1 /* 2 * Copyright 2012 Google Inc. 3 * 4 * Use of this source code is governed by a BSD-style license that can be 5 * found in the LICENSE file. 6 */ 7 8 #include <cmath> 9 #include "SkRRect.h" 10 #include "SkScopeExit.h" 11 #include "SkBuffer.h" 12 #include "SkMalloc.h" 13 #include "SkMatrix.h" 14 #include "SkScaleToSides.h" 15 16 /////////////////////////////////////////////////////////////////////////////// 17 18 void SkRRect::setRectXY(const SkRect& rect, SkScalar xRad, SkScalar yRad) { 19 if (!this->initializeRect(rect)) { 20 return; 21 } 22 23 if (!SkScalarsAreFinite(xRad, yRad)) { 24 xRad = yRad = 0; // devolve into a simple rect 25 } 26 if (xRad <= 0 || yRad <= 0) { 27 // all corners are square in this case 28 this->setRect(rect); 29 return; 30 } 31 32 if (fRect.width() < xRad+xRad || fRect.height() < yRad+yRad) { 33 SkScalar scale = SkMinScalar(fRect.width() / (xRad + xRad), fRect.height() / (yRad + yRad)); 34 SkASSERT(scale < SK_Scalar1); 35 xRad *= scale; 36 yRad *= scale; 37 } 38 39 for (int i = 0; i < 4; ++i) { 40 fRadii[i].set(xRad, yRad); 41 } 42 fType = kSimple_Type; 43 if (xRad >= SkScalarHalf(fRect.width()) && yRad >= SkScalarHalf(fRect.height())) { 44 fType = kOval_Type; 45 // TODO: assert that all the x&y radii are already W/2 & H/2 46 } 47 48 SkASSERT(this->isValid()); 49 } 50 51 void SkRRect::setNinePatch(const SkRect& rect, SkScalar leftRad, SkScalar topRad, 52 SkScalar rightRad, SkScalar bottomRad) { 53 if (!this->initializeRect(rect)) { 54 return; 55 } 56 57 const SkScalar array[4] = { leftRad, topRad, rightRad, bottomRad }; 58 if (!SkScalarsAreFinite(array, 4)) { 59 this->setRect(rect); // devolve into a simple rect 60 return; 61 } 62 63 leftRad = SkMaxScalar(leftRad, 0); 64 topRad = SkMaxScalar(topRad, 0); 65 rightRad = SkMaxScalar(rightRad, 0); 66 bottomRad = SkMaxScalar(bottomRad, 0); 67 68 SkScalar scale = SK_Scalar1; 69 if (leftRad + rightRad > fRect.width()) { 70 scale = fRect.width() / (leftRad + rightRad); 71 } 72 if (topRad + bottomRad > fRect.height()) { 73 scale = SkMinScalar(scale, fRect.height() / (topRad + bottomRad)); 74 } 75 76 if (scale < SK_Scalar1) { 77 leftRad *= scale; 78 topRad *= scale; 79 rightRad *= scale; 80 bottomRad *= scale; 81 } 82 83 if (leftRad == rightRad && topRad == bottomRad) { 84 if (leftRad >= SkScalarHalf(fRect.width()) && topRad >= SkScalarHalf(fRect.height())) { 85 fType = kOval_Type; 86 } else if (0 == leftRad || 0 == topRad) { 87 // If the left and (by equality check above) right radii are zero then it is a rect. 88 // Same goes for top/bottom. 89 fType = kRect_Type; 90 leftRad = 0; 91 topRad = 0; 92 rightRad = 0; 93 bottomRad = 0; 94 } else { 95 fType = kSimple_Type; 96 } 97 } else { 98 fType = kNinePatch_Type; 99 } 100 101 fRadii[kUpperLeft_Corner].set(leftRad, topRad); 102 fRadii[kUpperRight_Corner].set(rightRad, topRad); 103 fRadii[kLowerRight_Corner].set(rightRad, bottomRad); 104 fRadii[kLowerLeft_Corner].set(leftRad, bottomRad); 105 106 SkASSERT(this->isValid()); 107 } 108 109 // These parameters intentionally double. Apropos crbug.com/463920, if one of the 110 // radii is huge while the other is small, single precision math can completely 111 // miss the fact that a scale is required. 