Home | History | Annotate | Download | only in ccpr
      1 /*
      2  * Copyright 2017 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #include "GrCCGeometry.h"
      9 
     10 #include "GrTypes.h"
     11 #include "GrPathUtils.h"
     12 #include <algorithm>
     13 #include <cmath>
     14 #include <cstdlib>
     15 
     16 // We convert between SkPoint and Sk2f freely throughout this file.
     17 GR_STATIC_ASSERT(SK_SCALAR_IS_FLOAT);
     18 GR_STATIC_ASSERT(2 * sizeof(float) == sizeof(SkPoint));
     19 GR_STATIC_ASSERT(0 == offsetof(SkPoint, fX));
     20 
     21 void GrCCGeometry::beginPath() {
     22     SkASSERT(!fBuildingContour);
     23     fVerbs.push_back(Verb::kBeginPath);
     24 }
     25 
     26 void GrCCGeometry::beginContour(const SkPoint& devPt) {
     27     SkASSERT(!fBuildingContour);
     28 
     29     fCurrFanPoint = fCurrAnchorPoint = devPt;
     30 
     31     // Store the current verb count in the fTriangles field for now. When we close the contour we
     32     // will use this value to calculate the actual number of triangles in its fan.
     33     fCurrContourTallies = {fVerbs.count(), 0, 0};
     34 
     35     fPoints.push_back(devPt);
     36     fVerbs.push_back(Verb::kBeginContour);
     37 
     38     SkDEBUGCODE(fBuildingContour = true);
     39 }
     40 
     41 void GrCCGeometry::lineTo(const SkPoint& devPt) {
     42     SkASSERT(fBuildingContour);
     43     SkASSERT(fCurrFanPoint == fPoints.back());
     44     fCurrFanPoint = devPt;
     45     fPoints.push_back(devPt);
     46     fVerbs.push_back(Verb::kLineTo);
     47 }
     48 
     49 static inline Sk2f normalize(const Sk2f& n) {
     50     Sk2f nn = n*n;
     51     return n * (nn + SkNx_shuffle<1,0>(nn)).rsqrt();
     52 }
     53 
     54 static inline float dot(const Sk2f& a, const Sk2f& b) {
     55     float product[2];
     56     (a * b).store(product);
     57     return product[0] + product[1];
     58 }
     59 
     60 static inline bool are_collinear(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2) {
     61     static constexpr float kFlatnessTolerance = 4; // 1/4 of a pixel.
     62 
     63     // Area (times 2) of the triangle.
     64     Sk2f a = (p0 - p1) * SkNx_shuffle<1,0>(p1 - p2);
     65     a = (a - SkNx_shuffle<1,0>(a)).abs();
     66 
     67     // Bounding box of the triangle.
     68     Sk2f bbox0 = Sk2f::Min(Sk2f::Min(p0, p1), p2);
     69     Sk2f bbox1 = Sk2f::Max(Sk2f::Max(p0, p1), p2);
     70 
     71     // The triangle is linear if its area is within a fraction of the largest bounding box
     72     // dimension, or else if its area is within a fraction of a pixel.
     73     return (a * (kFlatnessTolerance/2) < Sk2f::Max(bbox1 - bbox0, 1)).anyTrue();
     74 }
     75 
     76 // Returns whether the (convex) curve segment is monotonic with respect to [endPt - startPt].
     77 static inline bool is_convex_curve_monotonic(const Sk2f& startPt, const Sk2f& startTan,
     78                                              const Sk2f& endPt, const Sk2f& endTan) {
     79     Sk2f v = endPt - startPt;
     80     float dot0 = dot(startTan, v);
     81     float dot1 = dot(endTan, v);
     82 
     83     // A small, negative tolerance handles floating-point error in the case when one tangent
     84     // approaches 0 length, meaning the (convex) curve segment is effectively a flat line.
