Home | History | Annotate | Download | only in lib_src
      1 /*----------------------------------------------------------------------------
      2  *
      3  * File:
      4  * eas_math.h
      5  *
      6  * Contents and purpose:
      7  * Contains common math routines for the various audio engines.
      8  *
      9  *
     10  * Copyright Sonic Network Inc. 2005
     11 
     12  * Licensed under the Apache License, Version 2.0 (the "License");
     13  * you may not use this file except in compliance with the License.
     14  * You may obtain a copy of the License at
     15  *
     16  *      http://www.apache.org/licenses/LICENSE-2.0
     17  *
     18  * Unless required by applicable law or agreed to in writing, software
     19  * distributed under the License is distributed on an "AS IS" BASIS,
     20  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     21  * See the License for the specific language governing permissions and
     22  * limitations under the License.
     23  *
     24  *----------------------------------------------------------------------------
     25  * Revision Control:
     26  *   $Revision: 584 $
     27  *   $Date: 2007-03-08 09:49:24 -0800 (Thu, 08 Mar 2007) $
     28  *----------------------------------------------------------------------------
     29 */
     30 
     31 #ifndef _EAS_MATH_H
     32 #define _EAS_MATH_H
     33 
     34 #include <stdint.h>
     35 
     36 /** coefs for pan, generates sin, cos */
     37 #define COEFF_PAN_G2    -27146      /* -0.82842712474619 = 2 - 4/sqrt(2) */
     38 #define COEFF_PAN_G0    23170       /* 0.707106781186547 = 1/sqrt(2) */
     39 
     40 /*
     41 coefficients for approximating
     42 2^x = gn2toX0 + gn2toX1*x + gn2toX2*x^2 + gn2toX3*x^3
     43 where x is a int.frac number representing number of octaves.
     44 Actually, we approximate only the 2^(frac) using the power series
     45 and implement the 2^(int) as a shift, so that
     46 2^x == 2^(int.frac) == 2^(int) * 2^(fract)
     47     == (gn2toX0 + gn2toX1*x + gn2toX2*x^2 + gn2toX3*x^3) << (int)
     48 
     49 The gn2toX.. were generated using a best fit for a 3rd
     50 order polynomial, instead of taking the coefficients from
     51 a truncated Taylor (or Maclaurin?) series.
     52 */
     53 
     54 #define GN2_TO_X0   32768   /*  1                   */
     55 #define GN2_TO_X1   22833   /*  0.696807861328125   */
     56 #define GN2_TO_X2   7344    /*  0.22412109375       */
     57 #define GN2_TO_X3   2588    /*  0.0789794921875     */
     58 
     59 /*----------------------------------------------------------------------------
     60  * Fixed Point Math
     61  *----------------------------------------------------------------------------
     62  * These macros are used for fixed point multiplies. If the processor
     63  * supports fixed point multiplies, replace these macros with inline
     64  * assembly code to improve performance.
     65  *----------------------------------------------------------------------------
     66 */
     67 
     68 /* Fixed point multiply 0.15 x 0.15 = 0.15 returned as 32-bits */
     69 #define FMUL_15x15(a,b) \
     70     /*lint -e(704) <avoid multiply for performance>*/ \
     71     (((int32_t)(a) * (int32_t)(b)) >> 15)
     72 
     73 /* Fixed point multiply 0.7 x 0.7 = 0.15 returned as 32-bits */
     74 #define FMUL_7x7(a,b) \
     75     /*lint -e(704) <avoid multiply for performance>*/ \
     76     (((int32_t)(a) * (int32_t)(b) ) << 1)
     77 
     78 /* Fixed point multiply 0.8 x 0.8 = 0.15 returned as 32-bits */
     79 #define FMUL_8x8(a,b) \
     80     /*lint -e(704) <avoid multiply for performance>*/ \
     81     (((int32_t)(a) * (int32_t)(b) ) >> 1)
     82 
     83 /* Fixed point multiply 0.8 x 1.15 = 0.15 returned as 32-bits */
     84 #define FMUL_8x15(a,b) \
     85     /*lint -e(704) <avoid divide for performance>*/ \
     86     (((int32_t)((a) << 7) * (int32_t)(b)) >> 15)
     87 
     88 /* macros for fractional phase accumulator */
     89 /*
     90 Note: changed the _U32 to _I32 on 03/14/02. This should not
     91 affect the phase calculations, and should allow us to reuse these
     92 macros for other audio sample related math.
