Home | History | Annotate | Download | only in core
      1 /*
      2  * Copyright 2012 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #ifndef SkMathPriv_DEFINED
      9 #define SkMathPriv_DEFINED
     10 
     11 #include "SkMath.h"
     12 
     13 #if defined(SK_BUILD_FOR_IOS) && (defined(SK_BUILD_FOR_ARM32) || defined(SK_BUILD_FOR_ARM64))
     14 // iOS on ARM starts processes with the Flush-To-Zero (FTZ) and
     15 // Denormals-Are-Zero (DAZ) bits in the fpscr register set.
     16 // Algorithms that rely on denormalized numbers need alternative implementations.
     17 // This can also be controlled in SSE with the MXCSR register,
     18 // x87 with FSTCW/FLDCW, and mips with FCSR. This should be detected at runtime,
     19 // or the library built one way or the other more generally (by the build).
     20 #define SK_CPU_FLUSH_TO_ZERO
     21 #endif
     22 
     23 /** Returns -1 if n < 0, else returns 0
     24  */
     25 #define SkExtractSign(n)    ((int32_t)(n) >> 31)
     26 
     27 /** If sign == -1, returns -n, else sign must be 0, and returns n.
     28  Typically used in conjunction with SkExtractSign().
     29  */
     30 static inline int32_t SkApplySign(int32_t n, int32_t sign) {
     31     SkASSERT(sign == 0 || sign == -1);
     32     return (n ^ sign) - sign;
     33 }
     34 
     35 /** Return x with the sign of y */
     36 static inline int32_t SkCopySign32(int32_t x, int32_t y) {
     37     return SkApplySign(x, SkExtractSign(x ^ y));
     38 }
     39 
     40 /** Given a positive value and a positive max, return the value
     41  pinned against max.
     42  Note: only works as long as max - value doesn't wrap around
     43  @return max if value >= max, else value
     44  */
     45 static inline unsigned SkClampUMax(unsigned value, unsigned max) {
     46     if (value > max) {
     47         value = max;
     48     }
     49     return value;
     50 }
     51 
     52 // If a signed int holds min_int (e.g. 0x80000000) it is undefined what happens when
     53 // we negate it (even though we *know* we're 2's complement and we'll get the same
     54 // value back). So we create this helper function that casts to size_t (unsigned) first,
     55 // to avoid the complaint.
     56 static inline size_t sk_negate_to_size_t(int32_t value) {
     57 #if defined(_MSC_VER)
     58 #pragma warning(push)
     59 #pragma warning(disable : 4146)  // Thanks MSVC, we know what we're negating an unsigned
     60 #endif
     61     return -static_cast<size_t>(value);
     62 #if defined(_MSC_VER)
     63 #pragma warning(pop)
     64 #endif
     65 }
     66 
     67 ///////////////////////////////////////////////////////////////////////////////
     68 
     69 /** Return a*b/255, truncating away any fractional bits. Only valid if both
     70  a and b are 0..255
     71  */
     72 static inline U8CPU SkMulDiv255Trunc(U8CPU a, U8CPU b) {
     73     SkASSERT((uint8_t)a == a);
     74     SkASSERT((uint8_t)b == b);
     75     unsigned prod = a*b + 1;
     76     return (prod + (prod >> 8)) >> 8;
     77 }
     78 
     79 /** Return (a*b)/255, taking the ceiling of any fractional bits. Only valid if
     80  both a and b are 0..255. The expected result equals (a * b + 254) / 255.
     81  */
     82 static inline U8CPU SkMulDiv255Ceiling(U8CPU a, U8CPU b) {
     83     SkASSERT((uint8_t)a == a);
     84     SkASSERT((uint8_t)b == b);
     85     unsigned prod = a*b + 255;
     86     return (prod + (prod >> 8)) >> 8;
     87 }
     88 
     89 /** Just the rounding step in SkDiv255Round: round(value / 255)
     90  */
     91 static inline unsigned SkDiv255Round(unsigned prod) {
     92     prod += 128;
     93     return (prod + (prod >> 8)) >> 8;
     94 }
     95 
     96 static inline float SkPinToUnitFloat(float x) {
     97     return SkTMin(SkTMax(x, 0.0f), 1.0f);
     98 }
     99 
    100 /**
    101  * Swap byte order of a 4-byte value, e.g. 0xaarrggbb -> 0xbbggrraa.