     85     float tolerance = -std::max(std::abs(dot0), std::abs(dot1)) * SK_ScalarNearlyZero;
     86     return dot0 >= tolerance && dot1 >= tolerance;
     87 }
     88 
     89 static inline Sk2f lerp(const Sk2f& a, const Sk2f& b, const Sk2f& t) {
     90     return SkNx_fma(t, b - a, a);
     91 }
     92 
     93 void GrCCGeometry::quadraticTo(const SkPoint& devP0, const SkPoint& devP1) {
     94     SkASSERT(fBuildingContour);
     95     SkASSERT(fCurrFanPoint == fPoints.back());
     96 
     97     Sk2f p0 = Sk2f::Load(&fCurrFanPoint);
     98     Sk2f p1 = Sk2f::Load(&devP0);
     99     Sk2f p2 = Sk2f::Load(&devP1);
    100     fCurrFanPoint = devP1;
    101 
    102     this->appendMonotonicQuadratics(p0, p1, p2);
    103 }
    104 
    105 inline void GrCCGeometry::appendMonotonicQuadratics(const Sk2f& p0, const Sk2f& p1,
    106                                                     const Sk2f& p2) {
    107     Sk2f tan0 = p1 - p0;
    108     Sk2f tan1 = p2 - p1;
    109 
    110     // This should almost always be this case for well-behaved curves in the real world.
    111     if (is_convex_curve_monotonic(p0, tan0, p2, tan1)) {
    112         this->appendSingleMonotonicQuadratic(p0, p1, p2);
    113         return;
    114     }
    115 
    116     // Chop the curve into two segments with equal curvature. To do this we find the T value whose
    117     // tangent is perpendicular to the vector that bisects tan0 and -tan1.
    118     Sk2f n = normalize(tan0) - normalize(tan1);
    119 
    120     // This tangent can be found where (dQ(t) dot n) = 0:
    121     //
    122     //   0 = (dQ(t) dot n) = | 2*t  1 | * | p0 - 2*p1 + p2 | * | n |
    123     //                                    | -2*p0 + 2*p1   |   | . |
    124     //
    125     //                     = | 2*t  1 | * | tan1 - tan0 | * | n |
    126     //                                    | 2*tan0      |   | . |
    127     //
    128     //                     = 2*t * ((tan1 - tan0) dot n) + (2*tan0 dot n)
    129     //
    130     //   t = (tan0 dot n) / ((tan0 - tan1) dot n)
    131     Sk2f dQ1n = (tan0 - tan1) * n;
    132     Sk2f dQ0n = tan0 * n;
    133     Sk2f t = (dQ0n + SkNx_shuffle<1,0>(dQ0n)) / (dQ1n + SkNx_shuffle<1,0>(dQ1n));
    134     t = Sk2f::Min(Sk2f::Max(t, 0), 1); // Clamp for FP error.
    135 
    136     Sk2f p01 = SkNx_fma(t, tan0, p0);
    137     Sk2f p12 = SkNx_fma(t, tan1, p1);
    138     Sk2f p012 = lerp(p01, p12, t);
    139 
    140     this->appendSingleMonotonicQuadratic(p0, p01, p012);
    141     this->appendSingleMonotonicQuadratic(p012, p12, p2);
    142 }
    143 
    144 inline void GrCCGeometry::appendSingleMonotonicQuadratic(const Sk2f& p0, const Sk2f& p1,
    145                                                          const Sk2f& p2) {
    146     SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1]));
    147 
    148     // Don't send curves to the GPU if we know they are nearly flat (or just very small).
    149     if (are_collinear(p0, p1, p2)) {
    150         p2.store(&fPoints.push_back());
    151         fVerbs.push_back(Verb::kLineTo);
    152         return;
    153     }
    154 
    155     p1.store(&fPoints.push_back());
    156     p2.store(&fPoints.push_back());
    157     fVerbs.push_back(Verb::kMonotonicQuadraticTo);
    158     ++fCurrContourTallies.fQuadratics;
    159 }
    160 
    161 using ExcludedTerm = GrPathUtils::ExcludedTerm;
    162 
    163 // Calculates the padding to apply around inflection points, in homogeneous parametric coordinates.
    164 //
    165 // More specifically, if the inflection point lies at C(t/s), then C((t +/- returnValue) / s) will
    166 // be the two points on the curve at which a square box with radius "padRadius" will have a corner
    167 // that touches the inflection point's tangent line.
    168 //
    169 // A serpentine cubic has two inflection points, so this method takes Sk2f and computes the padding
    170 // for both in SIMD.