     93 */
     94 #define HARDWARE_BIT_WIDTH      32
     95 
     96 #define NUM_PHASE_INT_BITS      1
     97 #define NUM_PHASE_FRAC_BITS     15
     98 
     99 #define PHASE_FRAC_MASK         (uint32_t) ((0x1L << NUM_PHASE_FRAC_BITS) -1)
    100 
    101 #define GET_PHASE_INT_PART(x)   (uint32_t)((uint32_t)(x) >> NUM_PHASE_FRAC_BITS)
    102 #define GET_PHASE_FRAC_PART(x)  (uint32_t)((uint32_t)(x) & PHASE_FRAC_MASK)
    103 
    104 #define DEFAULT_PHASE_FRAC      0
    105 #define DEFAULT_PHASE_INT       0
    106 
    107 /*
    108 Linear interpolation calculates:
    109 output = (1-frac) * sample[n] + (frac) * sample[n+1]
    110 
    111 where conceptually  0 <= frac < 1
    112 
    113 For a fixed point implementation, frac is actually an integer value
    114 with an implied binary point one position to the left. The value of
    115 one (unity) is given by PHASE_ONE
    116 one half and one quarter are useful for 4-point linear interp.
    117 */
    118 #define PHASE_ONE               (int32_t) (0x1L << NUM_PHASE_FRAC_BITS)
    119 
    120 /*
    121  Multiply the signed audio sample by the unsigned fraction.
    122 -  a is the signed audio sample
    123 -  b is the unsigned fraction (cast to signed int as long as coef
    124     uses (n-1) or less bits, where n == hardware bit width)
    125 */
    126 #define MULT_AUDIO_COEF(audio,coef)         /*lint -e704 <avoid divide for performance>*/ \
    127             (int32_t)(                                  \
    128             (                                           \
    129                 ((int32_t)(audio)) * ((int32_t)(coef))  \
    130             )                                           \
    131             >> NUM_PHASE_FRAC_BITS                      \
    132                                         )               \
    133                                         /* lint +704 <restore checking>*/
    134 
    135 /* wet / dry calculation macros */
    136 #define NUM_WET_DRY_FRAC_BITS       7   // 15
    137 #define NUM_WET_DRY_INT_BITS        9   // 1
    138 
    139 /* define a 1.0 */
    140 #define WET_DRY_ONE                 (int32_t) ((0x1L << NUM_WET_DRY_FRAC_BITS))
    141 #define WET_DRY_MINUS_ONE           (int32_t) (~WET_DRY_ONE)
    142 #define WET_DRY_FULL_SCALE          (int32_t) (WET_DRY_ONE - 1)
    143 
    144 #define MULT_AUDIO_WET_DRY_COEF(audio,coef) /*lint -e(702) <avoid divide for performance>*/ \
    145             (int32_t)(                                      \
    146             (                                               \
    147                 ((int32_t)(audio)) * ((int32_t)(coef))      \
    148             )                                               \
    149             >> NUM_WET_DRY_FRAC_BITS                        \
    150                                                      )
    151 
    152 /* Envelope 1 (EG1) calculation macros */
    153 #define NUM_EG1_INT_BITS            1
    154 #define NUM_EG1_FRAC_BITS           15
    155 
    156 /* the max positive gain used in the synth for EG1 */
    157 /* SYNTH_FULL_SCALE_EG1_GAIN must match the value in the dls2eas
    158 converter, otherwise, the values we read from the .eas file are bogus. */
    159 #define SYNTH_FULL_SCALE_EG1_GAIN   (int32_t) ((0x1L << NUM_EG1_FRAC_BITS) -1)
    160 
    161 /* define a 1.0 */
    162 #define EG1_ONE                     (int32_t) ((0x1L << NUM_EG1_FRAC_BITS))
    163 #define EG1_MINUS_ONE               (int32_t) (~SYNTH_FULL_SCALE_EG1_GAIN)
    164 
    165 #define EG1_HALF                    (int32_t) (EG1_ONE/2)
    166 #define EG1_MINUS_HALF              (int32_t) (EG1_MINUS_ONE/2)
    167 
    168 /*
    169 We implement the EG1 using a linear gain value, which means that the
    170 attack segment is handled by incrementing (adding) the linear gain.