    102  */
    103 #if defined(_MSC_VER)
    104     #include <intrin.h>
    105     static inline uint32_t SkBSwap32(uint32_t v) { return _byteswap_ulong(v); }
    106 #else
    107     static inline uint32_t SkBSwap32(uint32_t v) { return __builtin_bswap32(v); }
    108 #endif
    109 
    110 //! Returns the number of leading zero bits (0...32)
    111 int SkCLZ_portable(uint32_t);
    112 
    113 #ifndef SkCLZ
    114     #if defined(SK_BUILD_FOR_WIN)
    115         #include <intrin.h>
    116 
    117         static inline int SkCLZ(uint32_t mask) {
    118             if (mask) {
    119                 unsigned long index;
    120                 _BitScanReverse(&index, mask);
    121                 // Suppress this bogus /analyze warning. The check for non-zero
    122                 // guarantees that _BitScanReverse will succeed.
    123 #pragma warning(suppress : 6102) // Using 'index' from failed function call
    124                 return index ^ 0x1F;
    125             } else {
    126                 return 32;
    127             }
    128         }
    129     #elif defined(SK_CPU_ARM32) || defined(__GNUC__) || defined(__clang__)
    130         static inline int SkCLZ(uint32_t mask) {
    131             // __builtin_clz(0) is undefined, so we have to detect that case.
    132             return mask ? __builtin_clz(mask) : 32;
    133         }
    134     #else
    135         #define SkCLZ(x)    SkCLZ_portable(x)
    136     #endif
    137 #endif
    138 
    139 /**
    140  *  Returns the smallest power-of-2 that is >= the specified value. If value
    141  *  is already a power of 2, then it is returned unchanged. It is undefined
    142  *  if value is <= 0.
    143  */
    144 static inline int SkNextPow2(int value) {
    145     SkASSERT(value > 0);
    146     return 1 << (32 - SkCLZ(value - 1));
    147 }
    148 
    149 /**
    150 *  Returns the largest power-of-2 that is <= the specified value. If value
    151 *  is already a power of 2, then it is returned unchanged. It is undefined
    152 *  if value is <= 0.
    153 */
    154 static inline int SkPrevPow2(int value) {
    155     SkASSERT(value > 0);
    156     return 1 << (32 - SkCLZ(value >> 1));
    157 }
    158 
    159 /**
    160  *  Returns the log2 of the specified value, were that value to be rounded up
    161  *  to the next power of 2. It is undefined to pass 0. Examples:
    162  *  SkNextLog2(1) -> 0
    163  *  SkNextLog2(2) -> 1
    164  *  SkNextLog2(3) -> 2
    165  *  SkNextLog2(4) -> 2
    166  *  SkNextLog2(5) -> 3
    167  */
    168 static inline int SkNextLog2(uint32_t value) {
    169     SkASSERT(value != 0);
    170     return 32 - SkCLZ(value - 1);
    171 }
    172 
    173 /**
    174 *  Returns the log2 of the specified value, were that value to be rounded down
    175 *  to the previous power of 2. It is undefined to pass 0. Examples:
    176 *  SkPrevLog2(1) -> 0
    177 *  SkPrevLog2(2) -> 1
    178 *  SkPrevLog2(3) -> 1
    179 *  SkPrevLog2(4) -> 2
    180 *  SkPrevLog2(5) -> 2
    181 */
    182 static inline int SkPrevLog2(uint32_t value) {
    183     SkASSERT(value != 0);
    184     return 32 - SkCLZ(value >> 1);
    185 }
    186 
    187 ///////////////////////////////////////////////////////////////////////////////
    188 
    189 /**
    190  *  Return the next power of 2 >= n.
    191  */
    192 static inline uint32_t GrNextPow2(uint32_t n) {
    193     return n ? (1 << (32 - SkCLZ(n - 1))) : 1;
    194 }
    195 
    196 /**
    197  * Returns the next power of 2 >= n or n if the next power of 2 can't be represented by size_t.
    198  */
    199 static inline size_t GrNextSizePow2(size_t n) {
    200     constexpr int kNumSizeTBits = 8 * sizeof(size_t);
    201     constexpr size_t kHighBitSet = size_t(1) << (kNumSizeTBits - 1);
    202 
    203     if (!n) {
    204         return 1;
    205     } else if (n >= kHighBitSet) {
    206         return n;
    207     }
    208 
    209     n--;
    210     uint32_t shift = 1;
    211     while (shift < kNumSizeTBits) {
    212         n |= n >> shift;
    213         shift <<= 1;
    214     }
    215     return n + 1;
    216 }
    217 
    218 // conservative check. will return false for very large values that "could" fit
    219 template <typename T> static inline bool SkFitsInFixed(T x) {
    220     return SkTAbs(x) <= 32767.0f;
    221 }
    222 
    223 #endif
    224