    171 static inline Sk2f calc_inflect_homogeneous_padding(float padRadius, const Sk2f& t, const Sk2f& s,
    172                                                     const SkMatrix& CIT, ExcludedTerm skipTerm) {
    173     SkASSERT(padRadius >= 0);
    174 
    175     Sk2f Clx = s*s*s;
    176     Sk2f Cly = (ExcludedTerm::kLinearTerm == skipTerm) ? s*s*t*-3 : s*t*t*3;
    177 
    178     Sk2f Lx = CIT[0] * Clx + CIT[3] * Cly;
    179     Sk2f Ly = CIT[1] * Clx + CIT[4] * Cly;
    180 
    181     float ret[2];
    182     Sk2f bloat = padRadius * (Lx.abs() + Ly.abs());
    183     (bloat * s >= 0).thenElse(bloat, -bloat).store(ret);
    184 
    185     ret[0] = cbrtf(ret[0]);
    186     ret[1] = cbrtf(ret[1]);
    187     return Sk2f::Load(ret);
    188 }
    189 
    190 static inline void swap_if_greater(float& a, float& b) {
    191     if (a > b) {
    192         std::swap(a, b);
    193     }
    194 }
    195 
    196 // Calculates all parameter values for a loop at which points a square box with radius "padRadius"
    197 // will have a corner that touches a tangent line from the intersection.
    198 //
    199 // T2 must contain the lesser parameter value of the loop intersection in its first component, and
    200 // the greater in its second.
    201 //
    202 // roots[0] will be filled with 1 or 3 sorted parameter values, representing the padding points
    203 // around the first tangent. roots[1] will be filled with the padding points for the second tangent.
    204 static inline void calc_loop_intersect_padding_pts(float padRadius, const Sk2f& T2,
    205                                                   const SkMatrix& CIT, ExcludedTerm skipTerm,
    206                                                   SkSTArray<3, float, true> roots[2]) {
    207     SkASSERT(padRadius >= 0);
    208     SkASSERT(T2[0] <= T2[1]);
    209     SkASSERT(roots[0].empty());
    210     SkASSERT(roots[1].empty());
    211 
    212     Sk2f T1 = SkNx_shuffle<1,0>(T2);
    213     Sk2f Cl = (ExcludedTerm::kLinearTerm == skipTerm) ? T2*-2 - T1 : T2*T2 + T2*T1*2;
    214     Sk2f Lx = Cl * CIT[3] + CIT[0];
    215     Sk2f Ly = Cl * CIT[4] + CIT[1];
    216 
    217     Sk2f bloat = Sk2f(+.5f * padRadius, -.5f * padRadius) * (Lx.abs() + Ly.abs());
    218     Sk2f q = (1.f/3) * (T2 - T1);
    219 
    220     Sk2f qqq = q*q*q;
    221     Sk2f discr = qqq*bloat*2 + bloat*bloat;
    222 
    223     float numRoots[2], D[2];
    224     (discr < 0).thenElse(3, 1).store(numRoots);
    225     (T2 - q).store(D);
    226 
    227     // Values for calculating one root.
    228     float R[2], QQ[2];
    229     if ((discr >= 0).anyTrue()) {
    230         Sk2f r = qqq + bloat;
    231         Sk2f s = r.abs() + discr.sqrt();
    232         (r > 0).thenElse(-s, s).store(R);
    233         (q*q).store(QQ);
    234     }
    235 
    236     // Values for calculating three roots.
    237     float P[2], cosTheta3[2];
    238     if ((discr < 0).anyTrue()) {
    239         (q.abs() * -2).store(P);
    240         ((q >= 0).thenElse(1, -1) + bloat / qqq.abs()).store(cosTheta3);
    241     }
    242 
    243     for (int i = 0; i < 2; ++i) {
    244         if (1 == numRoots[i]) {
    245             float A = cbrtf(R[i]);
    246             float B = A != 0 ? QQ[i]/A : 0;
    247             roots[i].push_back(A + B + D[i]);
    248             continue;
    249         }
    250 
    251         static constexpr float k2PiOver3 = 2 * SK_ScalarPI / 3;
    252         float theta = std::acos(cosTheta3[i]) * (1.f/3);
    253         roots[i].push_back(P[i] * std::cos(theta) + D[i]);
    254         roots[i].push_back(P[i] * std::cos(theta + k2PiOver3) + D[i]);
    255         roots[i].push_back(P[i] * std::cos(theta - k2PiOver3) + D[i]);
    256 
    257         // Sort the three roots.
