 >>= 10;
    111     x1 >>= 10;
    112 
    113     SkFixed slope = SkFDot6Div(x1 - x0, y1 - y0);
    114     const SkFDot6 dy  = SkEdge_Compute_DY(top, y0);
    115 
    116     fX          = SkFDot6ToFixed(x0 + SkFixedMul(slope, dy));   // + SK_Fixed1/2
    117     fDX         = slope;
    118     fFirstY     = top;
    119     fLastY      = bot - 1;
    120 
    121     return 1;
    122 }
    123 
    124 void SkEdge::chopLineWithClip(const SkIRect& clip)
    125 {
    126     int top = fFirstY;
    127 
    128     SkASSERT(top < clip.fBottom);
    129 
    130     // clip the line to the top
    131     if (top < clip.fTop)
    132     {
    133         SkASSERT(fLastY >= clip.fTop);
    134         fX += fDX * (clip.fTop - top);
    135         fFirstY = clip.fTop;
    136     }
    137 }
    138 
    139 ///////////////////////////////////////////////////////////////////////////////
    140 
    141 /*  We store 1<<shift in a (signed) byte, so its maximum value is 1<<6 == 64.
    142     Note that this limits the number of lines we use to approximate a curve.
    143     If we need to increase this, we need to store fCurveCount in something
    144     larger than int8_t.
    145 */
    146 #define MAX_COEFF_SHIFT     6
    147 
    148 static inline SkFDot6 cheap_distance(SkFDot6 dx, SkFDot6 dy)
    149 {
    150     dx = SkAbs32(dx);
    151     dy = SkAbs32(dy);
    152     // return max + min/2
    153     if (dx > dy)
    154         dx += dy >> 1;
    155     else
    156         dx = dy + (dx >> 1);
    157     return dx;
    158 }
    159 
    160 static inline int diff_to_shift(SkFDot6 dx, SkFDot6 dy, int shiftAA = 2)
    161 {
    162     // cheap calc of distance from center of p0-p2 to the center of the curve
    163     SkFDot6 dist = cheap_distance(dx, dy);
    164 
    165     // shift down dist (it is currently in dot6)
    166     // down by 3 should give us 1/8 pixel accuracy (assuming our dist is accurate...)
    167     // this is chosen by heuristic: make it as big as possible (to minimize segments)
    168     // ... but small enough so that our curves still look smooth
    169     // When shift > 0, we're using AA and everything is scaled up so we can
    170     // lower the accuracy.
    171 #ifdef SK_SUPPORT_LEGACY_QUAD_SHIFT
    172     dist = (dist + (1 << 4)) >> 5;
    173 #else
    174     dist = (dist + (1 << 4)) >> (3 + shiftAA);
    175 #endif
    176 
    177     // each subdivision (shift value) cuts this dist (error) by 1/4
    178     return (32 - SkCLZ(dist)) >> 1;
    179 }
    180 
    181 bool SkQuadraticEdge::setQuadraticWithoutUpdate(const SkPoint pts[3], int shift) {
    182     SkFDot6 x0, y0, x1, y1, x2, y2;
    183 
    184     {
    185 #ifdef SK_RASTERIZE_EVEN_ROUNDING
    186         x0 = SkScalarRoundToFDot6(pts[0].fX, shift);
    187         y0 = SkScalarRoundToFDot6(pts[0].fY, shift);
    188         x1 = SkScalarRoundToFDot6(pts[1].fX, shift);
    189         y1 = SkScalarRoundToFDot6(pts[1].fY, shift);
    190         x2 = SkScalarRoundToFDot6(pts[2].fX, shift);
    191         y2 = SkScalarRoundToFDot6(pts[2].fY, shift);
    192 #else
    193         float scale = float(1 << (shift + 6));
    194         x0 = int(pts[0].fX * scale);
    195         y0 = int(pts[0].fY * scale);
    196         x1 = int(pts[1].fX * scale);
    197         y1 = int(pts[1].fY * scale);
    198         x2 = int(pts[2].fX * scale);
    199         y2 = int(pts[2].fY * scale);
    200 #endif
    201     }
    202 
    203     int winding = 1;
    204     if (y0 > y2)
    205     {
    206         SkTSwap(x0, x2);
    207         SkTSwap(y0, y2);
    208         winding = -1;
    209     }
    210     SkASSERT(y0 <= y1 && y1 <= y2);
    211 
    212     int top = SkFDot6Round(y0);
    213     int bot = SkFDot6Round(y2);
    214 
    215     // are we a zero-height quad (line)?