    171 However, EG1 treats the Decay, Sustain, and Release differently than
    172 the Attack portion. For Decay, Sustain, and Release, the gain is
    173 linear on dB scale, which is equivalent to exponential damping on
    174 a linear scale. Because we use a linear gain for EG1, we implement
    175 the Decay and Release as multiplication (instead of incrementing
    176 as we did for the attack segment).
    177 Therefore, we need the following macro to implement the multiplication
    178 (i.e., exponential damping) during the Decay and Release segments of
    179 the EG1
    180 */
    181 #define MULT_EG1_EG1(gain,damping)      /*lint -e(704) <avoid divide for performance>*/ \
    182             (int32_t)(                                      \
    183             (                                               \
    184                 ((int32_t)(gain)) * ((int32_t)(damping))    \
    185             )                                               \
    186             >> NUM_EG1_FRAC_BITS                            \
    187                                         )
    188 
    189 // Use the following macro specifically for the filter, when multiplying
    190 // the b1 coefficient. The 0 <= |b1| < 2, which therefore might overflow
    191 // in certain conditions because we store b1 as a 1.15 value.
    192 // Instead, we could store b1 as b1p (b1' == b1 "prime") where
    193 // b1p == b1/2, thus ensuring no potential overflow for b1p because
    194 // 0 <= |b1p| < 1
    195 // However, during the filter calculation, we must account for the fact
    196 // that we are using b1p instead of b1, and thereby multiply by
    197 // an extra factor of 2. Rather than multiply by an extra factor of 2,
    198 // we can instead shift the result right by one less, hence the
    199 // modified shift right value of (NUM_EG1_FRAC_BITS -1)
    200 #define MULT_EG1_EG1_X2(gain,damping)       /*lint -e(702) <avoid divide for performance>*/ \
    201             (int32_t)(                                      \
    202             (                                               \
    203                 ((int32_t)(gain)) * ((int32_t)(damping))    \
    204             )                                               \
    205             >> (NUM_EG1_FRAC_BITS -1)                       \
    206                                         )
    207 
    208 #define SATURATE_EG1(x)     /*lint -e{734} saturation operation */              \
    209     ((int32_t)(x) > SYNTH_FULL_SCALE_EG1_GAIN)  ? (SYNTH_FULL_SCALE_EG1_GAIN) : \
    210     ((int32_t)(x) < EG1_MINUS_ONE)              ? (EG1_MINUS_ONE) : (x);
    211 
    212 
    213 /* use "digital cents" == "dents" instead of cents */
    214 /* we coudl re-use the phase frac macros, but if we do,
    215 we must change the phase macros to cast to _I32 instead of _U32,
    216 because using a _U32 cast causes problems when shifting the exponent
    217 for the 2^x calculation, because right shift a negative values MUST
    218 be sign extended, or else the 2^x calculation is wrong */
    219 
    220 /* use "digital cents" == "dents" instead of cents */
    221 #define NUM_DENTS_FRAC_BITS     12
    222 #define NUM_DENTS_INT_BITS      (HARDWARE_BIT_WIDTH - NUM_DENTS_FRAC_BITS)
    223 
    224 #define DENTS_FRAC_MASK             (int32_t) ((0x1L << NUM_DENTS_FRAC_BITS) -1)
    225 
    226 #define GET_DENTS_INT_PART(x)       /*lint -e(704) <avoid divide for performance>*/ \
    227                             (int32_t)((int32_t)(x) >> NUM_DENTS_FRAC_BITS)
    228 
    229 #define GET_DENTS_FRAC_PART(x)  (int32_t)((int32_t)(x) & DENTS_FRAC_MASK)
    230 
    231 #define DENTS_ONE               (int32_t) (0x1L << NUM_DENTS_FRAC_BITS)
    232 
    233 /* use CENTS_TO_DENTS to convert a value in cents to dents */
    234 #define CENTS_TO_DENTS (int32_t) (DENTS_ONE * (0x1L << NUM_EG1_FRAC_BITS) / 1200L)                          \
    235 
    236 
    237 /*
    238 For gain, the LFO generates a value that modulates in terms
    239 of dB. However, we use a linear gain value, so we must convert
    240 the LFO value in dB to a linear gain. Normally, we would use
    241 linear gain = 10^x, where x = LFO value in dB / 20.