    258         swap_if_greater(roots[i][0], roots[i][1]);
    259         swap_if_greater(roots[i][1], roots[i][2]);
    260         swap_if_greater(roots[i][0], roots[i][1]);
    261     }
    262 }
    263 
    264 static inline Sk2f first_unless_nearly_zero(const Sk2f& a, const Sk2f& b) {
    265     Sk2f aa = a*a;
    266     aa += SkNx_shuffle<1,0>(aa);
    267     SkASSERT(aa[0] == aa[1]);
    268 
    269     Sk2f bb = b*b;
    270     bb += SkNx_shuffle<1,0>(bb);
    271     SkASSERT(bb[0] == bb[1]);
    272 
    273     return (aa > bb * SK_ScalarNearlyZero).thenElse(a, b);
    274 }
    275 
    276 static inline bool is_cubic_nearly_quadratic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
    277                                              const Sk2f& p3, Sk2f& tan0, Sk2f& tan3, Sk2f& c) {
    278     tan0 = first_unless_nearly_zero(p1 - p0, p2 - p0);
    279     tan3 = first_unless_nearly_zero(p3 - p2, p3 - p1);
    280 
    281     Sk2f c1 = SkNx_fma(Sk2f(1.5f), tan0, p0);
    282     Sk2f c2 = SkNx_fma(Sk2f(-1.5f), tan3, p3);
    283     c = (c1 + c2) * .5f; // Hopefully optimized out if not used?
    284 
    285     return ((c1 - c2).abs() <= 1).allTrue();
    286 }
    287 
    288 void GrCCGeometry::cubicTo(const SkPoint& devP1, const SkPoint& devP2, const SkPoint& devP3,
    289                            float inflectPad, float loopIntersectPad) {
    290     SkASSERT(fBuildingContour);
    291     SkASSERT(fCurrFanPoint == fPoints.back());
    292 
    293     SkPoint devPts[4] = {fCurrFanPoint, devP1, devP2, devP3};
    294     Sk2f p0 = Sk2f::Load(&fCurrFanPoint);
    295     Sk2f p1 = Sk2f::Load(&devP1);
    296     Sk2f p2 = Sk2f::Load(&devP2);
    297     Sk2f p3 = Sk2f::Load(&devP3);
    298     fCurrFanPoint = devP3;
    299 
    300     // Don't crunch on the curve and inflate geometry if it is nearly flat (or just very small).
    301     if (are_collinear(p0, p1, p2) &&
    302         are_collinear(p1, p2, p3) &&
    303         are_collinear(p0, (p1 + p2) * .5f, p3)) {
    304         p3.store(&fPoints.push_back());
    305         fVerbs.push_back(Verb::kLineTo);
    306         return;
    307     }
    308 
    309     // Also detect near-quadratics ahead of time.
    310     Sk2f tan0, tan3, c;
    311     if (is_cubic_nearly_quadratic(p0, p1, p2, p3, tan0, tan3, c)) {
    312         this->appendMonotonicQuadratics(p0, c, p3);
    313         return;
    314     }
    315 
    316     double tt[2], ss[2];
    317     fCurrCubicType = SkClassifyCubic(devPts, tt, ss);
    318     SkASSERT(!SkCubicIsDegenerate(fCurrCubicType)); // Should have been caught above.
    319 
    320     SkMatrix CIT;
    321     ExcludedTerm skipTerm = GrPathUtils::calcCubicInverseTransposePowerBasisMatrix(devPts, &CIT);
    322     SkASSERT(ExcludedTerm::kNonInvertible != skipTerm); // Should have been caught above.
    323     SkASSERT(0 == CIT[6]);
    324     SkASSERT(0 == CIT[7]);
    325     SkASSERT(1 == CIT[8]);
    326 
    327     // Each cubic has five different sections (not always inside t=[0..1]):
    328     //
    329     //   1. The section before the first inflection or loop intersection point, with padding.
    330     //   2. The section that passes through the first inflection/intersection (aka the K,L
    331     //      intersection point or T=tt[0]/ss[0]).
    332     //   3. The section between the two inflections/intersections, with padding.
    333     //   4. The section that passes through the second inflection/intersection (aka the K,M
    334     //      intersection point or T=tt[1]/ss[1]).
    335     //   5. The section after the second inflection/intersection, with padding.
    336     //
    337     // Sections 1,3,5 can be rendered directly using the CCPR cubic shader.