    216     if (top == bot)
    217         return 0;
    218 
    219     // compute number of steps needed (1 << shift)
    220     {
    221         SkFDot6 dx = (SkLeftShift(x1, 1) - x0 - x2) >> 2;
    222         SkFDot6 dy = (SkLeftShift(y1, 1) - y0 - y2) >> 2;
    223         // This is a little confusing:
    224         // before this line, shift is the scale up factor for AA;
    225         // after this line, shift is the fCurveShift.
    226         shift = diff_to_shift(dx, dy, shift);
    227         SkASSERT(shift >= 0);
    228     }
    229     // need at least 1 subdivision for our bias trick
    230     if (shift == 0) {
    231         shift = 1;
    232     } else if (shift > MAX_COEFF_SHIFT) {
    233         shift = MAX_COEFF_SHIFT;
    234     }
    235 
    236     fWinding    = SkToS8(winding);
    237     //fCubicDShift only set for cubics
    238     fCurveCount = SkToS8(1 << shift);
    239 
    240     /*
    241      *  We want to reformulate into polynomial form, to make it clear how we
    242      *  should forward-difference.
    243      *
    244      *  p0 (1 - t)^2 + p1 t(1 - t) + p2 t^2 ==> At^2 + Bt + C
    245      *
    246      *  A = p0 - 2p1 + p2
    247      *  B = 2(p1 - p0)
    248      *  C = p0
    249      *
    250      *  Our caller must have constrained our inputs (p0..p2) to all fit into
    251      *  16.16. However, as seen above, we sometimes compute values that can be
    252      *  larger (e.g. B = 2*(p1 - p0)). To guard against overflow, we will store
    253      *  A and B at 1/2 of their actual value, and just apply a 2x scale during
    254      *  application in updateQuadratic(). Hence we store (shift - 1) in
    255      *  fCurveShift.
    256      */
    257 
    258     fCurveShift = SkToU8(shift - 1);
    259 
    260     SkFixed A = SkFDot6ToFixedDiv2(x0 - x1 - x1 + x2);  // 1/2 the real value
    261     SkFixed B = SkFDot6ToFixed(x1 - x0);                // 1/2 the real value
    262 
    263     fQx     = SkFDot6ToFixed(x0);
    264     fQDx    = B + (A >> shift);     // biased by shift
    265     fQDDx   = A >> (shift - 1);     // biased by shift
    266 
    267     A = SkFDot6ToFixedDiv2(y0 - y1 - y1 + y2);  // 1/2 the real value
    268     B = SkFDot6ToFixed(y1 - y0);                // 1/2 the real value
    269 
    270     fQy     = SkFDot6ToFixed(y0);
    271     fQDy    = B + (A >> shift);     // biased by shift
    272     fQDDy   = A >> (shift - 1);     // biased by shift
    273 
    274     fQLastX = SkFDot6ToFixed(x2);
    275     fQLastY = SkFDot6ToFixed(y2);
    276 
    277     return true;
    278 }
    279 
    280 int SkQuadraticEdge::setQuadratic(const SkPoint pts[3], int shift) {
    281     if (!setQuadraticWithoutUpdate(pts, shift)) {
    282         return 0;
    283     }
    284     return this->updateQuadratic();
    285 }
    286 
    287 int SkQuadraticEdge::updateQuadratic()
    288 {
    289     int     success;
    290     int     count = fCurveCount;
    291     SkFixed oldx = fQx;
    292     SkFixed oldy = fQy;
    293     SkFixed dx = fQDx;
    294     SkFixed dy = fQDy;
    295     SkFixed newx, newy;
    296     int     shift = fCurveShift;
    297 
    298     SkASSERT(count > 0);
    299 
    300     do {
    301         if (--count > 0)