112 static double compute_min_scale(double rad1, double rad2, double limit, double curMin) { 113 if ((rad1 + rad2) > limit) { 114 return SkTMin(curMin, limit / (rad1 + rad2)); 115 } 116 return curMin; 117 } 118 119 void SkRRect::setRectRadii(const SkRect& rect, const SkVector radii[4]) { 120 if (!this->initializeRect(rect)) { 121 return; 122 } 123 124 if (!SkScalarsAreFinite(&radii[0].fX, 8)) { 125 this->setRect(rect); // devolve into a simple rect 126 return; 127 } 128 129 memcpy(fRadii, radii, sizeof(fRadii)); 130 131 bool allCornersSquare = true; 132 133 // Clamp negative radii to zero 134 for (int i = 0; i < 4; ++i) { 135 if (fRadii[i].fX <= 0 || fRadii[i].fY <= 0) { 136 // In this case we are being a little fast & loose. Since one of 137 // the radii is 0 the corner is square. However, the other radii 138 // could still be non-zero and play in the global scale factor 139 // computation. 140 fRadii[i].fX = 0; 141 fRadii[i].fY = 0; 142 } else { 143 allCornersSquare = false; 144 } 145 } 146 147 if (allCornersSquare) { 148 this->setRect(rect); 149 return; 150 } 151 152 this->scaleRadii(); 153 } 154 155 bool SkRRect::initializeRect(const SkRect& rect) { 156 // Check this before sorting because sorting can hide nans. 157 if (!rect.isFinite()) { 158 *this = SkRRect(); 159 return false; 160 } 161 fRect = rect.makeSorted(); 162 if (fRect.isEmpty()) { 163 memset(fRadii, 0, sizeof(fRadii)); 164 fType = kEmpty_Type; 165 return false; 166 } 167 return true; 168 } 169 170 void SkRRect::scaleRadii() { 171 172 // Proportionally scale down all radii to fit. Find the minimum ratio 173 // of a side and the radii on that side (for all four sides) and use 174 // that to scale down _all_ the radii. This algorithm is from the 175 // W3 spec (http://www.w3.org/TR/css3-background/) section 5.5 - Overlapping 176 // Curves: 177 // "Let f = min(Li/Si), where i is one of { top, right, bottom, left }, 178 // Si is the sum of the two corresponding radii of the corners on side i, 179 // and Ltop = Lbottom = the width of the box, 180 // and Lleft = Lright = the height of the box. 181 // If f < 1, then all corner radii are reduced by multiplying them by f." 182 double scale = 1.0; 183 184 // The sides of the rectangle may be larger than a float. 185 double width = (double)fRect.fRight - (double)fRect.fLeft; 186 double height = (double)fRect.fBottom - (double)fRect.fTop; 187 scale = compute_min_scale(fRadii[0].fX, fRadii[1].fX, width, scale); 188 scale = compute_min_scale(fRadii[1].fY, fRadii[2].fY, height, scale); 189 scale = compute_min_scale(fRadii[2].fX, fRadii[3].fX, width, scale); 190 scale = compute_min_scale(fRadii[3].fY, fRadii[0].fY, height, scale); 191 192 if (scale < 1.0) { 193 SkScaleToSides::AdjustRadii(width, scale, &fRadii[0].fX, &fRadii[1].fX); 194 SkScaleToSides::AdjustRadii(height, scale, &fRadii[1].fY, &fRadii[2].fY); 195 SkScaleToSides::AdjustRadii(width, scale, &fRadii[2].fX, &fRadii[3].fX); 196 SkScaleToSides::AdjustRadii(height, scale, &fRadii[3].fY, &fRadii[0].fY); 197 } 198 199 // At this point we're either oval, simple, or complex (not empty or rect). 200 this->computeType(); 201 202 SkASSERT(this->isValid()); 203 } 204 205 // This method determines if a point known to be inside the RRect's bounds is 206 // inside all the corners. 