    338     //
    339     // Sections 2 & 4 must be approximated. For loop intersections we render them with
    340     // quadratic(s), and when passing through an inflection point we use a plain old flat line.
    341     //
    342     // We find T0..T3 below to be the dividing points between these five sections.
    343     float T0, T1, T2, T3;
    344     if (SkCubicType::kLoop != fCurrCubicType) {
    345         Sk2f t = Sk2f(static_cast<float>(tt[0]), static_cast<float>(tt[1]));
    346         Sk2f s = Sk2f(static_cast<float>(ss[0]), static_cast<float>(ss[1]));
    347         Sk2f pad = calc_inflect_homogeneous_padding(inflectPad, t, s, CIT, skipTerm);
    348 
    349         float T[2];
    350         ((t - pad) / s).store(T);
    351         T0 = T[0];
    352         T2 = T[1];
    353 
    354         ((t + pad) / s).store(T);
    355         T1 = T[0];
    356         T3 = T[1];
    357     } else {
    358         const float T[2] = {static_cast<float>(tt[0]/ss[0]), static_cast<float>(tt[1]/ss[1])};
    359         SkSTArray<3, float, true> roots[2];
    360         calc_loop_intersect_padding_pts(loopIntersectPad, Sk2f::Load(T), CIT, skipTerm, roots);
    361         T0 = roots[0].front();
    362         if (1 == roots[0].count() || 1 == roots[1].count()) {
    363             // The loop is tighter than our desired padding. Collapse the middle section to a point
    364             // somewhere in the middle-ish of the loop and Sections 2 & 4 will approximate the the
    365             // whole thing with quadratics.
    366             T1 = T2 = (T[0] + T[1]) * .5f;
    367         } else {
    368             T1 = roots[0][1];
    369             T2 = roots[1][1];
    370         }
    371         T3 = roots[1].back();
    372     }
    373 
    374     // Guarantee that T0..T3 are monotonic.
    375     if (T0 > T3) {
    376         // This is not a mathematically valid scenario. The only reason it would happen is if
    377         // padding is very small and we have encountered FP rounding error.
    378         T0 = T1 = T2 = T3 = (T0 + T3) / 2;
    379     } else if (T1 > T2) {
    380         // This just means padding before the middle section overlaps the padding after it. We
    381         // collapse the middle section to a single point that splits the difference between the
    382         // overlap in padding.
    383         T1 = T2 = (T1 + T2) / 2;
    384     }
    385     // Clamp T1 & T2 inside T0..T3. The only reason this would be necessary is if we have
    386     // encountered FP rounding error.
    387     T1 = std::max(T0, std::min(T1, T3));
    388     T2 = std::max(T0, std::min(T2, T3));
    389 
    390     // Next we chop the cubic up at all T0..T3 inside 0..1 and store the resulting segments.
    391     if (T1 >= 1) {
    392         // Only sections 1 & 2 can be in 0..1.
    393         this->chopCubic<&GrCCGeometry::appendMonotonicCubics,
    394                         &GrCCGeometry::appendCubicApproximation>(p0, p1, p2, p3, T0);
    395         return;
    396     }
    397 
    398     if (T2 <= 0) {
    399         // Only sections 4 & 5 can be in 0..1.
    400         this->chopCubic<&GrCCGeometry::appendCubicApproximation,
    401                         &GrCCGeometry::appendMonotonicCubics>(p0, p1, p2, p3, T3);
    402         return;
    403     }
    404 
    405     Sk2f midp0, midp1; // These hold the first two bezier points of the middle section, if needed.
    406 
    407     if (T1 > 0) {
    408         Sk2f T1T1 = Sk2f(T1);
    409         Sk2f ab1 = lerp(p0, p1, T1T1);
    410         Sk2f bc1 = lerp(p1, p2, T1T1);
    411         Sk2f cd1 = lerp(p2, p3, T1T1);
    412         Sk2f abc1 = lerp(ab1, bc1, T1T1);
    413         Sk2f bcd1 = lerp(bc1, cd1, T1T1);
    414         Sk2f abcd1 = lerp(abc1, bcd1, T1T1);
    415 
    416         // Sections 1 & 2.
    417         this->chopCubic<&GrCCGeometry::appendMonotonicCubics,
    418                         &GrCCGeometry::appendCubicApproximation>(p0, ab1, abc1, abcd1, T0/T1);
    419 
    420         if (T2 >= 1) {
    421             // The rest of the curve is Section 3 (middle section).