    242 Instead, we implement 10^x using our 2^x approximation.
    243 because
    244 
    245   10^x = 2^(log2(10^x)) = 2^(x * log2(10))
    246 
    247 so we need to multiply by log2(10) which is just a constant.
    248 Ah, but just wait -- our 2^x actually doesn't exactly implement
    249 2^x, but it actually assumes that the input is in cents, and within
    250 the 2^x approximation converts its input from cents to octaves
    251 by dividing its input by 1200.
    252 
    253 So, in order to convert the LFO gain value in dB to something
    254 that our existing 2^x approximation can use, multiply the LFO gain
    255 by log2(10) * 1200 / 20
    256 
    257 The divide by 20 helps convert dB to linear gain, and we might
    258 as well incorporate that operation into this conversion.
    259 Of course, we need to keep some fractional bits, so multiply
    260 the constant by NUM_EG1_FRAC_BITS
    261 */
    262 
    263 /* use LFO_GAIN_TO_CENTS to convert the LFO gain value to cents */
    264 #if 0
    265 #define DOUBLE_LOG2_10  (double) (3.32192809488736) /* log2(10) */
    266 
    267 #define DOUBLE_LFO_GAIN_TO_CENTS    (double)                \
    268     (                                                       \
    269                 (DOUBLE_LOG2_10) *                          \
    270                 1200.0  /                                   \
    271                 20.0                                        \
    272     )
    273 
    274 #define LFO_GAIN_TO_CENTS   (int32_t)                       \
    275     (                                                       \
    276                 DOUBLE_LFO_GAIN_TO_CENTS *                  \
    277                 (0x1L << NUM_EG1_FRAC_BITS)                 \
    278     )
    279 #endif
    280 
    281 #define LFO_GAIN_TO_CENTS (int32_t) (1671981156L >> (23 - NUM_EG1_FRAC_BITS))
    282 
    283 
    284 #define MULT_DENTS_COEF(dents,coef)     /*lint -e704 <avoid divide for performance>*/   \
    285             (int32_t)(                                  \
    286             (                                           \
    287                 ((int32_t)(dents)) * ((int32_t)(coef))  \
    288             )                                           \
    289             >> NUM_DENTS_FRAC_BITS                      \
    290                                         )               \
    291                                         /* lint +e704 <restore checking>*/
    292 
    293 /* we use 16-bits in the PC per audio sample */
    294 #define BITS_PER_AUDIO_SAMPLE   16
    295 
    296 /* we define 1 as 1.0 - 1 LSbit */
    297 #define DISTORTION_ONE          (int32_t)((0x1L << (BITS_PER_AUDIO_SAMPLE-1)) -1)
    298 #define DISTORTION_MINUS_ONE    (int32_t)(~DISTORTION_ONE)
    299 
    300 /* drive coef is given as int.frac */
    301 #define NUM_DRIVE_COEF_INT_BITS     1
    302 #define NUM_DRIVE_COEF_FRAC_BITS    4
    303 
    304 #define MULT_AUDIO_DRIVE(audio,drive)       /*lint -e(702) <avoid divide for performance>*/ \
    305             (int32_t)   (                               \
    306             (                                           \
    307                 ((int32_t)(audio)) * ((int32_t)(drive)) \
    308             )                                           \
    309             >> NUM_DRIVE_COEF_FRAC_BITS                 \
    310                                                 )
    311 
    312 #define MULT_AUDIO_AUDIO(audio1,audio2)         /*lint -e(702) <avoid divide for performance>*/ \
    313             (int32_t)   (                                   \
    314             (                                               \
    315                 ((int32_t)(audio1)) * ((int32_t)(audio2))   \
