Home | History | Annotate | Download | only in squashfs-tools
      1 /*
      2  * Unsquash a squashfs filesystem.  This is a highly compressed read only
      3  * filesystem.
      4  *
      5  * Copyright (c) 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011,
      6  * 2012, 2013, 2014
      7  * Phillip Lougher <phillip (at) squashfs.org.uk>
      8  *
      9  * This program is free software; you can redistribute it and/or
     10  * modify it under the terms of the GNU General Public License
     11  * as published by the Free Software Foundation; either version 2,
     12  * or (at your option) any later version.
     13  *
     14  * This program is distributed in the hope that it will be useful,
     15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
     16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     17  * GNU General Public License for more details.
     18  *
     19  * You should have received a copy of the GNU General Public License
     20  * along with this program; if not, write to the Free Software
     21  * Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
     22  *
     23  * unsquashfs.c
     24  */
     25 
     26 #include "unsquashfs.h"
     27 #include "squashfs_swap.h"
     28 #include "squashfs_compat.h"
     29 #include "compressor.h"
     30 #include "xattr.h"
     31 #include "unsquashfs_info.h"
     32 #include "stdarg.h"
     33 
     34 #ifndef linux
     35 #include <sys/sysctl.h>
     36 #else
     37 #include <sys/sysinfo.h>
     38 #endif
     39 
     40 #include <sys/types.h>
     41 #include <sys/time.h>
     42 #include <sys/resource.h>
     43 #include <limits.h>
     44 #include <ctype.h>
     45 
     46 struct cache *fragment_cache, *data_cache;
     47 struct queue *to_reader, *to_inflate, *to_writer, *from_writer;
     48 pthread_t *thread, *inflator_thread;
     49 pthread_mutex_t	fragment_mutex;
     50 
     51 /* user options that control parallelisation */
     52 int processors = -1;
     53 
     54 struct super_block sBlk;
     55 squashfs_operations s_ops;
     56 struct compressor *comp;
     57 
     58 int bytes = 0, swap, file_count = 0, dir_count = 0, sym_count = 0,
     59 	dev_count = 0, fifo_count = 0;
     60 char *inode_table = NULL, *directory_table = NULL;
     61 struct hash_table_entry *inode_table_hash[65536], *directory_table_hash[65536];
     62 int fd;
     63 unsigned int *uid_table, *guid_table;
     64 unsigned int cached_frag = SQUASHFS_INVALID_FRAG;
     65 char *fragment_data;
     66 char *file_data;
     67 char *data;
     68 unsigned int block_size;
     69 unsigned int block_log;
     70 int lsonly = FALSE, info = FALSE, force = FALSE, short_ls = TRUE;
     71 int use_regex = FALSE;
     72 char **created_inode;
     73 int root_process;
     74 int columns;
     75 int rotate = 0;
     76 pthread_mutex_t	screen_mutex;
     77 int progress = TRUE, progress_enabled = FALSE;
     78 unsigned int total_blocks = 0, total_files = 0, total_inodes = 0;
     79 unsigned int cur_blocks = 0;
     80 int inode_number = 1;
     81 int no_xattrs = XATTR_DEF;
     82 int user_xattrs = FALSE;
     83 
     84 int lookup_type[] = {
     85 	0,
     86 	S_IFDIR,
     87 	S_IFREG,
     88 	S_IFLNK,
     89 	S_IFBLK,
     90 	S_IFCHR,
     91 	S_IFIFO,
     92 	S_IFSOCK,
     93 	S_IFDIR,
     94 	S_IFREG,
     95 	S_IFLNK,
     96 	S_IFBLK,
     97 	S_IFCHR,
     98 	S_IFIFO,
     99 	S_IFSOCK
    100 };
    101 
    102 struct test table[] = {
    103 	{ S_IFMT, S_IFSOCK, 0, 's' },
    104 	{ S_IFMT, S_IFLNK, 0, 'l' },
    105 	{ S_IFMT, S_IFBLK, 0, 'b' },
    106 	{ S_IFMT, S_IFDIR, 0, 'd' },
    107 	{ S_IFMT, S_IFCHR, 0, 'c' },
    108 	{ S_IFMT, S_IFIFO, 0, 'p' },
    109 	{ S_IRUSR, S_IRUSR, 1, 'r' },
    110 	{ S_IWUSR, S_IWUSR, 2, 'w' },
    111 	{ S_IRGRP, S_IRGRP, 4, 'r' },
    112 	{ S_IWGRP, S_IWGRP, 5, 'w' },
    113 	{ S_IROTH, S_IROTH, 7, 'r' },
    114 	{ S_IWOTH, S_IWOTH, 8, 'w' },
    115 	{ S_IXUSR | S_ISUID, S_IXUSR | S_ISUID, 3, 's' },
    116 	{ S_IXUSR | S_ISUID, S_ISUID, 3, 'S' },
    117 	{ S_IXUSR | S_ISUID, S_IXUSR, 3, 'x' },
    118 	{ S_IXGRP | S_ISGID, S_IXGRP | S_ISGID, 6, 's' },
    119 	{ S_IXGRP | S_ISGID, S_ISGID, 6, 'S' },
    120 	{ S_IXGRP | S_ISGID, S_IXGRP, 6, 'x' },
    121 	{ S_IXOTH | S_ISVTX, S_IXOTH | S_ISVTX, 9, 't' },
    122 	{ S_IXOTH | S_ISVTX, S_ISVTX, 9, 'T' },
    123 	{ S_IXOTH | S_ISVTX, S_IXOTH, 9, 'x' },
    124 	{ 0, 0, 0, 0}
    125 };
    126 
    127 void progress_bar(long long current, long long max, int columns);
    128 
    129 #define MAX_LINE 16384
    130 
    131 void prep_exit()
    132 {
    133 }
    134 
    135 
    136 void sigwinch_handler()
    137 {
    138 	struct winsize winsize;
    139 
    140 	if(ioctl(1, TIOCGWINSZ, &winsize) == -1) {
    141 		if(isatty(STDOUT_FILENO))
    142 			ERROR("TIOCGWINSZ ioctl failed, defaulting to 80 "
    143 				"columns\n");
    144 		columns = 80;
    145 	} else
    146 		columns = winsize.ws_col;
    147 }
    148 
    149 
    150 void sigalrm_handler()
    151 {
    152 	rotate = (rotate + 1) % 4;
    153 }
    154 
    155 
    156 int add_overflow(int a, int b)
    157 {
    158 	return (INT_MAX - a) < b;
    159 }
    160 
    161 
    162 int shift_overflow(int a, int shift)
    163 {
    164 	return (INT_MAX >> shift) < a;
    165 }
    166 
    167 
    168 int multiply_overflow(int a, int multiplier)
    169 {
    170 	return (INT_MAX / multiplier) < a;
    171 }
    172 
    173 
    174 struct queue *queue_init(int size)
    175 {
    176 	struct queue *queue = malloc(sizeof(struct queue));
    177 
    178 	if(queue == NULL)
    179 		EXIT_UNSQUASH("Out of memory in queue_init\n");
    180 
    181 	if(add_overflow(size, 1) ||
    182 				multiply_overflow(size + 1, sizeof(void *)))
    183 		EXIT_UNSQUASH("Size too large in queue_init\n");
    184 
    185 	queue->data = malloc(sizeof(void *) * (size + 1));
    186 	if(queue->data == NULL)
    187 		EXIT_UNSQUASH("Out of memory in queue_init\n");
    188 
    189 	queue->size = size + 1;
    190 	queue->readp = queue->writep = 0;
    191 	pthread_mutex_init(&queue->mutex, NULL);
    192 	pthread_cond_init(&queue->empty, NULL);
    193 	pthread_cond_init(&queue->full, NULL);
    194 
    195 	return queue;
    196 }
    197 
    198 
    199 void queue_put(struct queue *queue, void *data)
    200 {
    201 	int nextp;
    202 
    203 	pthread_mutex_lock(&queue->mutex);
    204 
    205 	while((nextp = (queue->writep + 1) % queue->size) == queue->readp)
    206 		pthread_cond_wait(&queue->full, &queue->mutex);
    207 
    208 	queue->data[queue->writep] = data;
    209 	queue->writep = nextp;
    210 	pthread_cond_signal(&queue->empty);
    211 	pthread_mutex_unlock(&queue->mutex);
    212 }
    213 
    214 
    215 void *queue_get(struct queue *queue)
    216 {
    217 	void *data;
    218 	pthread_mutex_lock(&queue->mutex);
    219 
    220 	while(queue->readp == queue->writep)
    221 		pthread_cond_wait(&queue->empty, &queue->mutex);
    222 
    223 	data = queue->data[queue->readp];
    224 	queue->readp = (queue->readp + 1) % queue->size;
    225 	pthread_cond_signal(&queue->full);
    226 	pthread_mutex_unlock(&queue->mutex);
    227 
    228 	return data;
    229 }
    230 
    231 
    232 void dump_queue(struct queue *queue)
    233 {
    234 	pthread_mutex_lock(&queue->mutex);
    235 
    236 	printf("Max size %d, size %d%s\n", queue->size - 1,
    237 		queue->readp <= queue->writep ? queue->writep - queue->readp :
    238 			queue->size - queue->readp + queue->writep,
    239 		queue->readp == queue->writep ? " (EMPTY)" :
    240 			((queue->writep + 1) % queue->size) == queue->readp ?
    241 			" (FULL)" : "");
    242 
    243 	pthread_mutex_unlock(&queue->mutex);
    244 }
    245 
    246 
    247 /* Called with the cache mutex held */
    248 void insert_hash_table(struct cache *cache, struct cache_entry *entry)
    249 {
    250 	int hash = CALCULATE_HASH(entry->block);
    251 
    252 	entry->hash_next = cache->hash_table[hash];
    253 	cache->hash_table[hash] = entry;
    254 	entry->hash_prev = NULL;
    255 	if(entry->hash_next)
    256 		entry->hash_next->hash_prev = entry;
    257 }
    258 
    259 
    260 /* Called with the cache mutex held */
    261 void remove_hash_table(struct cache *cache, struct cache_entry *entry)
    262 {
    263 	if(entry->hash_prev)
    264 		entry->hash_prev->hash_next = entry->hash_next;
    265 	else
    266 		cache->hash_table[CALCULATE_HASH(entry->block)] =
    267 			entry->hash_next;
    268 	if(entry->hash_next)
    269 		entry->hash_next->hash_prev = entry->hash_prev;
    270 
    271 	entry->hash_prev = entry->hash_next = NULL;
    272 }
    273 
    274 
    275 /* Called with the cache mutex held */
    276 void insert_free_list(struct cache *cache, struct cache_entry *entry)
    277 {
    278 	if(cache->free_list) {
    279 		entry->free_next = cache->free_list;
    280 		entry->free_prev = cache->free_list->free_prev;
    281 		cache->free_list->free_prev->free_next = entry;
    282 		cache->free_list->free_prev = entry;
    283 	} else {
    284 		cache->free_list = entry;
    285 		entry->free_prev = entry->free_next = entry;
    286 	}
    287 }
    288 
    289 
    290 /* Called with the cache mutex held */
    291 void remove_free_list(struct cache *cache, struct cache_entry *entry)
    292 {
    293 	if(entry->free_prev == NULL || entry->free_next == NULL)
    294 		/* not in free list */
    295 		return;
    296 	else if(entry->free_prev == entry && entry->free_next == entry) {
    297 		/* only this entry in the free list */
    298 		cache->free_list = NULL;
    299 	} else {
    300 		/* more than one entry in the free list */
    301 		entry->free_next->free_prev = entry->free_prev;
    302 		entry->free_prev->free_next = entry->free_next;
    303 		if(cache->free_list == entry)
    304 			cache->free_list = entry->free_next;
    305 	}
    306 
    307 	entry->free_prev = entry->free_next = NULL;
    308 }
    309 
    310 
    311 struct cache *cache_init(int buffer_size, int max_buffers)
    312 {
    313 	struct cache *cache = malloc(sizeof(struct cache));
    314 
    315 	if(cache == NULL)
    316 		EXIT_UNSQUASH("Out of memory in cache_init\n");
    317 
    318 	cache->max_buffers = max_buffers;
    319 	cache->buffer_size = buffer_size;
    320 	cache->count = 0;
    321 	cache->used = 0;
    322 	cache->free_list = NULL;
    323 	memset(cache->hash_table, 0, sizeof(struct cache_entry *) * 65536);
    324 	cache->wait_free = FALSE;
    325 	cache->wait_pending = FALSE;
    326 	pthread_mutex_init(&cache->mutex, NULL);
    327 	pthread_cond_init(&cache->wait_for_free, NULL);
    328 	pthread_cond_init(&cache->wait_for_pending, NULL);
    329 
    330 	return cache;
    331 }
    332 
    333 
    334 struct cache_entry *cache_get(struct cache *cache, long long block, int size)
    335 {
    336 	/*
    337 	 * Get a block out of the cache.  If the block isn't in the cache
    338  	 * it is added and queued to the reader() and inflate() threads for
    339  	 * reading off disk and decompression.  The cache grows until max_blocks
    340  	 * is reached, once this occurs existing discarded blocks on the free
    341  	 * list are reused
    342  	 */
    343 	int hash = CALCULATE_HASH(block);
    344 	struct cache_entry *entry;
    345 
    346 	pthread_mutex_lock(&cache->mutex);
    347 
    348 	for(entry = cache->hash_table[hash]; entry; entry = entry->hash_next)
    349 		if(entry->block == block)
    350 			break;
    351 
    352 	if(entry) {
    353 		/*
    354  		 * found the block in the cache.  If the block is currently unused
    355 		 * remove it from the free list and increment cache used count.