    422             this->appendMonotonicCubics(abcd1, bcd1, cd1, p3);
    423             return;
    424         }
    425 
    426         // Now calculate the first two bezier points of the middle section. The final two will come
    427         // from when we chop the other side, as that is numerically more stable.
    428         midp0 = abcd1;
    429         midp1 = lerp(abcd1, bcd1, Sk2f((T2 - T1) / (1 - T1)));
    430     } else if (T2 >= 1) {
    431         // The entire cubic is Section 3 (middle section).
    432         this->appendMonotonicCubics(p0, p1, p2, p3);
    433         return;
    434     }
    435 
    436     SkASSERT(T2 > 0 && T2 < 1);
    437 
    438     Sk2f T2T2 = Sk2f(T2);
    439     Sk2f ab2 = lerp(p0, p1, T2T2);
    440     Sk2f bc2 = lerp(p1, p2, T2T2);
    441     Sk2f cd2 = lerp(p2, p3, T2T2);
    442     Sk2f abc2 = lerp(ab2, bc2, T2T2);
    443     Sk2f bcd2 = lerp(bc2, cd2, T2T2);
    444     Sk2f abcd2 = lerp(abc2, bcd2, T2T2);
    445 
    446     if (T1 <= 0) {
    447         // The curve begins at Section 3 (middle section).
    448         this->appendMonotonicCubics(p0, ab2, abc2, abcd2);
    449     } else if (T2 > T1) {
    450         // Section 3 (middle section).
    451         Sk2f midp2 = lerp(abc2, abcd2, T1/T2);
    452         this->appendMonotonicCubics(midp0, midp1, midp2, abcd2);
    453     }
    454 
    455     // Sections 4 & 5.
    456     this->chopCubic<&GrCCGeometry::appendCubicApproximation,
    457                     &GrCCGeometry::appendMonotonicCubics>(abcd2, bcd2, cd2, p3, (T3-T2) / (1-T2));
    458 }
    459 
    460 template<GrCCGeometry::AppendCubicFn AppendLeftRight>
    461 inline void GrCCGeometry::chopCubicAtMidTangent(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
    462                                                 const Sk2f& p3, const Sk2f& tan0,
    463                                                 const Sk2f& tan3, int maxFutureSubdivisions) {
    464     // Find the T value whose tangent is perpendicular to the vector that bisects tan0 and -tan3.
    465     Sk2f n = normalize(tan0) - normalize(tan3);
    466 
    467     float a = 3 * dot(p3 + (p1 - p2)*3 - p0, n);
    468     float b = 6 * dot(p0 - p1*2 + p2, n);
    469     float c = 3 * dot(p1 - p0, n);
    470 
    471     float discr = b*b - 4*a*c;
    472     if (discr < 0) {
    473         // If this is the case then the cubic must be nearly flat.
    474         (this->*AppendLeftRight)(p0, p1, p2, p3, maxFutureSubdivisions);
    475         return;
    476     }
    477 
    478     float q = -.5f * (b + copysignf(std::sqrt(discr), b));
    479     float m = .5f*q*a;
    480     float T = std::abs(q*q - m) < std::abs(a*c - m) ? q/a : c/q;
    481 
    482     this->chopCubic<AppendLeftRight, AppendLeftRight>(p0, p1, p2, p3, T, maxFutureSubdivisions);
    483 }
    484 
    485 template<GrCCGeometry::AppendCubicFn AppendLeft, GrCCGeometry::AppendCubicFn AppendRight>
    486 inline void GrCCGeometry::chopCubic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
    487                                     const Sk2f& p3, float T, int maxFutureSubdivisions) {
    488     if (T >= 1) {
    489         (this->*AppendLeft)(p0, p1, p2, p3, maxFutureSubdivisions);
    490         return;
    491     }
    492 
    493     if (T <= 0) {
    494         (this->*AppendRight)(p0, p1, p2, p3, maxFutureSubdivisions);
    495         return;
    496     }
    497 
    498     Sk2f TT = T;
    499     Sk2f ab = lerp(p0, p1, TT);
    500     Sk2f bc = lerp(p1, p2, TT);
    501     Sk2f cd = lerp(p2, p3, TT);
    502     Sk2f abc = lerp(ab, bc, TT);
    503     Sk2f bcd = lerp(bc, cd, TT);
    504     Sk2f abcd = lerp(abc, bcd, TT);
    505     (this->*AppendLeft)(p0, ab, abc, abcd, maxFutureSubdivisions);
    506     (this->*AppendRight)(abcd, bcd, cd, p3, maxFutureSubdivisions);
    507 }
    508 
    509 void GrCCGeometry::appendMonotonicCubics(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
    510                                          const Sk2f& p3, int maxSubdivisions) {
