Home | History | Annotate | Download | only in ccpr
      1 /*
      2  * Copyright 2017 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #ifndef GrGrCCGeometry_DEFINED
      9 #define GrGrCCGeometry_DEFINED
     10 
     11 #include "SkGeometry.h"
     12 #include "SkNx.h"
     13 #include "SkPoint.h"
     14 #include "SkTArray.h"
     15 
     16 /**
     17  * This class chops device-space contours up into a series of segments that CCPR knows how to
     18  * render. (See GrCCGeometry::Verb.)
     19  *
     20  * NOTE: This must be done in device space, since an affine transformation can change whether a
     21  * curve is monotonic.
     22  */
     23 class GrCCGeometry {
     24 public:
     25     // These are the verbs that CCPR knows how to draw. If a path has any segments that don't map to
     26     // this list, then they are chopped into smaller ones that do. A list of these comprise a
     27     // compact representation of what can later be expanded into GPU instance data.
     28     enum class Verb : uint8_t {
     29         kBeginPath, // Included only for caller convenience.
     30         kBeginContour,
     31         kLineTo,
     32         kMonotonicQuadraticTo, // Monotonic relative to the vector between its endpoints [P2 - P0].
     33         kMonotonicCubicTo,
     34         kEndClosedContour, // endPt == startPt.
     35         kEndOpenContour // endPt != startPt.
     36     };
     37 
     38     // These tallies track numbers of CCPR primitives are required to draw a contour.
     39     struct PrimitiveTallies {
     40         int fTriangles; // Number of triangles in the contour's fan.
     41         int fQuadratics;
     42         int fCubics;
     43 
     44         void operator+=(const PrimitiveTallies&);
     45         PrimitiveTallies operator-(const PrimitiveTallies&) const;
     46         bool operator==(const PrimitiveTallies&);
     47     };
     48 
     49     GrCCGeometry(int numSkPoints = 0, int numSkVerbs = 0)
     50             : fPoints(numSkPoints * 3) // Reserve for a 3x expansion in points and verbs.
     51             , fVerbs(numSkVerbs * 3) {}
     52 
     53     const SkTArray<SkPoint, true>& points() const { SkASSERT(!fBuildingContour); return fPoints; }
     54     const SkTArray<Verb, true>& verbs() const { SkASSERT(!fBuildingContour); return fVerbs; }
     55 
     56     void reset() {
     57         SkASSERT(!fBuildingContour);
     58         fPoints.reset();
     59         fVerbs.reset();
     60     }
     61 
     62     // This is included in case the caller needs to discard previously added contours. It is up to
     63     // the caller to track counts and ensure we don't pop back into the middle of a different
     64     // contour.
     65     void resize_back(int numPoints, int numVerbs) {
     66         SkASSERT(!fBuildingContour);
     67         fPoints.resize_back(numPoints);
     68         fVerbs.resize_back(numVerbs);
     69         SkASSERT(fVerbs.empty() || fVerbs.back() == Verb::kEndOpenContour ||
     70                  fVerbs.back() == Verb::kEndClosedContour);
     71     }
     72 
     73     void beginPath();
     74     void beginContour(const SkPoint& devPt);
     75     void lineTo(const SkPoint& devPt);
     76     void quadraticTo(const SkPoint& devP1, const SkPoint& devP2);
     77 
     78     // We pass through inflection points and loop intersections using a line and quadratic(s)
     79     // respectively. 'inflectPad' and 'loopIntersectPad' specify how close (in pixels) cubic
     80     // segments are allowed to get to these points. For normal rendering you will want to use the
     81     // default values, but these can be overridden for testing purposes.
     82     //
     83     // NOTE: loops do appear to require two full pixels of padding around the intersection point.
     84     //       With just one pixel-width of pad, we start to see bad pixels. Ultimately this has a
     85     //       minimal effect on the total amount of segments produced. Most sections that pass
     86     //       through the loop intersection can be approximated with a single quadratic anyway,
     87     //       regardless of whether we are use one pixel of pad or two (1.622 avg. quads per loop
     88     //       intersection vs. 1.489 on the tiger).
     89     void cubicTo(const SkPoint& devP1, const SkPoint& devP2, const SkPoint& devP3,
     90                  float inflectPad = 0.55f, float loopIntersectPad = 2);
     91 
     92     PrimitiveTallies endContour(); // Returns the numbers of primitives needed to draw the contour.
     93 
     94 private:
     95     inline void appendMonotonicQuadratics(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2);
     96     inline void appendSingleMonotonicQuadratic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2);
     97 
     98     using AppendCubicFn = void(GrCCGeometry::*)(const Sk2f& p0, const Sk2f& p1,
     99                                                 const Sk2f& p2, const Sk2f& p3,
    100                                                 int maxSubdivisions);
    101     static constexpr int kMaxSubdivionsPerCubicSection = 2;
    102 
    103     template<AppendCubicFn AppendLeftRight>
    104     inline void chopCubicAtMidTangent(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
    105                                       const Sk2f& p3, const Sk2f& tan0, const Sk2f& tan3,
    106                                       int maxFutureSubdivisions = kMaxSubdivionsPerCubicSection);
    107 
    108     template<AppendCubicFn AppendLeft, AppendCubicFn AppendRight>
    109     inline void chopCubic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, const Sk2f& p3,
    110                           float T, int maxFutureSubdivisions = kMaxSubdivionsPerCubicSection);
    111 
    112     void appendMonotonicCubics(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, const Sk2f& p3,
    113                                int maxSubdivisions = kMaxSubdivionsPerCubicSection);
    114     void appendCubicApproximation(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, const Sk2f& p3,
    115                                   int maxSubdivisions = kMaxSubdivionsPerCubicSection);
    116 
    117     // Transient state used while building a contour.
    118     SkPoint                         fCurrAnchorPoint;
    119     SkPoint                         fCurrFanPoint;
    120     PrimitiveTallies                fCurrContourTallies;
    121     SkCubicType                     fCurrCubicType;
    122     SkDEBUGCODE(bool                fBuildingContour = false);
    123 
    124     // TODO: These points could eventually be written directly to block-allocated GPU buffers.
    125     SkSTArray<128, SkPoint, true>   fPoints;
    126     SkSTArray<128, Verb, true>      fVerbs;
    127 };
    128 
    129 inline void GrCCGeometry::PrimitiveTallies::operator+=(const PrimitiveTallies& b) {
    130     fTriangles += b.fTriangles;
    131     fQuadratics += b.fQuadratics;
    132     fCubics += b.fCubics;
    133 }
    134 
    135 GrCCGeometry::PrimitiveTallies
    136 inline GrCCGeometry::PrimitiveTallies::operator-(const PrimitiveTallies& b) const {
    137     return {fTriangles - b.fTriangles,
    138             fQuadratics - b.fQuadratics,
    139             fCubics - b.fCubics};
    140 }
    141 
    142 inline bool GrCCGeometry::PrimitiveTallies::operator==(const PrimitiveTallies& b) {
    143     return fTriangles == b.fTriangles && fQuadratics == b.fQuadratics && fCubics == b.fCubics;
    144 }
    145 
    146 #endif
    147