    356  		 */
    357 		if(entry->used == 0) {
    358 			cache->used ++;
    359 			remove_free_list(cache, entry);
    360 		}
    361 		entry->used ++;
    362 		pthread_mutex_unlock(&cache->mutex);
    363 	} else {
    364 		/*
    365  		 * not in the cache
    366 		 *
    367 		 * first try to allocate new block
    368 		 */
    369 		if(cache->count < cache->max_buffers) {
    370 			entry = malloc(sizeof(struct cache_entry));
    371 			if(entry == NULL)
    372 				EXIT_UNSQUASH("Out of memory in cache_get\n");
    373 			entry->data = malloc(cache->buffer_size);
    374 			if(entry->data == NULL)
    375 				EXIT_UNSQUASH("Out of memory in cache_get\n");
    376 			entry->cache = cache;
    377 			entry->free_prev = entry->free_next = NULL;
    378 			cache->count ++;
    379 		} else {
    380 			/*
    381 			 * try to get from free list
    382 			 */
    383 			while(cache->free_list == NULL) {
    384 				cache->wait_free = TRUE;
    385 				pthread_cond_wait(&cache->wait_for_free,
    386 					&cache->mutex);
    387 			}
    388 			entry = cache->free_list;
    389 			remove_free_list(cache, entry);
    390 			remove_hash_table(cache, entry);
    391 		}
    392 
    393 		/*
    394 		 * Initialise block and insert into the hash table.
    395 		 * Increment used which tracks how many buffers in the
    396 		 * cache are actively in use (the other blocks, count - used,
    397 		 * are in the cache and available for lookup, but can also be
    398 		 * re-used).
    399 		 */
    400 		entry->block = block;
    401 		entry->size = size;
    402 		entry->used = 1;
    403 		entry->error = FALSE;
    404 		entry->pending = TRUE;
    405 		insert_hash_table(cache, entry);
    406 		cache->used ++;
    407 
    408 		/*
    409 		 * queue to read thread to read and ultimately (via the
    410 		 * decompress threads) decompress the buffer
    411  		 */
    412 		pthread_mutex_unlock(&cache->mutex);
    413 		queue_put(to_reader, entry);
    414 	}
    415 
    416 	return entry;
    417 }
    418 
    419 
    420 void cache_block_ready(struct cache_entry *entry, int error)
    421 {
    422 	/*
    423 	 * mark cache entry as being complete, reading and (if necessary)
    424  	 * decompression has taken place, and the buffer is valid for use.
    425  	 * If an error occurs reading or decompressing, the buffer also
    426  	 * becomes ready but with an error...
    427  	 */
    428 	pthread_mutex_lock(&entry->cache->mutex);
    429 	entry->pending = FALSE;
    430 	entry->error = error;
    431 
    432 	/*
    433 	 * if the wait_pending flag is set, one or more threads may be waiting
    434 	 * on this buffer
    435 	 */
    436 	if(entry->cache->wait_pending) {
    437 		entry->cache->wait_pending = FALSE;
    438 		pthread_cond_broadcast(&entry->cache->wait_for_pending);
    439 	}
    440 
    441 	pthread_mutex_unlock(&entry->cache->mutex);
    442 }
    443 
    444 
    445 void cache_block_wait(struct cache_entry *entry)
    446 {
    447 	/*
    448 	 * wait for this cache entry to become ready, when reading and (if
    449 	 * necessary) decompression has taken place
    450 	 */
    451 	pthread_mutex_lock(&entry->cache->mutex);
    452 
    453 	while(entry->pending) {
    454 		entry->cache->wait_pending = TRUE;
    455 		pthread_cond_wait(&entry->cache->wait_for_pending,
    456 			&entry->cache->mutex);
    457 	}
    458 
    459 	pthread_mutex_unlock(&entry->cache->mutex);
    460 }
    461 
    462 
    463 void cache_block_put(struct cache_entry *entry)
    464 {
    465 	/*
    466 	 * finished with this cache entry, once the usage count reaches zero it
    467  	 * can be reused and is put onto the free list.  As it remains
    468  	 * accessible via the hash table it can be found getting a new lease of
    469  	 * life before it is reused.
    470  	 */
    471 	pthread_mutex_lock(&entry->cache->mutex);
    472 
    473 	entry->used --;
    474 	if(entry->used == 0) {
    475 		insert_free_list(entry->cache, entry);
    476 		entry->cache->used --;
    477 
    478 		/*
    479 		 * if the wait_free flag is set, one or more threads may be
    480 		 * waiting on this buffer
    481 		 */
    482 		if(entry->cache->wait_free) {
    483 			entry->cache->wait_free = FALSE;
    484 			pthread_cond_broadcast(&entry->cache->wait_for_free);
    485 		}
    486 	}
    487 
    488 	pthread_mutex_unlock(&entry->cache->mutex);
    489 }
    490 
    491 
    492 void dump_cache(struct cache *cache)
    493 {
    494 	pthread_mutex_lock(&cache->mutex);
    495 
    496 	printf("Max buffers %d, Current size %d, Used %d,  %s\n",
    497 		cache->max_buffers, cache->count, cache->used,
    498 		cache->free_list ?  "Free buffers" : "No free buffers");
    499 
    500 	pthread_mutex_unlock(&cache->mutex);
    501 }
    502 
    503 
    504 char *modestr(char *str, int mode)
    505 {
    506 	int i;
    507 
    508 	strcpy(str, "----------");
    509 
    510 	for(i = 0; table[i].mask != 0; i++) {
    511 		if((mode & table[i].mask) == table[i].value)
    512 			str[table[i].position] = table[i].mode;
    513 	}
    514 
    515 	return str;
    516 }
    517 
    518 
    519 #define TOTALCHARS  25
    520 int print_filename(char *pathname, struct inode *inode)
    521 {
    522 	char str[11], dummy[12], dummy2[12]; /* overflow safe */
    523 	char *userstr, *groupstr;
    524 	int padchars;
    525 	struct passwd *user;
    526 	struct group *group;
    527 	struct tm *t;
    528 
    529 	if(short_ls) {
    530 		printf("%s\n", pathname);
    531 		return 1;
    532 	}
    533 
    534 	user = getpwuid(inode->uid);
    535 	if(user == NULL) {
    536 		int res = snprintf(dummy, 12, "%d", inode->uid);
    537 		if(res < 0)
    538 			EXIT_UNSQUASH("snprintf failed in print_filename()\n");
    539 		else if(res >= 12)
    540 			/* unsigned int shouldn't ever need more than 11 bytes
    541 			 * (including terminating '\0') to print in base 10 */
    542 			userstr = "*";
    543 		else
    544 			userstr = dummy;
    545 	} else
    546 		userstr = user->pw_name;
    547 
    548 	group = getgrgid(inode->gid);
    549 	if(group == NULL) {
    550 		int res = snprintf(dummy2, 12, "%d", inode->gid);
    551 		if(res < 0)
    552 			EXIT_UNSQUASH("snprintf failed in print_filename()\n");
    553 		else if(res >= 12)
    554 			/* unsigned int shouldn't ever need more than 11 bytes
    555 			 * (including terminating '\0') to print in base 10 */
    556 			groupstr = "*";
    557 		else
    558 			groupstr = dummy2;
    559 	} else
    560 		groupstr = group->gr_name;
    561 
    562 	printf("%s %s/%s ", modestr(str, inode->mode), userstr, groupstr);
    563 
    564 	switch(inode->mode & S_IFMT) {
    565 		case S_IFREG:
    566 		case S_IFDIR:
    567 		case S_IFSOCK:
    568 		case S_IFIFO:
    569 		case S_IFLNK:
    570 			padchars = TOTALCHARS - strlen(userstr) -
    571 				strlen(groupstr);
    572 
    573 			printf("%*lld ", padchars > 0 ? padchars : 0,
    574 				inode->data);
    575 			break;
    576 		case S_IFCHR:
    577 		case S_IFBLK:
    578 			padchars = TOTALCHARS - strlen(userstr) -
    579 				strlen(groupstr) - 7;
    580 
    581 			printf("%*s%3d,%3d ", padchars > 0 ? padchars : 0, " ",
    582 				(int) inode->data >> 8, (int) inode->data &
    583 				0xff);
    584 			break;
    585 	}
    586 
    587 	t = localtime(&inode->time);
    588 
    589 	printf("%d-%02d-%02d %02d:%02d %s", t->tm_year + 1900, t->tm_mon + 1,
    590 		t->tm_mday, t->tm_hour, t->tm_min, pathname);
    591 	if((inode->mode & S_IFMT) == S_IFLNK)
    592 		printf(" -> %s", inode->symlink);
    593 	printf("\n");
    594 
    595 	return 1;
    596 }
    597 
    598 
    599 void add_entry(struct hash_table_entry *hash_table[], long long start,
    600 	int bytes)
    601 {
    602 	int hash = CALCULATE_HASH(start);
    603 	struct hash_table_entry *hash_table_entry;
    604 
    605 	hash_table_entry = malloc(sizeof(struct hash_table_entry));
    606 	if(hash_table_entry == NULL)
    607 		EXIT_UNSQUASH("Out of memory in add_entry\n");
    608 
    609 	hash_table_entry->start = start;
    610 	hash_table_entry->bytes = bytes;
    611 	hash_table_entry->next = hash_table[hash];
    612 	hash_table[hash] = hash_table_entry;
    613 }
    614 
    615 
    616 int lookup_entry(struct hash_table_entry *hash_table[], long long start)
    617 {
    618 	int hash = CALCULATE_HASH(start);
    619 	struct hash_table_entry *hash_table_entry;
    620 
    621 	for(hash_table_entry = hash_table[hash]; hash_table_entry;
    622 				hash_table_entry = hash_table_entry->next)
    623 
    624 		if(hash_table_entry->start == start)
    625 			return hash_table_entry->bytes;
    626 
    627 	return -1;
    628 }
    629 
    630 
    631 int read_fs_bytes(int fd, long long byte, int bytes, void *buff)
    632 {
    633 	off_t off = byte;
    634 	int res, count;
    635 
    636 	TRACE("read_bytes: reading from position 0x%llx, bytes %d\n", byte,
    637 		bytes);
    638 
    639 	if(lseek(fd, off, SEEK_SET) == -1) {
    640 		ERROR("Lseek failed because %s\n", strerror(errno));
    641 		return FALSE;
    642 	}
    643 
    644 	for(count = 0; count < bytes; count += res) {
    645 		res = read(fd, buff + count, bytes - count);
    646 		if(res < 1) {
    647 			if(res == 0) {
    648 				ERROR("Read on filesystem failed because "
    649 					"EOF\n");
    650 				return FALSE;
    651 			} else if(errno != EINTR) {
    652 				ERROR("Read on filesystem failed because %s\n",
    653 						strerror(errno));
    654 				return FALSE;
    655 			} else
    656 				res = 0;
    657 		}
    658 	}
    659 
    660 	return TRUE;
    661 }
    662 
    663 
    664 int read_block(int fd, long long start, long long *next, int expected,
    665 								void *block)
    666 {
    667 	unsigned short c_byte;
    668 	int offset = 2, res, compressed;
    669 	int outlen = expected ? expected : SQUASHFS_METADATA_SIZE;
    670 
    671 	if(swap) {
    672 		if(read_fs_bytes(fd, start, 2, &c_byte) == FALSE)
    673 			goto failed;
    674 		c_byte = (c_byte >> 8) | ((c_byte & 0xff) << 8);
    675 	} else
    676 		if(read_fs_bytes(fd, start, 2, &c_byte) == FALSE)
    677 			goto failed;