    511     SkASSERT(maxSubdivisions >= 0);
    512     if ((p0 == p3).allTrue()) {
    513         return;
    514     }
    515 
    516     if (maxSubdivisions) {
    517         Sk2f tan0 = first_unless_nearly_zero(p1 - p0, p2 - p0);
    518         Sk2f tan3 = first_unless_nearly_zero(p3 - p2, p3 - p1);
    519 
    520         if (!is_convex_curve_monotonic(p0, tan0, p3, tan3)) {
    521             this->chopCubicAtMidTangent<&GrCCGeometry::appendMonotonicCubics>(p0, p1, p2, p3,
    522                                                                               tan0, tan3,
    523                                                                               maxSubdivisions - 1);
    524             return;
    525         }
    526     }
    527 
    528     SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1]));
    529 
    530     // Don't send curves to the GPU if we know they are nearly flat (or just very small).
    531     // Since the cubic segment is known to be convex at this point, our flatness check is simple.
    532     if (are_collinear(p0, (p1 + p2) * .5f, p3)) {
    533         p3.store(&fPoints.push_back());
    534         fVerbs.push_back(Verb::kLineTo);
    535         return;
    536     }
    537 
    538     p1.store(&fPoints.push_back());
    539     p2.store(&fPoints.push_back());
    540     p3.store(&fPoints.push_back());
    541     fVerbs.push_back(Verb::kMonotonicCubicTo);
    542     ++fCurrContourTallies.fCubics;
    543 }
    544 
    545 void GrCCGeometry::appendCubicApproximation(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
    546                                             const Sk2f& p3, int maxSubdivisions) {
    547     SkASSERT(maxSubdivisions >= 0);
    548     if ((p0 == p3).allTrue()) {
    549         return;
    550     }
    551 
    552     if (SkCubicType::kLoop != fCurrCubicType && SkCubicType::kQuadratic != fCurrCubicType) {
    553         // This section passes through an inflection point, so we can get away with a flat line.
    554         // This can cause some curves to feel slightly more flat when inspected rigorously back and
    555         // forth against another renderer, but for now this seems acceptable given the simplicity.
    556         SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1]));
    557         p3.store(&fPoints.push_back());
    558         fVerbs.push_back(Verb::kLineTo);
    559         return;
    560     }
    561 
    562     Sk2f tan0, tan3, c;
    563     if (!is_cubic_nearly_quadratic(p0, p1, p2, p3, tan0, tan3, c) && maxSubdivisions) {
    564         this->chopCubicAtMidTangent<&GrCCGeometry::appendCubicApproximation>(p0, p1, p2, p3,
    565                                                                              tan0, tan3,
    566                                                                              maxSubdivisions - 1);
    567         return;
    568     }
    569 
    570     if (maxSubdivisions) {
    571         this->appendMonotonicQuadratics(p0, c, p3);
    572     } else {
    573         this->appendSingleMonotonicQuadratic(p0, c, p3);
    574     }
    575 }
    576 
    577 GrCCGeometry::PrimitiveTallies GrCCGeometry::endContour() {
    578     SkASSERT(fBuildingContour);
    579     SkASSERT(fVerbs.count() >= fCurrContourTallies.fTriangles);
    580 
    581     // The fTriangles field currently contains this contour's starting verb index. We can now
    582     // use it to calculate the size of the contour's fan.
    583     int fanSize = fVerbs.count() - fCurrContourTallies.fTriangles;
    584     if (fCurrFanPoint == fCurrAnchorPoint) {
    585         --fanSize;
    586         fVerbs.push_back(Verb::kEndClosedContour);
    587     } else {
    588         fVerbs.push_back(Verb::kEndOpenContour);
    589     }
    590 
    591     fCurrContourTallies.fTriangles = SkTMax(fanSize - 2, 0);
    592 
    593     SkDEBUGCODE(fBuildingContour = false);
    594     return fCurrContourTallies;
    595 }
    596