207 bool SkRRect::checkCornerContainment(SkScalar x, SkScalar y) const { 208 SkPoint canonicalPt; // (x,y) translated to one of the quadrants 209 int index; 210 211 if (kOval_Type == this->type()) { 212 canonicalPt.set(x - fRect.centerX(), y - fRect.centerY()); 213 index = kUpperLeft_Corner; // any corner will do in this case 214 } else { 215 if (x < fRect.fLeft + fRadii[kUpperLeft_Corner].fX && 216 y < fRect.fTop + fRadii[kUpperLeft_Corner].fY) { 217 // UL corner 218 index = kUpperLeft_Corner; 219 canonicalPt.set(x - (fRect.fLeft + fRadii[kUpperLeft_Corner].fX), 220 y - (fRect.fTop + fRadii[kUpperLeft_Corner].fY)); 221 SkASSERT(canonicalPt.fX < 0 && canonicalPt.fY < 0); 222 } else if (x < fRect.fLeft + fRadii[kLowerLeft_Corner].fX && 223 y > fRect.fBottom - fRadii[kLowerLeft_Corner].fY) { 224 // LL corner 225 index = kLowerLeft_Corner; 226 canonicalPt.set(x - (fRect.fLeft + fRadii[kLowerLeft_Corner].fX), 227 y - (fRect.fBottom - fRadii[kLowerLeft_Corner].fY)); 228 SkASSERT(canonicalPt.fX < 0 && canonicalPt.fY > 0); 229 } else if (x > fRect.fRight - fRadii[kUpperRight_Corner].fX && 230 y < fRect.fTop + fRadii[kUpperRight_Corner].fY) { 231 // UR corner 232 index = kUpperRight_Corner; 233 canonicalPt.set(x - (fRect.fRight - fRadii[kUpperRight_Corner].fX), 234 y - (fRect.fTop + fRadii[kUpperRight_Corner].fY)); 235 SkASSERT(canonicalPt.fX > 0 && canonicalPt.fY < 0); 236 } else if (x > fRect.fRight - fRadii[kLowerRight_Corner].fX && 237 y > fRect.fBottom - fRadii[kLowerRight_Corner].fY) { 238 // LR corner 239 index = kLowerRight_Corner; 240 canonicalPt.set(x - (fRect.fRight - fRadii[kLowerRight_Corner].fX), 241 y - (fRect.fBottom - fRadii[kLowerRight_Corner].fY)); 242 SkASSERT(canonicalPt.fX > 0 && canonicalPt.fY > 0); 243 } else { 244 // not in any of the corners 245 return true; 246 } 247 } 248 249 // A point is in an ellipse (in standard position) if: 250 // x^2 y^2 251 // ----- + ----- <= 1 252 // a^2 b^2 253 // or : 254 // b^2*x^2 + a^2*y^2 <= (ab)^2 255 SkScalar dist = SkScalarSquare(canonicalPt.fX) * SkScalarSquare(fRadii[index].fY) + 256 SkScalarSquare(canonicalPt.fY) * SkScalarSquare(fRadii[index].fX); 257 return dist <= SkScalarSquare(fRadii[index].fX * fRadii[index].fY); 258 } 259 260 bool SkRRect::allCornersCircular(SkScalar tolerance) const { 261 return SkScalarNearlyEqual(fRadii[0].fX, fRadii[0].fY, tolerance) && 262 SkScalarNearlyEqual(fRadii[1].fX, fRadii[1].fY, tolerance) && 263 SkScalarNearlyEqual(fRadii[2].fX, fRadii[2].fY, tolerance) && 264 SkScalarNearlyEqual(fRadii[3].fX, fRadii[3].fY, tolerance); 265 } 266 267 bool SkRRect::contains(const SkRect& rect) const { 268 if (!this->getBounds().contains(rect)) { 269 // If 'rect' isn't contained by the RR's bounds then the 270 // RR definitely doesn't contain it 271 return false; 272 } 273 274 if (this->isRect()) { 275 // the prior test was sufficient 276 return true; 277 } 278 279 // At this point we know all four corners of 'rect' are inside the 280 // bounds of of this RR. Check to make sure all the corners are inside 281 // all the curves 282 return this->checkCornerContainment(rect.fLeft, rect.fTop) && 283 this->checkCornerContainment(rect.fRight, rect.fTop) && 284 this->checkCornerContainment(rect.fRight, rect.fBottom) && 285 this->checkCornerContainment(rect.fLeft, rect.fBottom); 286 } 287 288 static bool radii_are_nine_patch(const SkVector radii[4]) { 289 return radii[SkRRect::kUpperLeft_Corner].fX == radii[SkRRect::kLowerLeft_Corner].fX && 290 radii[SkRRect::kUpperLeft_Corner].fY == radii[SkRRect::kUpperRight_Corner].fY && 291 radii[SkRRect::kUpperRight_Corner].fX == radii[SkRRect::kLowerRight_Corner].fX && 292 radii[SkRRect::kLowerLeft_Corner].fY == radii[SkRRect::kLowerRight_Corner].fY; 293 } 294 295 // There is a simplified version of this method in setRectXY 296 void SkRRect::computeType() { 297 SK_AT_SCOPE_EXIT(SkASSERT(this->isValid())); 298 299 if (fRect.isEmpty()) { 300 SkASSERT(fRect.isSorted()); 301 for (size_t i = 0; i < SK_ARRAY_COUNT(fRadii); ++i) { 302 SkASSERT((fRadii[i] == SkVector{0, 0})); 303 } 304 fType = kEmpty_Type; 305 return; 306 } 307 308 bool allRadiiEqual = true; // are all x radii equal and all y radii? 309 bool allCornersSquare = 0 == fRadii[0].fX || 0 == fRadii[0].fY; 310 311 for (int i = 1; i < 4; ++i) { 312 if (0 != fRadii[i].fX && 0 != fRadii[i].fY) { 313 // if either radius is zero the corner is square so both have to 314 // be non-zero to have a rounded corner 315 allCornersSquare = false; 316 } 317 if (fRadii[i].fX != fRadii[i-1].fX || fRadii[i].fY != fRadii[i-1].fY) { 318 allRadiiEqual = false; 319 } 320 } 321 322 if (allCornersSquare) { 323 fType = kRect_Type; 324 return; 325 } 326 327 if (allRadiiEqual) { 328 if (fRadii[0].fX >= SkScalarHalf(fRect.width()) && 329 fRadii[0].fY >= SkScalarHalf(fRect.height())) { 330 fType = kOval_Type; 331 } else { 332 fType = kSimple_Type; 333 } 334 return; 335 } 336 337 if (radii_are_nine_patch(fRadii)) { 338 fType = kNinePatch_Type; 339 } else { 340 fType = kComplex_Type; 341 } 342 } 343 344 static bool matrix_only_scale_and_translate(const SkMatrix& matrix) { 345 const SkMatrix::TypeMask m = (SkMatrix::TypeMask) (SkMatrix::kAffine_Mask 346 | SkMatrix::kPerspective_Mask); 347 return (matrix.getType() & m) == 0; 348 } 349 350 bool SkRRect::transform(const SkMatrix& matrix, SkRRect* dst) const { 351 if (nullptr == dst) { 352 return false; 353 } 354 355 // Assert that the caller is not trying to do this in place, which 356 // would violate const-ness. Do not return false though, so that 357 // if they know what they're doing and want to violate it they can. 358 SkASSERT(dst != this); 359 360 if (matrix.isIdentity()) { 361 *dst = *this; 362 return true; 363 } 364 365 // If transform supported 90 degree rotations (which it could), we could 366 // use SkMatrix::rectStaysRect() to check for a valid transformation. 367 if (!matrix_only_scale_and_translate(matrix)) { 368 return false; 369 } 370 371 SkRect newRect; 372 if (!matrix.mapRect(&newRect, fRect)) { 373 return false; 374 } 375 376 // The matrix may have scaled us to zero (or due to float madness, we now have collapsed 377 // some dimension of the rect, so we need to check for that. Note that matrix must be 378 // scale and translate and mapRect() produces a sorted rect. So an empty rect indicates 379 // loss of precision. 380 if (!newRect.isFinite() || newRect.isEmpty()) { 381 return false; 382 } 383 384 // At this point, this is guaranteed to succeed, so we can modify dst. 385 dst->fRect = newRect; 386 387 // Since the only transforms that were allowed are scale and translate, the type 388 // remains unchanged. 