    678 
    679 	TRACE("read_block: block @0x%llx, %d %s bytes\n", start,
    680 		SQUASHFS_COMPRESSED_SIZE(c_byte), SQUASHFS_COMPRESSED(c_byte) ?
    681 		"compressed" : "uncompressed");
    682 
    683 	if(SQUASHFS_CHECK_DATA(sBlk.s.flags))
    684 		offset = 3;
    685 
    686 	compressed = SQUASHFS_COMPRESSED(c_byte);
    687 	c_byte = SQUASHFS_COMPRESSED_SIZE(c_byte);
    688 
    689 	/*
    690 	 * The block size should not be larger than
    691 	 * the uncompressed size (or max uncompressed size if
    692 	 * expected is 0)
    693 	 */
    694 	if(c_byte > outlen)
    695 		return 0;
    696 
    697 	if(compressed) {
    698 		char buffer[c_byte];
    699 		int error;
    700 
    701 		res = read_fs_bytes(fd, start + offset, c_byte, buffer);
    702 		if(res == FALSE)
    703 			goto failed;
    704 
    705 		res = compressor_uncompress(comp, block, buffer, c_byte,
    706 			outlen, &error);
    707 
    708 		if(res == -1) {
    709 			ERROR("%s uncompress failed with error code %d\n",
    710 				comp->name, error);
    711 			goto failed;
    712 		}
    713 	} else {
    714 		res = read_fs_bytes(fd, start + offset, c_byte, block);
    715 		if(res == FALSE)
    716 			goto failed;
    717 		res = c_byte;
    718 	}
    719 
    720 	if(next)
    721 		*next = start + offset + c_byte;
    722 
    723 	/*
    724 	 * if expected, then check the (uncompressed) return data
    725 	 * is of the expected size
    726 	 */
    727 	if(expected && expected != res)
    728 		return 0;
    729 	else
    730 		return res;
    731 
    732 failed:
    733 	ERROR("read_block: failed to read block @0x%llx\n", start);
    734 	return FALSE;
    735 }
    736 
    737 
    738 int read_data_block(long long start, unsigned int size, char *block)
    739 {
    740 	int error, res;
    741 	int c_byte = SQUASHFS_COMPRESSED_SIZE_BLOCK(size);
    742 
    743 	TRACE("read_data_block: block @0x%llx, %d %s bytes\n", start,
    744 		c_byte, SQUASHFS_COMPRESSED_BLOCK(size) ? "compressed" :
    745 		"uncompressed");
    746 
    747 	if(SQUASHFS_COMPRESSED_BLOCK(size)) {
    748 		if(read_fs_bytes(fd, start, c_byte, data) == FALSE)
    749 			goto failed;
    750 
    751 		res = compressor_uncompress(comp, block, data, c_byte,
    752 			block_size, &error);
    753 
    754 		if(res == -1) {
    755 			ERROR("%s uncompress failed with error code %d\n",
    756 				comp->name, error);
    757 			goto failed;
    758 		}
    759 
    760 		return res;
    761 	} else {
    762 		if(read_fs_bytes(fd, start, c_byte, block) == FALSE)
    763 			goto failed;
    764 
    765 		return c_byte;
    766 	}
    767 
    768 failed:
    769 	ERROR("read_data_block: failed to read block @0x%llx, size %d\n", start,
    770 		c_byte);
    771 	return FALSE;
    772 }
    773 
    774 
    775 int read_inode_table(long long start, long long end)
    776 {
    777 	int size = 0, bytes = 0, res;
    778 
    779 	TRACE("read_inode_table: start %lld, end %lld\n", start, end);
    780 
    781 	while(start < end) {
    782 		if(size - bytes < SQUASHFS_METADATA_SIZE) {
    783 			inode_table = realloc(inode_table, size +=
    784 				SQUASHFS_METADATA_SIZE);
    785 			if(inode_table == NULL) {
    786 				ERROR("Out of memory in read_inode_table");
    787 				goto failed;
    788 			}
    789 		}
    790 
    791 		add_entry(inode_table_hash, start, bytes);
    792 
    793 		res = read_block(fd, start, &start, 0, inode_table + bytes);
    794 		if(res == 0) {
    795 			ERROR("read_inode_table: failed to read block\n");
    796 			goto failed;
    797 		}
    798 		bytes += res;
    799 
    800 		/*
    801 		 * If this is not the last metadata block in the inode table
    802 		 * then it should be SQUASHFS_METADATA_SIZE in size.
    803 		 * Note, we can't use expected in read_block() above for this
    804 		 * because we don't know if this is the last block until
    805 		 * after reading.
    806 		 */
    807 		if(start != end && res != SQUASHFS_METADATA_SIZE) {
    808 			ERROR("read_inode_table: metadata block should be %d "
    809 				"bytes in length, it is %d bytes\n",
    810 				SQUASHFS_METADATA_SIZE, res);
    811 
    812 			goto failed;
    813 		}
    814 	}
    815 
    816 	return TRUE;
    817 
    818 failed:
    819 	free(inode_table);
    820 	return FALSE;
    821 }
    822 
    823 
    824 int set_attributes(char *pathname, int mode, uid_t uid, gid_t guid, time_t time,
    825 	unsigned int xattr, unsigned int set_mode)
    826 {
    827 	struct utimbuf times = { time, time };
    828 
    829 	if(utime(pathname, &times) == -1) {
    830 		ERROR("set_attributes: failed to set time on %s, because %s\n",
    831 			pathname, strerror(errno));
    832 		return FALSE;
    833 	}
    834 
    835 	if(root_process) {
    836 		if(chown(pathname, uid, guid) == -1) {
    837 			ERROR("set_attributes: failed to change uid and gids "
    838 				"on %s, because %s\n", pathname,
    839 				strerror(errno));
    840 			return FALSE;
    841 		}
    842 	} else
    843 		mode &= ~07000;
    844 
    845 	if((set_mode || (mode & 07000)) && chmod(pathname, (mode_t) mode) == -1) {
    846 		ERROR("set_attributes: failed to change mode %s, because %s\n",
    847 			pathname, strerror(errno));
    848 		return FALSE;
    849 	}
    850 
    851 	write_xattr(pathname, xattr);
    852 
    853 	return TRUE;
    854 }
    855 
    856 
    857 int write_bytes(int fd, char *buff, int bytes)
    858 {
    859 	int res, count;
    860 
    861 	for(count = 0; count < bytes; count += res) {
    862 		res = write(fd, buff + count, bytes - count);
    863 		if(res == -1) {
    864 			if(errno != EINTR) {
    865 				ERROR("Write on output file failed because "
    866 					"%s\n", strerror(errno));
    867 				return -1;
    868 			}
    869 			res = 0;
    870 		}
    871 	}
    872 
    873 	return 0;
    874 }
    875 
    876 
    877 int lseek_broken = FALSE;
    878 char *zero_data = NULL;
    879 
    880 int write_block(int file_fd, char *buffer, int size, long long hole, int sparse)
    881 {
    882 	off_t off = hole;
    883 
    884 	if(hole) {
    885 		if(sparse && lseek_broken == FALSE) {
    886 			 int error = lseek(file_fd, off, SEEK_CUR);
    887 			 if(error == -1)
    888 				/* failed to seek beyond end of file */
    889 				lseek_broken = TRUE;
    890 		}
    891 
    892 		if((sparse == FALSE || lseek_broken) && zero_data == NULL) {
    893 			if((zero_data = malloc(block_size)) == NULL)
    894 				EXIT_UNSQUASH("write_block: failed to alloc "
    895 					"zero data block\n");
    896 			memset(zero_data, 0, block_size);
    897 		}
    898 
    899 		if(sparse == FALSE || lseek_broken) {
    900 			int blocks = (hole + block_size -1) / block_size;
    901 			int avail_bytes, i;
    902 			for(i = 0; i < blocks; i++, hole -= avail_bytes) {
    903 				avail_bytes = hole > block_size ? block_size :
    904 					hole;
    905 				if(write_bytes(file_fd, zero_data, avail_bytes)
    906 						== -1)
    907 					goto failure;
    908 			}
    909 		}
    910 	}
    911 
    912 	if(write_bytes(file_fd, buffer, size) == -1)
    913 		goto failure;
    914 
    915 	return TRUE;
    916 
    917 failure:
    918 	return FALSE;
    919 }
    920 
    921 
    922 pthread_mutex_t open_mutex = PTHREAD_MUTEX_INITIALIZER;
    923 pthread_cond_t open_empty = PTHREAD_COND_INITIALIZER;
    924 int open_unlimited, open_count;
    925 #define OPEN_FILE_MARGIN 10
    926 
    927 
    928 void open_init(int count)
    929 {
    930 	open_count = count;
    931 	open_unlimited = count == -1;
    932 }
    933 
    934 
    935 int open_wait(char *pathname, int flags, mode_t mode)
    936 {
    937 	if (!open_unlimited) {
    938 		pthread_mutex_lock(&open_mutex);
    939 		while (open_count == 0)
    940 			pthread_cond_wait(&open_empty, &open_mutex);
    941 		open_count --;
    942 		pthread_mutex_unlock(&open_mutex);
    943 	}
    944 
    945 	return open(pathname, flags, mode);
    946 }
    947 
    948 
    949 void close_wake(int fd)
    950 {
    951 	close(fd);
    952 
    953 	if (!open_unlimited) {
    954 		pthread_mutex_lock(&open_mutex);
    955 		open_count ++;
    956 		pthread_cond_signal(&open_empty);
    957 		pthread_mutex_unlock(&open_mutex);
    958 	}
    959 }
    960 
    961 
    962 void queue_file(char *pathname, int file_fd, struct inode *inode)
    963 {
    964 	struct squashfs_file *file = malloc(sizeof(struct squashfs_file));
    965 	if(file == NULL)
    966 		EXIT_UNSQUASH("queue_file: unable to malloc file\n");
    967 
    968 	file->fd = file_fd;
    969 	file->file_size = inode->data;
    970 	file->mode = inode->mode;
    971 	file->gid = inode->gid;
    972 	file->uid = inode->uid;
    973 	file->time = inode->time;
    974 	file->pathname = strdup(pathname);
    975 	file->blocks = inode->blocks + (inode->frag_bytes > 0);
    976 	file->sparse = inode->sparse;
    977 	file->xattr = inode->xattr;
    978 	queue_put(to_writer, file);
    979 }
    980 
    981 
    982 void queue_dir(char *pathname, struct dir *dir)
    983 {
    984 	struct squashfs_file *file = malloc(sizeof(struct squashfs_file));
    985 	if(file == NULL)
    986 		EXIT_UNSQUASH("queue_dir: unable to malloc file\n");
    987 
    988 	file->fd = -1;
    989 	file->mode = dir->mode;
    990 	file->gid = dir->guid;
    991 	file->uid = dir->uid;
    992 	file->time = dir->mtime;
    993 	file->pathname = strdup(pathname);
    994 	file->xattr = dir->xattr;
    995 	queue_put(to_writer, file);
    996 }
    997 
    998 
    999 int write_file(struct inode *inode, char *pathname)
   1000 {
   1001 	unsigned int file_fd, i;
   1002 	unsigned int *block_list;
   1003 	int file_end = inode->data / block_size;
   1004 	long long start = inode->start;
   1005 
   1006 	TRACE("write_file: regular file, blocks %d\n", inode->blocks);
   1007 
   1008 	file_fd = open_wait(pathname, O_CREAT | O_WRONLY |
   1009 		(force ? O_TRUNC : 0), (mode_t) inode->mode & 0777);
   1010 	if(file_fd == -1) {
   1011 		ERROR("write_file: failed to create file %s, because %s\n",
   1012 			pathname, strerror(errno));
   1013 		return FALSE;
   1014 	}
   1015 
   1016 	block_list = malloc(inode->blocks * sizeof(unsigned int));
   1017 	if(block_list == NULL)
   1018 		EXIT_UNSQUASH("write_file: unable to malloc block list\n");
   1019 
   1020 	s_ops.read_block_list(block_list, inode->block_ptr, inode->blocks);
   1021 
   1022 	/*
   1023 	 * the writer thread is queued a squashfs_file structure describing the
   1024  	 * file.  If the file has one or more blocks or a fragment they are
   1025  	 * queued separately (references to blocks in the cache).