    316             )                                               \
    317             >> (BITS_PER_AUDIO_SAMPLE-1)                    \
    318                                                     )
    319 
    320 #define SATURATE(x)                                                         \
    321     ((((int32_t)(x)) > DISTORTION_ONE)      ? (DISTORTION_ONE) :            \
    322     (((int32_t)(x)) < DISTORTION_MINUS_ONE) ? (DISTORTION_MINUS_ONE) :  ((int32_t)(x)));
    323 
    324 
    325 
    326 /*----------------------------------------------------------------------------
    327  * EAS_Calculate2toX()
    328  *----------------------------------------------------------------------------
    329  * Purpose:
    330  * Calculate 2^x
    331  *
    332  * Inputs:
    333  * nCents -     measured in cents
    334  *
    335  * Outputs:
    336  * nResult - int.frac result (where frac has NUM_DENTS_FRAC_BITS)
    337  *
    338  * Side Effects:
    339  *
    340  *----------------------------------------------------------------------------
    341 */
    342 EAS_I32 EAS_Calculate2toX (EAS_I32 nCents);
    343 
    344 /*----------------------------------------------------------------------------
    345  * EAS_LogToLinear16()
    346  *----------------------------------------------------------------------------
    347  * Purpose:
    348  * Transform log value to linear gain multiplier using piece-wise linear
    349  * approximation
    350  *
    351  * Inputs:
    352  * nGain - log scale value in 20.10 format. Even though gain is normally
    353  * stored in 6.10 (16-bit) format we use 32-bit numbers here to eliminate
    354  * the need for saturation checking when combining gain values.
    355  *
    356  * Outputs:
    357  * Returns a 16-bit linear value approximately equal to 2^(nGain/1024)
    358  *
    359  * Side Effects:
    360  *
    361  *----------------------------------------------------------------------------
    362 */
    363 EAS_U16 EAS_LogToLinear16 (EAS_I32 nGain);
    364 
    365 /*----------------------------------------------------------------------------
    366  * EAS_VolumeToGain()
    367  *----------------------------------------------------------------------------
    368  * Purpose:
    369  * Transform volume control in 1dB increments to gain multiplier
    370  *
    371  * Inputs:
    372  * volume - 100 = 0dB, 99 = -1dB, 0 = -inf
    373  *
    374  * Outputs:
    375  * Returns a 16-bit linear value
    376  *----------------------------------------------------------------------------
    377 */
    378 EAS_I16 EAS_VolumeToGain (EAS_INT volume);
    379 
    380 /*----------------------------------------------------------------------------
    381  * EAS_fsqrt()
    382  *----------------------------------------------------------------------------
    383  * Purpose:
    384  * Calculates the square root of a 32-bit fixed point value
    385  *
    386  * Inputs:
    387  * n = value of interest
    388  *
    389  * Outputs:
    390  * returns the square root of n
    391  *
    392  *----------------------------------------------------------------------------
    393 */
    394 EAS_U16 EAS_fsqrt (EAS_U32 n);
    395 
    396 /*----------------------------------------------------------------------------
    397  * EAS_flog2()
    398  *----------------------------------------------------------------------------
    399  * Purpose:
    400  * Calculates the log2 of a 32-bit fixed point value
    401  *
    402  * Inputs:
    403  * n = value of interest
    404  *
    405  * Outputs:
    406  * returns the log2 of n
    407  *
    408  *----------------------------------------------------------------------------
    409 */
    410 EAS_I32 EAS_flog2 (EAS_U32 n);
    411 
    412 #endif
    413 
    414