    302         {
    303             newx    = oldx + (dx >> shift);
    304             dx    += fQDDx;
    305             newy    = oldy + (dy >> shift);
    306             dy    += fQDDy;
    307         }
    308         else    // last segment
    309         {
    310             newx    = fQLastX;
    311             newy    = fQLastY;
    312         }
    313         success = this->updateLine(oldx, oldy, newx, newy);
    314         oldx = newx;
    315         oldy = newy;
    316     } while (count > 0 && !success);
    317 
    318     fQx         = newx;
    319     fQy         = newy;
    320     fQDx        = dx;
    321     fQDy        = dy;
    322     fCurveCount = SkToS8(count);
    323     return success;
    324 }
    325 
    326 /////////////////////////////////////////////////////////////////////////
    327 
    328 static inline int SkFDot6UpShift(SkFDot6 x, int upShift) {
    329     SkASSERT((SkLeftShift(x, upShift) >> upShift) == x);
    330     return SkLeftShift(x, upShift);
    331 }
    332 
    333 /*  f(1/3) = (8a + 12b + 6c + d) / 27
    334     f(2/3) = (a + 6b + 12c + 8d) / 27
    335 
    336     f(1/3)-b = (8a - 15b + 6c + d) / 27
    337     f(2/3)-c = (a + 6b - 15c + 8d) / 27
    338 
    339     use 16/512 to approximate 1/27
    340 */
    341 static SkFDot6 cubic_delta_from_line(SkFDot6 a, SkFDot6 b, SkFDot6 c, SkFDot6 d)
    342 {
    343     // since our parameters may be negative, we don't use << to avoid ASAN warnings
    344     SkFDot6 oneThird = (a*8 - b*15 + 6*c + d) * 19 >> 9;
    345     SkFDot6 twoThird = (a + 6*b - c*15 + d*8) * 19 >> 9;
    346 
    347     return SkMax32(SkAbs32(oneThird), SkAbs32(twoThird));
    348 }
    349 
    350 bool SkCubicEdge::setCubicWithoutUpdate(const SkPoint pts[4], int shift, bool sortY) {
    351     SkFDot6 x0, y0, x1, y1, x2, y2, x3, y3;
    352 
    353     {
    354 #ifdef SK_RASTERIZE_EVEN_ROUNDING
    355         x0 = SkScalarRoundToFDot6(pts[0].fX, shift);
    356         y0 = SkScalarRoundToFDot6(pts[0].fY, shift);
    357         x1 = SkScalarRoundToFDot6(pts[1].fX, shift);
    358         y1 = SkScalarRoundToFDot6(pts[1].fY, shift);
    359         x2 = SkScalarRoundToFDot6(pts[2].fX, shift);
    360         y2 = SkScalarRoundToFDot6(pts[2].fY, shift);
    361         x3 = SkScalarRoundToFDot6(pts[3].fX, shift);
    362         y3 = SkScalarRoundToFDot6(pts[3].fY, shift);
    363 #else
    364         float scale = float(1 << (shift + 6));
    365         x0 = int(pts[0].fX * scale);
    366         y0 = int(pts[0].fY * scale);
    367         x1 = int(pts[1].fX * scale);
    368         y1 = int(pts[1].fY * scale);
    369         x2 = int(pts[2].fX * scale);
    370         y2 = int(pts[2].fY * scale);
    371         x3 = int(pts[3].fX * scale);
    372         y3 = int(pts[3].fY * scale);
    373 #endif
    374     }
    375 
    376     int winding = 1;
    377     if (sortY && y0 > y3)
    378     {
    379         SkTSwap(x0, x3);
    380         SkTSwap(x1, x2);
    381         SkTSwap(y0, y3);
    382         SkTSwap(y1, y2);
    383         winding = -1;
    384     }
    385 
    386     int top = SkFDot6Round(y0);
    387     int bot = SkFDot6Round(y3);
    388 
    389     // are we a zero-height cubic (line)?