   1026  	 */
   1027 	queue_file(pathname, file_fd, inode);
   1028 
   1029 	for(i = 0; i < inode->blocks; i++) {
   1030 		int c_byte = SQUASHFS_COMPRESSED_SIZE_BLOCK(block_list[i]);
   1031 		struct file_entry *block = malloc(sizeof(struct file_entry));
   1032 
   1033 		if(block == NULL)
   1034 			EXIT_UNSQUASH("write_file: unable to malloc file\n");
   1035 		block->offset = 0;
   1036 		block->size = i == file_end ? inode->data & (block_size - 1) :
   1037 			block_size;
   1038 		if(block_list[i] == 0) /* sparse block */
   1039 			block->buffer = NULL;
   1040 		else {
   1041 			block->buffer = cache_get(data_cache, start,
   1042 				block_list[i]);
   1043 			start += c_byte;
   1044 		}
   1045 		queue_put(to_writer, block);
   1046 	}
   1047 
   1048 	if(inode->frag_bytes) {
   1049 		int size;
   1050 		long long start;
   1051 		struct file_entry *block = malloc(sizeof(struct file_entry));
   1052 
   1053 		if(block == NULL)
   1054 			EXIT_UNSQUASH("write_file: unable to malloc file\n");
   1055 		s_ops.read_fragment(inode->fragment, &start, &size);
   1056 		block->buffer = cache_get(fragment_cache, start, size);
   1057 		block->offset = inode->offset;
   1058 		block->size = inode->frag_bytes;
   1059 		queue_put(to_writer, block);
   1060 	}
   1061 
   1062 	free(block_list);
   1063 	return TRUE;
   1064 }
   1065 
   1066 
   1067 int create_inode(char *pathname, struct inode *i)
   1068 {
   1069 	TRACE("create_inode: pathname %s\n", pathname);
   1070 
   1071 	if(created_inode[i->inode_number - 1]) {
   1072 		TRACE("create_inode: hard link\n");
   1073 		if(force)
   1074 			unlink(pathname);
   1075 
   1076 		if(link(created_inode[i->inode_number - 1], pathname) == -1) {
   1077 			ERROR("create_inode: failed to create hardlink, "
   1078 				"because %s\n", strerror(errno));
   1079 			return FALSE;
   1080 		}
   1081 
   1082 		return TRUE;
   1083 	}
   1084 
   1085 	switch(i->type) {
   1086 		case SQUASHFS_FILE_TYPE:
   1087 		case SQUASHFS_LREG_TYPE:
   1088 			TRACE("create_inode: regular file, file_size %lld, "
   1089 				"blocks %d\n", i->data, i->blocks);
   1090 
   1091 			if(write_file(i, pathname))
   1092 				file_count ++;
   1093 			break;
   1094 		case SQUASHFS_SYMLINK_TYPE:
   1095 		case SQUASHFS_LSYMLINK_TYPE:
   1096 			TRACE("create_inode: symlink, symlink_size %lld\n",
   1097 				i->data);
   1098 
   1099 			if(force)
   1100 				unlink(pathname);
   1101 
   1102 			if(symlink(i->symlink, pathname) == -1) {
   1103 				ERROR("create_inode: failed to create symlink "
   1104 					"%s, because %s\n", pathname,
   1105 					strerror(errno));
   1106 				break;
   1107 			}
   1108 
   1109 			write_xattr(pathname, i->xattr);
   1110 
   1111 			if(root_process) {
   1112 				if(lchown(pathname, i->uid, i->gid) == -1)
   1113 					ERROR("create_inode: failed to change "
   1114 						"uid and gids on %s, because "
   1115 						"%s\n", pathname,
   1116 						strerror(errno));
   1117 			}
   1118 
   1119 			sym_count ++;
   1120 			break;
   1121  		case SQUASHFS_BLKDEV_TYPE:
   1122 	 	case SQUASHFS_CHRDEV_TYPE:
   1123  		case SQUASHFS_LBLKDEV_TYPE:
   1124 	 	case SQUASHFS_LCHRDEV_TYPE: {
   1125 			int chrdev = i->type == SQUASHFS_CHRDEV_TYPE;
   1126 			TRACE("create_inode: dev, rdev 0x%llx\n", i->data);
   1127 
   1128 			if(root_process) {
   1129 				if(force)
   1130 					unlink(pathname);
   1131 
   1132 				if(mknod(pathname, chrdev ? S_IFCHR : S_IFBLK,
   1133 						makedev((i->data >> 8) & 0xff,
   1134 						i->data & 0xff)) == -1) {
   1135 					ERROR("create_inode: failed to create "
   1136 						"%s device %s, because %s\n",
   1137 						chrdev ? "character" : "block",
   1138 						pathname, strerror(errno));
   1139 					break;
   1140 				}
   1141 				set_attributes(pathname, i->mode, i->uid,
   1142 					i->gid, i->time, i->xattr, TRUE);
   1143 				dev_count ++;
   1144 			} else
   1145 				ERROR("create_inode: could not create %s "
   1146 					"device %s, because you're not "
   1147 					"superuser!\n", chrdev ? "character" :
   1148 					"block", pathname);
   1149 			break;
   1150 		}
   1151 		case SQUASHFS_FIFO_TYPE:
   1152 		case SQUASHFS_LFIFO_TYPE:
   1153 			TRACE("create_inode: fifo\n");
   1154 
   1155 			if(force)
   1156 				unlink(pathname);
   1157 
   1158 			if(mknod(pathname, S_IFIFO, 0) == -1) {
   1159 				ERROR("create_inode: failed to create fifo %s, "
   1160 					"because %s\n", pathname,
   1161 					strerror(errno));
   1162 				break;
   1163 			}
   1164 			set_attributes(pathname, i->mode, i->uid, i->gid,
   1165 				i->time, i->xattr, TRUE);
   1166 			fifo_count ++;
   1167 			break;
   1168 		case SQUASHFS_SOCKET_TYPE:
   1169 		case SQUASHFS_LSOCKET_TYPE:
   1170 			TRACE("create_inode: socket\n");
   1171 			ERROR("create_inode: socket %s ignored\n", pathname);
   1172 			break;
   1173 		default:
   1174 			ERROR("Unknown inode type %d in create_inode_table!\n",
   1175 				i->type);
   1176 			return FALSE;
   1177 	}
   1178 
   1179 	created_inode[i->inode_number - 1] = strdup(pathname);
   1180 
   1181 	return TRUE;
   1182 }
   1183 
   1184 
   1185 int read_directory_table(long long start, long long end)
   1186 {
   1187 	int bytes = 0, size = 0, res;
   1188 
   1189 	TRACE("read_directory_table: start %lld, end %lld\n", start, end);
   1190 
   1191 	while(start < end) {
   1192 		if(size - bytes < SQUASHFS_METADATA_SIZE) {
   1193 			directory_table = realloc(directory_table, size +=
   1194 				SQUASHFS_METADATA_SIZE);
   1195 			if(directory_table == NULL) {
   1196 				ERROR("Out of memory in "
   1197 						"read_directory_table\n");
   1198 				goto failed;
   1199 			}
   1200 		}
   1201 
   1202 		add_entry(directory_table_hash, start, bytes);
   1203 
   1204 		res = read_block(fd, start, &start, 0, directory_table + bytes);
   1205 		if(res == 0) {
   1206 			ERROR("read_directory_table: failed to read block\n");
   1207 			goto failed;
   1208 		}
   1209 
   1210 		bytes += res;
   1211 
   1212 		/*
   1213 		 * If this is not the last metadata block in the directory table
   1214 		 * then it should be SQUASHFS_METADATA_SIZE in size.
   1215 		 * Note, we can't use expected in read_block() above for this
   1216 		 * because we don't know if this is the last block until
   1217 		 * after reading.