389 dst->fType = fType; 390 391 if (kRect_Type == fType) { 392 SkASSERT(dst->isValid()); 393 return true; 394 } 395 if (kOval_Type == fType) { 396 for (int i = 0; i < 4; ++i) { 397 dst->fRadii[i].fX = SkScalarHalf(newRect.width()); 398 dst->fRadii[i].fY = SkScalarHalf(newRect.height()); 399 } 400 SkASSERT(dst->isValid()); 401 return true; 402 } 403 404 // Now scale each corner 405 SkScalar xScale = matrix.getScaleX(); 406 const bool flipX = xScale < 0; 407 if (flipX) { 408 xScale = -xScale; 409 } 410 SkScalar yScale = matrix.getScaleY(); 411 const bool flipY = yScale < 0; 412 if (flipY) { 413 yScale = -yScale; 414 } 415 416 // Scale the radii without respecting the flip. 417 for (int i = 0; i < 4; ++i) { 418 dst->fRadii[i].fX = fRadii[i].fX * xScale; 419 dst->fRadii[i].fY = fRadii[i].fY * yScale; 420 } 421 422 // Now swap as necessary. 423 if (flipX) { 424 if (flipY) { 425 // Swap with opposite corners 426 SkTSwap(dst->fRadii[kUpperLeft_Corner], dst->fRadii[kLowerRight_Corner]); 427 SkTSwap(dst->fRadii[kUpperRight_Corner], dst->fRadii[kLowerLeft_Corner]); 428 } else { 429 // Only swap in x 430 SkTSwap(dst->fRadii[kUpperRight_Corner], dst->fRadii[kUpperLeft_Corner]); 431 SkTSwap(dst->fRadii[kLowerRight_Corner], dst->fRadii[kLowerLeft_Corner]); 432 } 433 } else if (flipY) { 434 // Only swap in y 435 SkTSwap(dst->fRadii[kUpperLeft_Corner], dst->fRadii[kLowerLeft_Corner]); 436 SkTSwap(dst->fRadii[kUpperRight_Corner], dst->fRadii[kLowerRight_Corner]); 437 } 438 439 if (!AreRectAndRadiiValid(dst->fRect, dst->fRadii)) { 440 return false; 441 } 442 443 dst->scaleRadii(); 444 dst->isValid(); 445 446 return true; 447 } 448 449 /////////////////////////////////////////////////////////////////////////////// 450 451 void SkRRect::inset(SkScalar dx, SkScalar dy, SkRRect* dst) const { 452 SkRect r = fRect.makeInset(dx, dy); 453 bool degenerate = false; 454 if (r.fRight <= r.fLeft) { 455 degenerate = true; 456 r.fLeft = r.fRight = SkScalarAve(r.fLeft, r.fRight); 457 } 458 if (r.fBottom <= r.fTop) { 459 degenerate = true; 460 r.fTop = r.fBottom = SkScalarAve(r.fTop, r.fBottom); 461 } 462 if (degenerate) { 463 dst->fRect = r; 464 memset(dst->fRadii, 0, sizeof(dst->fRadii)); 465 dst->fType = kEmpty_Type; 466 return; 467 } 468 if (!r.isFinite()) { 469 *dst = SkRRect(); 470 return; 471 } 472 473 SkVector radii[4]; 474 memcpy(radii, fRadii, sizeof(radii)); 475 for (int i = 0; i < 4; ++i) { 476 if (radii[i].fX) { 477 radii[i].fX -= dx; 478 } 479 if (radii[i].fY) { 480 radii[i].fY -= dy; 481 } 482 } 483 dst->setRectRadii(r, radii); 484 } 485 486 /////////////////////////////////////////////////////////////////////////////// 487 488 size_t SkRRect::writeToMemory(void* buffer) const { 489 // Serialize only the rect and corners, but not the derived type tag. 490 memcpy(buffer, this, kSizeInMemory); 491 return kSizeInMemory; 492 } 493 494 void SkRRect::writeToBuffer(SkWBuffer* buffer) const { 495 // Serialize only the rect and corners, but not the derived type tag. 496 buffer->write(this, kSizeInMemory); 497 } 498 499 size_t SkRRect::readFromMemory(const void* buffer, size_t length) { 500 if (length < kSizeInMemory) { 501 return 0; 502 } 503 504 SkRRect raw; 505 memcpy(&raw, buffer, kSizeInMemory); 506 this->setRectRadii(raw.fRect, raw.fRadii); 507 return kSizeInMemory; 508 } 509 510 bool SkRRect::readFromBuffer(SkRBuffer* buffer) { 511 if (buffer->available() < kSizeInMemory) { 512 return false; 513 } 514 SkRRect storage; 515 return buffer->read(&storage, kSizeInMemory) && 516 (this->readFromMemory(&storage, kSizeInMemory) == kSizeInMemory); 517 } 518 519 #include "SkString.h" 520 #include "SkStringUtils.h" 521 522 void SkRRect::dump(bool asHex) const { 523 SkScalarAsStringType asType = asHex ? kHex_SkScalarAsStringType : kDec_SkScalarAsStringType; 524 525 fRect.dump(asHex); 526 SkString line("const SkPoint corners[] = {\n"); 527 for (int i = 0; i < 4; ++i) { 528 SkString strX, strY; 529 SkAppendScalar(&strX, fRadii[i].x(), asType); 530 SkAppendScalar(&strY, fRadii[i].y(), asType); 531 line.appendf(" { %s, %s },", strX.c_str(), strY.c_str()); 532 if (asHex) { 533 line.appendf(" /* %f %f */", fRadii[i].x(), fRadii[i].y()); 534 } 535 line.append("\n"); 536 } 537 line.append("};"); 538 SkDebugf("%s\n", line.c_str()); 539 } 540 541 /////////////////////////////////////////////////////////////////////////////// 542 543 /** 544 * We need all combinations of predicates to be true to have a "safe" radius value. 545 */ 546 static bool are_radius_check_predicates_valid(SkScalar rad, SkScalar min, SkScalar max) { 547 return (min <= max) && (rad <= max - min) && (min + rad <= max) && (max - rad >= min) && 548 rad >= 0; 549 } 550 551 bool SkRRect::isValid() const { 552 if (!AreRectAndRadiiValid(fRect, fRadii)) { 553 return false; 554 } 555 556 bool allRadiiZero = (0 == fRadii[0].fX && 0 == fRadii[0].fY); 557 bool allCornersSquare = (0 == fRadii[0].fX || 0 == fRadii[0].fY); 558 bool allRadiiSame = true; 559 560 for (int i = 1; i < 4; ++i) { 561 if (0 != fRadii[i].fX || 0 != fRadii[i].fY) { 562 allRadiiZero = false; 563 } 564 565 if (fRadii[i].fX != fRadii[i-1].fX || fRadii[i].fY != fRadii[i-1].fY) { 566 allRadiiSame = false; 567 } 568 569 if (0 != fRadii[i].fX && 0 != fRadii[i].fY) { 570 allCornersSquare = false; 571 } 572 } 573 bool patchesOfNine = radii_are_nine_patch(fRadii); 574 575 if (fType < 0 || fType > kLastType) { 576 return false; 577 } 578 579 switch (fType) { 580 case kEmpty_Type: 581 if (!fRect.isEmpty() || !allRadiiZero || !allRadiiSame || !allCornersSquare) { 582 return false; 583 } 584 break; 585 case kRect_Type: 586 if (fRect.isEmpty() || !allRadiiZero || !allRadiiSame || !allCornersSquare) { 587 return false; 588 } 589 break; 590 case kOval_Type: 591 if (fRect.isEmpty() || allRadiiZero || !allRadiiSame || allCornersSquare) { 592 return false; 593 } 594 595 for (int i = 0; i < 4; ++i) { 596 if (!SkScalarNearlyEqual(fRadii[i].fX, SkScalarHalf(fRect.width())) || 597 !SkScalarNearlyEqual(fRadii[i].fY, SkScalarHalf(fRect.height()))) { 598 return false; 599 } 600 } 601 break; 602 case kSimple_Type: 603 if (fRect.isEmpty() || allRadiiZero || !allRadiiSame || allCornersSquare) { 604 return false; 605 } 606 break; 607 case kNinePatch_Type: 608 if (fRect.isEmpty() || allRadiiZero || allRadiiSame || allCornersSquare || 609 !patchesOfNine) { 610 return false; 611 } 612 break; 613 case kComplex_Type: 614 if (fRect.isEmpty() || allRadiiZero || allRadiiSame || allCornersSquare || 615 patchesOfNine) { 616 return false; 617 } 618 break; 619 } 620 621 return true; 622 } 623 624 bool SkRRect::AreRectAndRadiiValid(const SkRect& rect, const SkVector radii[4]) { 625 if (!rect.isFinite() || !rect.isSorted()) { 626 return false; 627 } 628 for (int i = 0; i < 4; ++i) { 629 if (!are_radius_check_predicates_valid(radii[i].fX, rect.fLeft, rect.fRight) || 630 !are_radius_check_predicates_valid(radii[i].fY, rect.fTop, rect.fBottom)) { 631 return false; 632 } 633 } 634 return true; 635 } 636 /////////////////////////////////////////////////////////////////////////////// 637