    390     if (sortY && top == bot)
    391         return 0;
    392 
    393     // compute number of steps needed (1 << shift)
    394     {
    395         // Can't use (center of curve - center of baseline), since center-of-curve
    396         // need not be the max delta from the baseline (it could even be coincident)
    397         // so we try just looking at the two off-curve points
    398         SkFDot6 dx = cubic_delta_from_line(x0, x1, x2, x3);
    399         SkFDot6 dy = cubic_delta_from_line(y0, y1, y2, y3);
    400         // add 1 (by observation)
    401         shift = diff_to_shift(dx, dy) + 1;
    402     }
    403     // need at least 1 subdivision for our bias trick
    404     SkASSERT(shift > 0);
    405     if (shift > MAX_COEFF_SHIFT) {
    406         shift = MAX_COEFF_SHIFT;
    407     }
    408 
    409     /*  Since our in coming data is initially shifted down by 10 (or 8 in
    410         antialias). That means the most we can shift up is 8. However, we
    411         compute coefficients with a 3*, so the safest upshift is really 6
    412     */
    413     int upShift = 6;    // largest safe value
    414     int downShift = shift + upShift - 10;
    415     if (downShift < 0) {
    416         downShift = 0;
    417         upShift = 10 - shift;
    418     }
    419 
    420     fWinding    = SkToS8(winding);
    421     fCurveCount = SkToS8(SkLeftShift(-1, shift));
    422     fCurveShift = SkToU8(shift);
    423     fCubicDShift = SkToU8(downShift);
    424 
    425     SkFixed B = SkFDot6UpShift(3 * (x1 - x0), upShift);
    426     SkFixed C = SkFDot6UpShift(3 * (x0 - x1 - x1 + x2), upShift);
    427     SkFixed D = SkFDot6UpShift(x3 + 3 * (x1 - x2) - x0, upShift);
    428 
    429     fCx     = SkFDot6ToFixed(x0);
    430     fCDx    = B + (C >> shift) + (D >> 2*shift);    // biased by shift
    431     fCDDx   = 2*C + (3*D >> (shift - 1));           // biased by 2*shift
    432     fCDDDx  = 3*D >> (shift - 1);                   // biased by 2*shift
    433 
    434     B = SkFDot6UpShift(3 * (y1 - y0), upShift);
    435     C = SkFDot6UpShift(3 * (y0 - y1 - y1 + y2), upShift);
    436     D = SkFDot6UpShift(y3 + 3 * (y1 - y2) - y0, upShift);
    437 
    438     fCy     = SkFDot6ToFixed(y0);
    439     fCDy    = B + (C >> shift) + (D >> 2*shift);    // biased by shift
    440     fCDDy   = 2*C + (3*D >> (shift - 1));           // biased by 2*shift
    441     fCDDDy  = 3*D >> (shift - 1);                   // biased by 2*shift
    442 
    443     fCLastX = SkFDot6ToFixed(x3);
    444     fCLastY = SkFDot6ToFixed(y3);
    445 
    446     return true;
    447 }
    448 
    449 int SkCubicEdge::setCubic(const SkPoint pts[4], int shift) {
    450     if (!this->setCubicWithoutUpdate(pts, shift)) {
    451         return 0;
    452     }
    453     return this->updateCubic();
    454 }
    455 
    456 int SkCubicEdge::updateCubic()
    457 {
    458     int     success;
    459     int     count = fCurveCount;
    460     SkFixed oldx = fCx;
    461     SkFixed oldy = fCy;
    462     SkFixed newx, newy;
    463     const int ddshift = fCurveShift;
    464     const int dshift = fCubicDShift;
    465 
    466     SkASSERT(count < 0);
    467 
    468     do {
    469         if (++count < 0)
    470         {
    471             newx    = oldx + (fCDx >> dshift);
    472             fCDx    += fCDDx >> ddshift;
    473             fCDDx   += fCDDDx;
    474 
    475             newy    = oldy + (fCDy >> dshift);
    476             fCDy    += fCDDy >> ddshift;
    477             fCDDy   += fCDDDy;
    478         }
    479         else    // last segment
    480         {
    481         //  SkDebugf("LastX err=%d, LastY err=%d\n", (oldx + (fCDx >> shift) - fLastX), (oldy + (fCDy >> shift) - fLastY));
    482             newx    = fCLastX;
    483             newy    = fCLastY;
    484         }
    485 
    486         // we want to say SkASSERT(oldy <= newy), but our finite fixedpoint
    487         // doesn't always achieve that, so we have to explicitly pin it here.
    488         if (newy < oldy) {
    489             newy = oldy;
    490         }
    491 
    492         success = this->updateLine(oldx, oldy, newx, newy);
    493         oldx = newx;
    494         oldy = newy;
    495     } while (count < 0 && !success);
    496 
    497     fCx         = newx;
    498     fCy         = newy;
    499     fCurveCount = SkToS8(count);
    500     return success;
    501 }
    502