   1218 		 */
   1219 		if(start != end && res != SQUASHFS_METADATA_SIZE) {
   1220 			ERROR("read_directory_table: metadata block "
   1221 				"should be %d bytes in length, it is %d "
   1222 				"bytes\n", SQUASHFS_METADATA_SIZE, res);
   1223 			goto failed;
   1224 		}
   1225 	}
   1226 
   1227 	return TRUE;
   1228 
   1229 failed:
   1230 	free(directory_table);
   1231 	return FALSE;
   1232 }
   1233 
   1234 
   1235 int squashfs_readdir(struct dir *dir, char **name, unsigned int *start_block,
   1236 unsigned int *offset, unsigned int *type)
   1237 {
   1238 	if(dir->cur_entry == dir->dir_count)
   1239 		return FALSE;
   1240 
   1241 	*name = dir->dirs[dir->cur_entry].name;
   1242 	*start_block = dir->dirs[dir->cur_entry].start_block;
   1243 	*offset = dir->dirs[dir->cur_entry].offset;
   1244 	*type = dir->dirs[dir->cur_entry].type;
   1245 	dir->cur_entry ++;
   1246 
   1247 	return TRUE;
   1248 }
   1249 
   1250 
   1251 void squashfs_closedir(struct dir *dir)
   1252 {
   1253 	free(dir->dirs);
   1254 	free(dir);
   1255 }
   1256 
   1257 
   1258 char *get_component(char *target, char **targname)
   1259 {
   1260 	char *start;
   1261 
   1262 	while(*target == '/')
   1263 		target ++;
   1264 
   1265 	start = target;
   1266 	while(*target != '/' && *target != '\0')
   1267 		target ++;
   1268 
   1269 	*targname = strndup(start, target - start);
   1270 
   1271 	while(*target == '/')
   1272 		target ++;
   1273 
   1274 	return target;
   1275 }
   1276 
   1277 
   1278 void free_path(struct pathname *paths)
   1279 {
   1280 	int i;
   1281 
   1282 	for(i = 0; i < paths->names; i++) {
   1283 		if(paths->name[i].paths)
   1284 			free_path(paths->name[i].paths);
   1285 		free(paths->name[i].name);
   1286 		if(paths->name[i].preg) {
   1287 			regfree(paths->name[i].preg);
   1288 			free(paths->name[i].preg);
   1289 		}
   1290 	}
   1291 
   1292 	free(paths);
   1293 }
   1294 
   1295 
   1296 struct pathname *add_path(struct pathname *paths, char *target, char *alltarget)
   1297 {
   1298 	char *targname;
   1299 	int i, error;
   1300 
   1301 	TRACE("add_path: adding \"%s\" extract file\n", target);
   1302 
   1303 	target = get_component(target, &targname);
   1304 
   1305 	if(paths == NULL) {
   1306 		paths = malloc(sizeof(struct pathname));
   1307 		if(paths == NULL)
   1308 			EXIT_UNSQUASH("failed to allocate paths\n");
   1309 
   1310 		paths->names = 0;
   1311 		paths->name = NULL;
   1312 	}
   1313 
   1314 	for(i = 0; i < paths->names; i++)
   1315 		if(strcmp(paths->name[i].name, targname) == 0)
   1316 			break;
   1317 
   1318 	if(i == paths->names) {
   1319 		/*
   1320 		 * allocate new name entry
   1321 		 */
   1322 		paths->names ++;
   1323 		paths->name = realloc(paths->name, (i + 1) *
   1324 			sizeof(struct path_entry));
   1325 		if(paths->name == NULL)
   1326 			EXIT_UNSQUASH("Out of memory in add_path\n");
   1327 		paths->name[i].name = targname;
   1328 		paths->name[i].paths = NULL;
   1329 		if(use_regex) {
   1330 			paths->name[i].preg = malloc(sizeof(regex_t));
   1331 			if(paths->name[i].preg == NULL)
   1332 				EXIT_UNSQUASH("Out of memory in add_path\n");
   1333 			error = regcomp(paths->name[i].preg, targname,
   1334 				REG_EXTENDED|REG_NOSUB);
   1335 			if(error) {
   1336 				char str[1024]; /* overflow safe */
   1337 
   1338 				regerror(error, paths->name[i].preg, str, 1024);
   1339 				EXIT_UNSQUASH("invalid regex %s in export %s, "
   1340 					"because %s\n", targname, alltarget,
   1341 					str);
   1342 			}
   1343 		} else
   1344 			paths->name[i].preg = NULL;
   1345 
   1346 		if(target[0] == '\0')
   1347 			/*
   1348 			 * at leaf pathname component
   1349 			*/
   1350 			paths->name[i].paths = NULL;
   1351 		else
   1352 			/*
   1353 			 * recurse adding child components
   1354 			 */
   1355 			paths->name[i].paths = add_path(NULL, target, alltarget);
   1356 	} else {
   1357 		/*
   1358 		 * existing matching entry
   1359 		 */
   1360 		free(targname);
   1361 
   1362 		if(paths->name[i].paths == NULL) {
   1363 			/*
   1364 			 * No sub-directory which means this is the leaf
   1365 			 * component of a pre-existing extract which subsumes
   1366 			 * the extract currently being added, in which case stop
   1367 			 * adding components
   1368 			 */
   1369 		} else if(target[0] == '\0') {
   1370 			/*
   1371 			 * at leaf pathname component and child components exist
   1372 			 * from more specific extracts, delete as they're
   1373 			 * subsumed by this extract
   1374 			 */
   1375 			free_path(paths->name[i].paths);
   1376 			paths->name[i].paths = NULL;
   1377 		} else
   1378 			/*
   1379 			 * recurse adding child components
   1380 			 */
   1381 			add_path(paths->name[i].paths, target, alltarget);
   1382 	}
   1383 
   1384 	return paths;
   1385 }
   1386 
   1387 
   1388 struct pathnames *init_subdir()
   1389 {
   1390 	struct pathnames *new = malloc(sizeof(struct pathnames));
   1391 	if(new == NULL)
   1392 		EXIT_UNSQUASH("Out of memory in init_subdir\n");
   1393 	new->count = 0;
   1394 	return new;
   1395 }
   1396 
   1397 
   1398 struct pathnames *add_subdir(struct pathnames *paths, struct pathname *path)
   1399 {
   1400 	if(paths->count % PATHS_ALLOC_SIZE == 0) {
   1401 		paths = realloc(paths, sizeof(struct pathnames *) +
   1402 			(paths->count + PATHS_ALLOC_SIZE) *
   1403 			sizeof(struct pathname *));
   1404 		if(paths == NULL)
   1405 			EXIT_UNSQUASH("Out of memory in add_subdir\n");
   1406 	}
   1407 
   1408 	paths->path[paths->count++] = path;
   1409 	return paths;
   1410 }
   1411 
   1412 
   1413 void free_subdir(struct pathnames *paths)
   1414 {
   1415 	free(paths);
   1416 }
   1417 
   1418 
   1419 int matches(struct pathnames *paths, char *name, struct pathnames **new)
   1420 {
   1421 	int i, n;
   1422 
   1423 	if(paths == NULL) {
   1424 		*new = NULL;
   1425 		return TRUE;
   1426 	}
   1427 
   1428 	*new = init_subdir();
   1429 
   1430 	for(n = 0; n < paths->count; n++) {
   1431 		struct pathname *path = paths->path[n];
   1432 		for(i = 0; i < path->names; i++) {
   1433 			int match = use_regex ?
   1434 				regexec(path->name[i].preg, name, (size_t) 0,
   1435 				NULL, 0) == 0 : fnmatch(path->name[i].name,
   1436 				name, FNM_PATHNAME|FNM_PERIOD|FNM_EXTMATCH) ==
   1437 				0;
   1438 			if(match && path->name[i].paths == NULL)
   1439 				/*
   1440 				 * match on a leaf component, any subdirectories
   1441 				 * will implicitly match, therefore return an
   1442 				 * empty new search set
   1443 				 */
   1444 				goto empty_set;
   1445 
   1446 			if(match)
   1447 				/*
   1448 				 * match on a non-leaf component, add any
   1449 				 * subdirectories to the new set of
   1450 				 * subdirectories to scan for this name
   1451 				 */
   1452 				*new = add_subdir(*new, path->name[i].paths);
   1453 		}
   1454 	}
   1455 
   1456 	if((*new)->count == 0) {
   1457 		/*
   1458 		 * no matching names found, delete empty search set, and return
   1459 		 * FALSE
   1460 		 */
   1461 		free_subdir(*new);
   1462 		*new = NULL;
   1463 		return FALSE;
   1464 	}
   1465 
   1466 	/*
   1467 	 * one or more matches with sub-directories found (no leaf matches),
   1468 	 * return new search set and return TRUE
   1469 	 */
   1470 	return TRUE;
   1471 
   1472 empty_set:
   1473 	/*
   1474 	 * found matching leaf exclude, return empty search set and return TRUE
   1475 	 */
   1476 	free_subdir(*new);
   1477 	*new = NULL;
   1478 	return TRUE;
   1479 }
   1480 
   1481 
   1482 void pre_scan(char *parent_name, unsigned int start_block, unsigned int offset,
   1483 	struct pathnames *paths)
   1484 {
   1485 	unsigned int type;
   1486 	char *name;
   1487 	struct pathnames *new;
   1488 	struct inode *i;
   1489 	struct dir *dir = s_ops.squashfs_opendir(start_block, offset, &i);
   1490 
   1491 	if(dir == NULL)
   1492 		return;
   1493 
   1494 	while(squashfs_readdir(dir, &name, &start_block, &offset, &type)) {
   1495 		struct inode *i;
   1496 		char *pathname;
   1497 		int res;
   1498 
   1499 		TRACE("pre_scan: name %s, start_block %d, offset %d, type %d\n",
   1500 			name, start_block, offset, type);
   1501 
   1502 		if(!matches(paths, name, &new))
   1503 			continue;
   1504 
   1505 		res = asprintf(&pathname, "%s/%s", parent_name, name);
   1506 		if(res == -1)
   1507 			EXIT_UNSQUASH("asprintf failed in dir_scan\n");
   1508 
   1509 		if(type == SQUASHFS_DIR_TYPE)
   1510 			pre_scan(parent_name, start_block, offset, new);
   1511 		else if(new == NULL) {
   1512 			if(type == SQUASHFS_FILE_TYPE ||
   1513 					type == SQUASHFS_LREG_TYPE) {
   1514 				i = s_ops.read_inode(start_block, offset);
   1515 				if(created_inode[i->inode_number - 1] == NULL) {
   1516 					created_inode[i->inode_number - 1] =
   1517 						(char *) i;
   1518 					total_blocks += (i->data +
   1519 						(block_size - 1)) >> block_log;
   1520 				}
   1521 				total_files ++;
   1522 			}
   1523 			total_inodes ++;
   1524 		}
   1525 
   1526 		free_subdir(new);
   1527 		free(pathname);
   1528 	}
   1529 
   1530 	squashfs_closedir(dir);
   1531 }
   1532 
   1533 
   1534 void dir_scan(char *parent_name, unsigned int start_block, unsigned int offset,
   1535 	struct pathnames *paths)
   1536 {
   1537 	unsigned int type;
   1538 	char *name;
   1539 	struct pathnames *new;
   1540 	struct inode *i;
   1541 	struct dir *dir = s_ops.squashfs_opendir(start_block, offset, &i);
   1542 
   1543 	if(dir == NULL) {
   1544 		ERROR("dir_scan: failed to read directory %s, skipping\n",
   1545 			parent_name);
   1546 		return;
   1547 	}
   1548 
   1549 	if(lsonly || info)
   1550 		print_filename(parent_name, i);
   1551 
   1552 	if(!lsonly) {
   1553 		/*
   1554 		 * Make directory with default User rwx permissions rather than
   1555 		 * the permissions from the filesystem, as these may not have
   1556 		 * write/execute permission.  These are fixed up later in
   1557 		 * set_attributes().
   1558 		 */
   1559 		int res = mkdir(parent_name, S_IRUSR|S_IWUSR|S_IXUSR);
   1560 		if(res == -1) {
   1561 			/*
   1562 			 * Skip directory if mkdir fails, unless we're
   1563 			 * forcing and the error is -EEXIST
   1564 			 */
   1565 			if(!force || errno != EEXIST) {
   1566 				ERROR("dir_scan: failed to make directory %s, "
   1567 					"because %s\n", parent_name,
   1568 					strerror(errno));
   1569 				squashfs_closedir(dir);
   1570 				return;
   1571 			}
   1572 
   1573 			/*
   1574 			 * Try to change permissions of existing directory so
   1575 			 * that we can write to it
   1576 			 */
   1577 			res = chmod(parent_name, S_IRUSR|S_IWUSR|S_IXUSR);
   1578 			if (res == -1)
   1579 				ERROR("dir_scan: failed to change permissions "
   1580 					"for directory %s, because %s\n",
   1581 					parent_name, strerror(errno));
   1582 		}
   1583 	}
   1584 
   1585 	while(squashfs_readdir(dir, &name, &start_block, &offset, &type)) {
   1586 		char *pathname;
   1587 		int res;
   1588 
   1589 		TRACE("dir_scan: name %s, start_block %d, offset %d, type %d\n",
   1590 			name, start_block, offset, type);
   1591 
   1592 
   1593 		if(!matches(paths, name, &new))
   1594 			continue;
   1595 
   1596 		res = asprintf(&pathname, "%s/%s", parent_name, name);
   1597 		if(res == -1)
   1598 			EXIT_UNSQUASH("asprintf failed in dir_scan\n");
   1599 
   1600 		if(type == SQUASHFS_DIR_TYPE) {
   1601 			dir_scan(pathname, start_block, offset, new);
   1602 			free(pathname);
   1603 		} else if(new == NULL) {
   1604 			update_info(pathname);
   1605 
   1606 			i = s_ops.read_inode(start_block, offset);
   1607 
   1608 			if(lsonly || info)
   1609 				print_filename(pathname, i);
   1610 
   1611 			if(!lsonly)
   1612 				create_inode(pathname, i);
   1613 
   1614 			if(i->type == SQUASHFS_SYMLINK_TYPE ||
   1615 					i->type == SQUASHFS_LSYMLINK_TYPE)
   1616 				free(i->symlink);
   1617 		} else
   1618 			free(pathname);
   1619 
   1620 		free_subdir(new);
   1621 	}
   1622 
   1623 	if(!lsonly)
   1624 		queue_dir(parent_name, dir);
   1625 
   1626 	squashfs_closedir(dir);
   1627 	dir_count ++;
   1628 }
   1629 
   1630 
   1631 void squashfs_stat(char *source)
   1632 {
   1633 	time_t mkfs_time = (time_t) sBlk.s.mkfs_time;
   1634 	char *mkfs_str = ctime(&mkfs_time);
   1635 
   1636 #if __BYTE_ORDER == __BIG_ENDIAN
   1637 	printf("Found a valid %sSQUASHFS %d:%d superblock on %s.\n",
   1638 		sBlk.s.s_major == 4 ? "" : swap ? "little endian " :
   1639 		"big endian ", sBlk.s.s_major, sBlk.s.s_minor, source);
   1640 #else
   1641 	printf("Found a valid %sSQUASHFS %d:%d superblock on %s.\n",
   1642 		sBlk.s.s_major == 4 ? "" : swap ? "big endian " :
   1643 		"little endian ", sBlk.s.s_major, sBlk.s.s_minor, source);
   1644 #endif
   1645 
   1646 	printf("Creation or last append time %s", mkfs_str ? mkfs_str :
   1647 		"failed to get time\n");
   1648 	printf("Filesystem size %.2f Kbytes (%.2f Mbytes)\n",
   1649 		sBlk.s.bytes_used / 1024.0, sBlk.s.bytes_used /
   1650 		(1024.0 * 1024.0));
   1651 
   1652 	if(sBlk.s.s_major == 4) {
   1653 		printf("Compression %s\n", comp->name);
   1654 
   1655 		if(SQUASHFS_COMP_OPTS(sBlk.s.flags)) {
   1656 			char buffer[SQUASHFS_METADATA_SIZE] __attribute__ ((aligned));
   1657 			int bytes;
   1658 
   1659 			bytes = read_block(fd, sizeof(sBlk.s), NULL, 0, buffer);
   1660 			if(bytes == 0) {
   1661 				ERROR("Failed to read compressor options\n");
   1662 				return;
   1663 			}
   1664 
   1665 			compressor_display_options(comp, buffer, bytes);
   1666 		}
   1667 	}
   1668 
   1669 	printf("Block size %d\n", sBlk.s.block_size);
   1670 	printf("Filesystem is %sexportable via NFS\n",
   1671 		SQUASHFS_EXPORTABLE(sBlk.s.flags) ? "" : "not ");
   1672 	printf("Inodes are %scompressed\n",
   1673 		SQUASHFS_UNCOMPRESSED_INODES(sBlk.s.flags) ? "un" : "");
   1674 	printf("Data is %scompressed\n",
   1675 		SQUASHFS_UNCOMPRESSED_DATA(sBlk.s.flags) ? "un" : "");
   1676 
   1677 	if(sBlk.s.s_major > 1) {
   1678 		if(SQUASHFS_NO_FRAGMENTS(sBlk.s.flags))
   1679 			printf("Fragments are not stored\n");
   1680 		else {
   1681 			printf("Fragments are %scompressed\n",
   1682 				SQUASHFS_UNCOMPRESSED_FRAGMENTS(sBlk.s.flags) ?
   1683 				"un" : "");
   1684 			printf("Always-use-fragments option is %sspecified\n",
   1685 				SQUASHFS_ALWAYS_FRAGMENTS(sBlk.s.flags) ? "" :
   1686 				"not ");
   1687 		}
   1688 	}
   1689 
   1690 	if(sBlk.s.s_major == 4) {
   1691 		if(SQUASHFS_NO_XATTRS(sBlk.s.flags))
   1692 			printf("Xattrs are not stored\n");
   1693 		else
   1694 			printf("Xattrs are %scompressed\n",
   1695 				SQUASHFS_UNCOMPRESSED_XATTRS(sBlk.s.flags) ?
   1696 				"un" : "");
   1697 	}
   1698 
   1699 	if(sBlk.s.s_major < 4)
   1700 			printf("Check data is %spresent in the filesystem\n",
   1701 				SQUASHFS_CHECK_DATA(sBlk.s.flags) ? "" :
   1702 				"not ");
   1703 
   1704 	if(sBlk.s.s_major > 1)
   1705 		printf("Duplicates are %sremoved\n",
   1706 			SQUASHFS_DUPLICATES(sBlk.s.flags) ? "" : "not ");
   1707 	else
   1708 		printf("Duplicates are removed\n");
   1709 
   1710 	if(sBlk.s.s_major > 1)
   1711 		printf("Number of fragments %d\n", sBlk.s.fragments);
   1712 
   1713 	printf("Number of inodes %d\n", sBlk.s.inodes);
   1714 
   1715 	if(sBlk.s.s_major == 4)
   1716 		printf("Number of ids %d\n", sBlk.s.no_ids);
   1717 	else {
   1718 		printf("Number of uids %d\n", sBlk.no_uids);
   1719 		printf("Number of gids %d\n", sBlk.no_guids);
   1720 	}
   1721 
   1722 	TRACE("sBlk.s.inode_table_start 0x%llx\n", sBlk.s.inode_table_start);
   1723 	TRACE("sBlk.s.directory_table_start 0x%llx\n",
   1724 		sBlk.s.directory_table_start);
   1725 
   1726 	if(sBlk.s.s_major > 1)
   1727 		TRACE("sBlk.s.fragment_table_start 0x%llx\n\n",
   1728 			sBlk.s.fragment_table_start);
   1729 
   1730 	if(sBlk.s.s_major > 2)
   1731 		TRACE("sBlk.s.lookup_table_start 0x%llx\n\n",
   1732 			sBlk.s.lookup_table_start);
   1733 
   1734 	if(sBlk.s.s_major == 4) {
   1735 		TRACE("sBlk.s.id_table_start 0x%llx\n", sBlk.s.id_table_start);
   1736 		TRACE("sBlk.s.xattr_id_table_start 0x%llx\n",
   1737 			sBlk.s.xattr_id_table_start);
   1738 	} else {
   1739 		TRACE("sBlk.uid_start 0x%llx\n", sBlk.uid_start);
   1740 		TRACE("sBlk.guid_start 0x%llx\n", sBlk.guid_start);
   1741 	}
   1742 }
   1743 
   1744 
   1745 int check_compression(struct compressor *comp)
   1746 {
   1747 	int res, bytes = 0;
   1748 	char buffer[SQUASHFS_METADATA_SIZE] __attribute__ ((aligned));
   1749 
   1750 	if(!comp->supported) {
   1751 		ERROR("Filesystem uses %s compression, this is "
   1752 			"unsupported by this version\n", comp->name);
   1753 		ERROR("Decompressors available:\n");
   1754 		display_compressors("", "");
   1755 		return 0;
   1756 	}
   1757 
   1758 	/*
   1759 	 * Read compression options from disk if present, and pass to
   1760 	 * the compressor to ensure we know how to decompress a filesystem
   1761 	 * compressed with these compression options.
   1762 	 *
   1763 	 * Note, even if there is no compression options we still call the
   1764 	 * compressor because some compression options may be mandatory
   1765 	 * for some compressors.
   1766 	 */
   1767 	if(SQUASHFS_COMP_OPTS(sBlk.s.flags)) {
   1768 		bytes = read_block(fd, sizeof(sBlk.s), NULL, 0, buffer);
   1769 		if(bytes == 0) {
   1770 			ERROR("Failed to read compressor options\n");
   1771 			return 0;
   1772 		}
   1773 	}
   1774 
   1775 	res = compressor_check_options(comp, sBlk.s.block_size, buffer, bytes);
   1776 
   1777 	return res != -1;
   1778 }
   1779 
   1780 
   1781 int read_super(char *source)
   1782 {
   1783 	squashfs_super_block_3 sBlk_3;
   1784 	struct squashfs_super_block sBlk_4;
   1785 
   1786 	/*
   1787 	 * Try to read a Squashfs 4 superblock
   1788 	 */
   1789 	read_fs_bytes(fd, SQUASHFS_START, sizeof(struct squashfs_super_block),
   1790 		&sBlk_4);
   1791 	swap = sBlk_4.s_magic != SQUASHFS_MAGIC;
   1792 	SQUASHFS_INSWAP_SUPER_BLOCK(&sBlk_4);
   1793 
   1794 	if(sBlk_4.s_magic == SQUASHFS_MAGIC && sBlk_4.s_major == 4 &&
   1795 			sBlk_4.s_minor == 0) {
   1796 		s_ops.squashfs_opendir = squashfs_opendir_4;
   1797 		s_ops.read_fragment = read_fragment_4;
   1798 		s_ops.read_fragment_table = read_fragment_table_4;
   1799 		s_ops.read_block_list = read_block_list_2;
   1800 		s_ops.read_inode = read_inode_4;
   1801 		s_ops.read_uids_guids = read_uids_guids_4;
   1802 		memcpy(&sBlk, &sBlk_4, sizeof(sBlk_4));
   1803 
   1804 		/*
   1805 		 * Check the compression type
   1806 		 */
   1807 		comp = lookup_compressor_id(sBlk.s.compression);
   1808 		return TRUE;
   1809 	}
   1810 
   1811 	/*
   1812  	 * Not a Squashfs 4 superblock, try to read a squashfs 3 superblock
   1813  	 * (compatible with 1 and 2 filesystems)
   1814  	 */
   1815 	read_fs_bytes(fd, SQUASHFS_START, sizeof(squashfs_super_block_3),
   1816 		&sBlk_3);
   1817 
   1818 	/*
   1819 	 * Check it is a SQUASHFS superblock
   1820 	 */
   1821 	swap = 0;
   1822 	if(sBlk_3.s_magic != SQUASHFS_MAGIC) {
   1823 		if(sBlk_3.s_magic == SQUASHFS_MAGIC_SWAP) {
   1824 			squashfs_super_block_3 sblk;
   1825 			ERROR("Reading a different endian SQUASHFS filesystem "
   1826 				"on %s\n", source);
   1827 			SQUASHFS_SWAP_SUPER_BLOCK_3(&sblk, &sBlk_3);
   1828 			memcpy(&sBlk_3, &sblk, sizeof(squashfs_super_block_3));
   1829 			swap = 1;
   1830 		} else  {
   1831 			ERROR("Can't find a SQUASHFS superblock on %s\n",
   1832 				source);
   1833 			goto failed_mount;
   1834 		}
   1835 	}
   1836 
   1837 	sBlk.s.s_magic = sBlk_3.s_magic;
   1838 	sBlk.s.inodes = sBlk_3.inodes;
   1839 	sBlk.s.mkfs_time = sBlk_3.mkfs_time;
   1840 	sBlk.s.block_size = sBlk_3.block_size;
   1841 	sBlk.s.fragments = sBlk_3.fragments;
   1842 	sBlk.s.block_log = sBlk_3.block_log;
   1843 	sBlk.s.flags = sBlk_3.flags;
   1844 	sBlk.s.s_major = sBlk_3.s_major;
   1845 	sBlk.s.s_minor = sBlk_3.s_minor;
   1846 	sBlk.s.root_inode = sBlk_3.root_inode;
   1847 	sBlk.s.bytes_used = sBlk_3.bytes_used;
   1848 	sBlk.s.inode_table_start = sBlk_3.inode_table_start;
   1849 	sBlk.s.directory_table_start = sBlk_3.directory_table_start;
   1850 	sBlk.s.fragment_table_start = sBlk_3.fragment_table_start;
   1851 	sBlk.s.lookup_table_start = sBlk_3.lookup_table_start;
   1852 	sBlk.no_uids = sBlk_3.no_uids;
   1853 	sBlk.no_guids = sBlk_3.no_guids;
   1854 	sBlk.uid_start = sBlk_3.uid_start;
   1855 	sBlk.guid_start = sBlk_3.guid_start;
   1856 	sBlk.s.xattr_id_table_start = SQUASHFS_INVALID_BLK;
   1857 
   1858 	/* Check the MAJOR & MINOR versions */
   1859 	if(sBlk.s.s_major == 1 || sBlk.s.s_major == 2) {
   1860 		sBlk.s.bytes_used = sBlk_3.bytes_used_2;
   1861 		sBlk.uid_start = sBlk_3.uid_start_2;
   1862 		sBlk.guid_start = sBlk_3.guid_start_2;
   1863 		sBlk.s.inode_table_start = sBlk_3.inode_table_start_2;
   1864 		sBlk.s.directory_table_start = sBlk_3.directory_table_start_2;
   1865 
   1866 		if(sBlk.s.s_major == 1) {
   1867 			sBlk.s.block_size = sBlk_3.block_size_1;
   1868 			sBlk.s.fragment_table_start = sBlk.uid_start;
   1869 			s_ops.squashfs_opendir = squashfs_opendir_1;
   1870 			s_ops.read_fragment_table = read_fragment_table_1;
   1871 			s_ops.read_block_list = read_block_list_1;
   1872 			s_ops.read_inode = read_inode_1;
   1873 			s_ops.read_uids_guids = read_uids_guids_1;
   1874 		} else {
   1875 			sBlk.s.fragment_table_start =
   1876 				sBlk_3.fragment_table_start_2;
   1877 			s_ops.squashfs_opendir = squashfs_opendir_1;
   1878 			s_ops.read_fragment = read_fragment_2;
   1879 			s_ops.read_fragment_table = read_fragment_table_2;
   1880 			s_ops.read_block_list = read_block_list_2;
   1881 			s_ops.read_inode = read_inode_2;
   1882 			s_ops.read_uids_guids = read_uids_guids_1;
   1883 		}
   1884 	} else if(sBlk.s.s_major == 3) {
   1885 		s_ops.squashfs_opendir = squashfs_opendir_3;
   1886 		s_ops.read_fragment = read_fragment_3;
   1887 		s_ops.read_fragment_table = read_fragment_table_3;
   1888 		s_ops.read_block_list = read_block_list_2;
   1889 		s_ops.read_inode = read_inode_3;
   1890 		s_ops.read_uids_guids = read_uids_guids_1;
   1891 	} else {
   1892 		ERROR("Filesystem on %s is (%d:%d), ", source, sBlk.s.s_major,
   1893 			sBlk.s.s_minor);
   1894 		ERROR("which is a later filesystem version than I support!\n");
   1895 		goto failed_mount;
   1896 	}
   1897 
   1898 	/*
   1899 	 * 1.x, 2.x and 3.x filesystems use gzip compression.
   1900 	 */
   1901 	comp = lookup_compressor("gzip");
   1902 	return TRUE;
   1903 
   1904 failed_mount:
   1905 	return FALSE;
   1906 }
   1907 
   1908 
   1909 struct pathname *process_extract_files(struct pathname *path, char *filename)
   1910 {
   1911 	FILE *fd;
   1912 	char buffer[MAX_LINE + 1]; /* overflow safe */
   1913 	char *name;
   1914 
   1915 	fd = fopen(filename, "r");
   1916 	if(fd == NULL)
   1917 		EXIT_UNSQUASH("Failed to open extract file \"%s\" because %s\n",
   1918 			filename, strerror(errno));
   1919 
   1920 	while(fgets(name = buffer, MAX_LINE + 1, fd) != NULL) {
   1921 		int len = strlen(name);
   1922 
   1923 		if(len == MAX_LINE && name[len - 1] != '\n')
   1924 			/* line too large */
   1925 			EXIT_UNSQUASH("Line too long when reading "
   1926 				"extract file \"%s\", larger than %d "
   1927 				"bytes\n", filename, MAX_LINE);
   1928 
   1929 		/*
   1930 		 * Remove '\n' terminator if it exists (the last line
   1931 		 * in the file may not be '\n' terminated)
   1932 		 */
   1933 		if(len && name[len - 1] == '\n')
   1934 			name[len - 1] = '\0';
   1935 
   1936 		/* Skip any leading whitespace */
   1937 		while(isspace(*name))
   1938 			name ++;
   1939 
   1940 		/* if comment line, skip */
   1941 		if(*name == '#')
   1942 			continue;
   1943 
   1944 		/* check for initial backslash, to accommodate
   1945 		 * filenames with leading space or leading # character
   1946 		 */
   1947 		if(*name == '\\')
   1948 			name ++;
   1949 
   1950 		/* if line is now empty after skipping characters, skip it */
   1951 		if(*name == '\0')
   1952 			continue;
   1953 
   1954 		path = add_path(path, name, name);
   1955 	}
   1956 
   1957 	if(ferror(fd))
   1958 		EXIT_UNSQUASH("Reading extract file \"%s\" failed because %s\n",
   1959 			filename, strerror(errno));
   1960 
   1961 	fclose(fd);
   1962 	return path;
   1963 }
   1964 
   1965 
   1966 /*
   1967  * reader thread.  This thread processes read requests queued by the
   1968  * cache_get() routine.
   1969  */
   1970 void *reader(void *arg)
   1971 {
   1972 	while(1) {
   1973 		struct cache_entry *entry = queue_get(to_reader);
   1974 		int res = read_fs_bytes(fd, entry->block,
   1975 			SQUASHFS_COMPRESSED_SIZE_BLOCK(entry->size),
   1976 			entry->data);
   1977 
   1978 		if(res && SQUASHFS_COMPRESSED_BLOCK(entry->size))
   1979 			/*
   1980 			 * queue successfully read block to the inflate
   1981 			 * thread(s) for further processing
   1982  			 */
   1983 			queue_put(to_inflate, entry);
   1984 		else
   1985 			/*
   1986 			 * block has either been successfully read and is
   1987 			 * uncompressed, or an error has occurred, clear pending
   1988 			 * flag, set error appropriately, and wake up any
   1989 			 * threads waiting on this buffer
   1990 			 */
   1991 			cache_block_ready(entry, !res);
   1992 	}
   1993 }
   1994 
   1995 
   1996 /*
   1997  * writer thread.  This processes file write requests queued by the
   1998  * write_file() routine.
   1999  */
   2000 void *writer(void *arg)
   2001 {
   2002 	int i;
   2003 
   2004 	while(1) {
   2005 		struct squashfs_file *file = queue_get(to_writer);
   2006 		int file_fd;
   2007 		long long hole = 0;
   2008 		int failed = FALSE;
   2009 		int error;
   2010 
   2011 		if(file == NULL) {
   2012 			queue_put(from_writer, NULL);
   2013 			continue;
   2014 		} else if(file->fd == -1) {
   2015 			/* write attributes for directory file->pathname */
   2016 			set_attributes(file->pathname, file->mode, file->uid,
   2017 				file->gid, file->time, file->xattr, TRUE);
   2018 			free(file->pathname);
   2019 			free(file);
   2020 			continue;
   2021 		}
   2022 
   2023 		TRACE("writer: regular file, blocks %d\n", file->blocks);
   2024 
   2025 		file_fd = file->fd;
   2026 
   2027 		for(i = 0; i < file->blocks; i++, cur_blocks ++) {
   2028 			struct file_entry *block = queue_get(to_writer);
   2029 
   2030 			if(block->buffer == 0) { /* sparse file */
   2031 				hole += block->size;
   2032 				free(block);
   2033 				continue;
   2034 			}
   2035 
   2036 			cache_block_wait(block->buffer);
   2037 
   2038 			if(block->buffer->error)
   2039 				failed = TRUE;
   2040 
   2041 			if(failed)
   2042 				continue;
   2043 
   2044 			error = write_block(file_fd, block->buffer->data +
   2045 				block->offset, block->size, hole, file->sparse);
   2046 
   2047 			if(error == FALSE) {
   2048 				ERROR("writer: failed to write data block %d\n",
   2049 					i);
   2050 				failed = TRUE;
   2051 			}
   2052 
   2053 			hole = 0;
   2054 			cache_block_put(block->buffer);
   2055 			free(block);
   2056 		}
   2057 
   2058 		if(hole && failed == FALSE) {
   2059 			/*
   2060 			 * corner case for hole extending to end of file
   2061 			 */
   2062 			if(file->sparse == FALSE ||
   2063 					lseek(file_fd, hole, SEEK_CUR) == -1) {
   2064 				/*
   2065 				 * for files which we don't want to write
   2066 				 * sparsely, or for broken lseeks which cannot
   2067 				 * seek beyond end of file, write_block will do
   2068 				 * the right thing
   2069 				 */
   2070 				hole --;
   2071 				if(write_block(file_fd, "\0", 1, hole,
   2072 						file->sparse) == FALSE) {
   2073 					ERROR("writer: failed to write sparse "
   2074 						"data block\n");
   2075 					failed = TRUE;
   2076 				}
   2077 			} else if(ftruncate(file_fd, file->file_size) == -1) {
   2078 				ERROR("writer: failed to write sparse data "
   2079 					"block\n");
   2080 				failed = TRUE;
   2081 			}
   2082 		}
   2083 
   2084 		close_wake(file_fd);
   2085 		if(failed == FALSE)
   2086 			set_attributes(file->pathname, file->mode, file->uid,
   2087 				file->gid, file->time, file->xattr, force);
   2088 		else {
   2089 			ERROR("Failed to write %s, skipping\n", file->pathname);
   2090 			unlink(file->pathname);
   2091 		}
   2092 		free(file->pathname);
   2093 		free(file);
   2094 
   2095 	}
   2096 }
   2097 
   2098 
   2099 /*
   2100  * decompress thread.  This decompresses buffers queued by the read thread
   2101  */
   2102 void *inflator(void *arg)
   2103 {
   2104 	char tmp[block_size];
   2105 
   2106 	while(1) {
   2107 		struct cache_entry *entry = queue_get(to_inflate);
   2108 		int error, res;
   2109 
   2110 		res = compressor_uncompress(comp, tmp, entry->data,
   2111 			SQUASHFS_COMPRESSED_SIZE_BLOCK(entry->size), block_size,
   2112 			&error);
   2113 
   2114 		if(res == -1)
   2115 			ERROR("%s uncompress failed with error code %d\n",
   2116 				comp->name, error);
   2117 		else
   2118 			memcpy(entry->data, tmp, res);
   2119 
   2120 		/*
   2121 		 * block has been either successfully decompressed, or an error
   2122  		 * occurred, clear pending flag, set error appropriately and
   2123  		 * wake up any threads waiting on this block
   2124  		 */
   2125 		cache_block_ready(entry, res == -1);
   2126 	}
   2127 }
   2128 
   2129 
   2130 void *progress_thread(void *arg)
   2131 {
   2132 	struct timespec requested_time, remaining;
   2133 	struct itimerval itimerval;
   2134 	struct winsize winsize;
   2135 
   2136 	if(ioctl(1, TIOCGWINSZ, &winsize) == -1) {
   2137 		if(isatty(STDOUT_FILENO))
   2138 			ERROR("TIOCGWINSZ ioctl failed, defaulting to 80 "
   2139 				"columns\n");
   2140 		columns = 80;
   2141 	} else
   2142 		columns = winsize.ws_col;
   2143 	signal(SIGWINCH, sigwinch_handler);
   2144 	signal(SIGALRM, sigalrm_handler);
   2145 
   2146 	itimerval.it_value.tv_sec = 0;
   2147 	itimerval.it_value.tv_usec = 250000;
   2148 	itimerval.it_interval.tv_sec = 0;
   2149 	itimerval.it_interval.tv_usec = 250000;
   2150 	setitimer(ITIMER_REAL, &itimerval, NULL);
   2151 
   2152 	requested_time.tv_sec = 0;
   2153 	requested_time.tv_nsec = 250000000;
   2154 
   2155 	while(1) {
   2156 		int res = nanosleep(&requested_time, &remaining);
   2157 
   2158 		if(res == -1 && errno != EINTR)
   2159 			EXIT_UNSQUASH("nanosleep failed in progress thread\n");
   2160 
   2161 		if(progress_enabled) {
   2162 			pthread_mutex_lock(&screen_mutex);
   2163 			progress_bar(sym_count + dev_count +
   2164 				fifo_count + cur_blocks, total_inodes -
   2165 				total_files + total_blocks, columns);
   2166 			pthread_mutex_unlock(&screen_mutex);
   2167 		}
   2168 	}
   2169 }
   2170 
   2171 
   2172 void initialise_threads(int fragment_buffer_size, int data_buffer_size)
   2173 {
   2174 	struct rlimit rlim;
   2175 	int i, max_files, res;
   2176 	sigset_t sigmask, old_mask;
   2177 
   2178 	/* block SIGQUIT and SIGHUP, these are handled by the info thread */
   2179 	sigemptyset(&sigmask);
   2180 	sigaddset(&sigmask, SIGQUIT);
   2181 	sigaddset(&sigmask, SIGHUP);
   2182 	sigaddset(&sigmask, SIGALRM);
   2183 	if(pthread_sigmask(SIG_BLOCK, &sigmask, NULL) == -1)
   2184 		EXIT_UNSQUASH("Failed to set signal mask in initialise_threads"
   2185 			"\n");
   2186 
   2187 	/*
   2188 	 * temporarily block these signals so the created sub-threads will
   2189 	 * ignore them, ensuring the main thread handles them
   2190 	 */
   2191 	sigemptyset(&sigmask);
   2192 	sigaddset(&sigmask, SIGINT);
   2193 	sigaddset(&sigmask, SIGTERM);
   2194 	if(pthread_sigmask(SIG_BLOCK, &sigmask, &old_mask) == -1)
   2195 		EXIT_UNSQUASH("Failed to set signal mask in initialise_threads"
   2196 			"\n");
   2197 
   2198 	if(processors == -1) {
   2199 #ifndef linux
   2200 		int mib[2];
   2201 		size_t len = sizeof(processors);
   2202 
   2203 		mib[0] = CTL_HW;
   2204 #ifdef HW_AVAILCPU
   2205 		mib[1] = HW_AVAILCPU;
   2206 #else
   2207 		mib[1] = HW_NCPU;
   2208 #endif
   2209 
   2210 		if(sysctl(mib, 2, &processors, &len, NULL, 0) == -1) {
   2211 			ERROR("Failed to get number of available processors.  "
   2212 				"Defaulting to 1\n");
   2213 			processors = 1;
   2214 		}
   2215 #else
   2216 		processors = sysconf(_SC_NPROCESSORS_ONLN);
   2217 #endif
   2218 	}
   2219 
   2220 	if(add_overflow(processors, 3) ||
   2221 			multiply_overflow(processors + 3, sizeof(pthread_t)))
   2222 		EXIT_UNSQUASH("Processors too large\n");
   2223 
   2224 	thread = malloc((3 + processors) * sizeof(pthread_t));
   2225 	if(thread == NULL)
   2226 		EXIT_UNSQUASH("Out of memory allocating thread descriptors\n");
   2227 	inflator_thread = &thread[3];
   2228 
   2229 	/*
   2230 	 * dimensioning the to_reader and to_inflate queues.  The size of
   2231 	 * these queues is directly related to the amount of block
   2232 	 * read-ahead possible.  To_reader queues block read requests to
   2233 	 * the reader thread and to_inflate queues block decompression
   2234 	 * requests to the inflate thread(s) (once the block has been read by
   2235 	 * the reader thread).  The amount of read-ahead is determined by
   2236 	 * the combined size of the data_block and fragment caches which
   2237 	 * determine the total number of blocks which can be "in flight"
   2238 	 * at any one time (either being read or being decompressed)
   2239 	 *
   2240 	 * The maximum file open limit, however, affects the read-ahead
   2241 	 * possible, in that for normal sizes of the fragment and data block
   2242 	 * caches, where the incoming files have few data blocks or one fragment
   2243 	 * only, the file open limit is likely to be reached before the
   2244 	 * caches are full.  This means the worst case sizing of the combined
   2245 	 * sizes of the caches is unlikely to ever be necessary.  However, is is
   2246 	 * obvious read-ahead up to the data block cache size is always possible
   2247 	 * irrespective of the file open limit, because a single file could
   2248 	 * contain that number of blocks.
   2249 	 *
   2250 	 * Choosing the size as "file open limit + data block cache size" seems
   2251 	 * to be a reasonable estimate.  We can reasonably assume the maximum
   2252 	 * likely read-ahead possible is data block cache size + one fragment
   2253 	 * per open file.
   2254 	 *
   2255 	 * dimensioning the to_writer queue.  The size of this queue is
   2256 	 * directly related to the amount of block read-ahead possible.
   2257 	 * However, unlike the to_reader and to_inflate queues, this is
   2258 	 * complicated by the fact the to_writer queue not only contains
   2259 	 * entries for fragments and data_blocks but it also contains
   2260 	 * file entries, one per open file in the read-ahead.
   2261 	 *
   2262 	 * Choosing the size as "2 * (file open limit) +
   2263 	 * data block cache size" seems to be a reasonable estimate.
   2264 	 * We can reasonably assume the maximum likely read-ahead possible
   2265 	 * is data block cache size + one fragment per open file, and then
   2266 	 * we will have a file_entry for each open file.
   2267 	 */
   2268 	res = getrlimit(RLIMIT_NOFILE, &rlim);
   2269 	if (res == -1) {
   2270 		ERROR("failed to get open file limit!  Defaulting to 1\n");
   2271 		rlim.rlim_cur = 1;
   2272 	}
   2273 
   2274 	if (rlim.rlim_cur != RLIM_INFINITY) {
   2275 		/*
   2276 		 * leave OPEN_FILE_MARGIN free (rlim_cur includes fds used by
   2277 		 * stdin, stdout, stderr and filesystem fd
   2278 		 */
   2279 		if (rlim.rlim_cur <= OPEN_FILE_MARGIN)
   2280 			/* no margin, use minimum possible */
   2281 			max_files = 1;
   2282 		else
   2283 			max_files = rlim.rlim_cur - OPEN_FILE_MARGIN;
   2284 	} else
   2285 		max_files = -1;
   2286 
   2287 	/* set amount of available files for use by open_wait and close_wake */
   2288 	open_init(max_files);
   2289 
   2290 	/*
   2291 	 * allocate to_reader, to_inflate and to_writer queues.  Set based on
   2292 	 * open file limit and cache size, unless open file limit is unlimited,
   2293 	 * in which case set purely based on cache limits
   2294 	 *
   2295 	 * In doing so, check that the user supplied values do not overflow
   2296 	 * a signed int
   2297 	 */
   2298 	if (max_files != -1) {
   2299 		if(add_overflow(data_buffer_size, max_files) ||
   2300 				add_overflow(data_buffer_size, max_files * 2))
   2301 			EXIT_UNSQUASH("Data queue size is too large\n");
   2302 
   2303 		to_reader = queue_init(max_files + data_buffer_size);
   2304 		to_inflate = queue_init(max_files + data_buffer_size);
   2305 		to_writer = queue_init(max_files * 2 + data_buffer_size);
   2306 	} else {
   2307 		int all_buffers_size;
   2308 
   2309 		if(add_overflow(fragment_buffer_size, data_buffer_size))
   2310 			EXIT_UNSQUASH("Data and fragment queues combined are"
   2311 							" too large\n");
   2312 
   2313 		all_buffers_size = fragment_buffer_size + data_buffer_size;
   2314 
   2315 		if(add_overflow(all_buffers_size, all_buffers_size))
   2316 			EXIT_UNSQUASH("Data and fragment queues combined are"
   2317 							" too large\n");
   2318 
   2319 		to_reader = queue_init(all_buffers_size);
   2320 		to_inflate = queue_init(all_buffers_size);
   2321 		to_writer = queue_init(all_buffers_size * 2);
   2322 	}
   2323 
   2324 	from_writer = queue_init(1);
   2325 
   2326 	fragment_cache = cache_init(block_size, fragment_buffer_size);
   2327 	data_cache = cache_init(block_size, data_buffer_size);
   2328 	pthread_create(&thread[0], NULL, reader, NULL);
   2329 	pthread_create(&thread[1], NULL, writer, NULL);
   2330 	pthread_create(&thread[2], NULL, progress_thread, NULL);
   2331 	init_info();
   2332 	pthread_mutex_init(&fragment_mutex, NULL);
   2333 
   2334 	for(i = 0; i < processors; i++) {
   2335 		if(pthread_create(&inflator_thread[i], NULL, inflator, NULL) !=
   2336 				 0)
   2337 			EXIT_UNSQUASH("Failed to create thread\n");
   2338 	}
   2339 
   2340 	printf("Parallel unsquashfs: Using %d processor%s\n", processors,
   2341 			processors == 1 ? "" : "s");
   2342 
   2343 	if(pthread_sigmask(SIG_SETMASK, &old_mask, NULL) == -1)
   2344 		EXIT_UNSQUASH("Failed to set signal mask in initialise_threads"
   2345 			"\n");
   2346 }
   2347 
   2348 
   2349 void enable_progress_bar()
   2350 {
   2351 	pthread_mutex_lock(&screen_mutex);
   2352 	progress_enabled = progress;
   2353 	pthread_mutex_unlock(&screen_mutex);
   2354 }
   2355 
   2356 
   2357 void disable_progress_bar()
   2358 {
   2359 	pthread_mutex_lock(&screen_mutex);
   2360 	if(progress_enabled) {
   2361 		progress_bar(sym_count + dev_count + fifo_count + cur_blocks,
   2362 			total_inodes - total_files + total_blocks, columns);
   2363 		printf("\n");
   2364 	}
   2365 	progress_enabled = FALSE;
   2366 	pthread_mutex_unlock(&screen_mutex);
   2367 }
   2368 
   2369 
   2370 void progressbar_error(char *fmt, ...)
   2371 {
   2372 	va_list ap;
   2373 
   2374 	pthread_mutex_lock(&screen_mutex);
   2375 
   2376 	if(progress_enabled)
   2377 		fprintf(stderr, "\n");
   2378 
   2379 	va_start(ap, fmt);
   2380 	vfprintf(stderr, fmt, ap);
   2381 	va_end(ap);
   2382 
   2383 	pthread_mutex_unlock(&screen_mutex);
   2384 }
   2385 
   2386 
   2387 void progressbar_info(char *fmt, ...)
   2388 {
   2389 	va_list ap;
   2390 
   2391 	pthread_mutex_lock(&screen_mutex);
   2392 
   2393 	if(progress_enabled)
   2394 		printf("\n");
   2395 
   2396 	va_start(ap, fmt);
   2397 	vprintf(fmt, ap);
   2398 	va_end(ap);
   2399 
   2400 	pthread_mutex_unlock(&screen_mutex);
   2401 }
   2402 
   2403 void progress_bar(long long current, long long max, int columns)
   2404 {
   2405 	char rotate_list[] = { '|', '/', '-', '\\' };
   2406 	int max_digits, used, hashes, spaces;
   2407 	static int tty = -1;
   2408 
   2409 	if(max == 0)
   2410 		return;
   2411 
   2412 	max_digits = floor(log10(max)) + 1;
   2413 	used = max_digits * 2 + 11;
   2414 	hashes = (current * (columns - used)) / max;
   2415 	spaces = columns - used - hashes;
   2416 
   2417 	if((current > max) || (columns - used < 0))
   2418 		return;
   2419 
   2420 	if(tty == -1)
   2421 		tty = isatty(STDOUT_FILENO);
   2422 	if(!tty) {
   2423 		static long long previous = -1;
   2424 
   2425 		/*
   2426 		 * Updating much more frequently than this results in huge
   2427 		 * log files.
   2428 		 */
   2429 		if((current % 100) != 0 && current != max)
   2430 			return;
   2431 		/* Don't update just to rotate the spinner. */
   2432 		if(current == previous)
   2433 			return;
   2434 		previous = current;
   2435 	}
   2436 
   2437 	printf("\r[");
   2438 
   2439 	while (hashes --)
   2440 		putchar('=');
   2441 
   2442 	putchar(rotate_list[rotate]);
   2443 
   2444 	while(spaces --)
   2445 		putchar(' ');
   2446 
   2447 	printf("] %*lld/%*lld", max_digits, current, max_digits, max);
   2448 	printf(" %3lld%%", current * 100 / max);
   2449 	fflush(stdout);
   2450 }
   2451 
   2452 
   2453 int parse_number(char *arg, int *res)
   2454 {
   2455 	char *b;
   2456 	long number = strtol(arg, &b, 10);
   2457 
   2458 	/* check for trailing junk after number */
   2459 	if(*b != '\0')
   2460 		return 0;
   2461 
   2462 	/*
   2463 	 * check for strtol underflow or overflow in conversion.
   2464 	 * Note: strtol can validly return LONG_MIN and LONG_MAX
   2465 	 * if the user entered these values, but, additional code
   2466 	 * to distinguish this scenario is unnecessary, because for
   2467 	 * our purposes LONG_MIN and LONG_MAX are too large anyway
   2468 	 */
   2469 	if(number == LONG_MIN || number == LONG_MAX)
   2470 		return 0;
   2471 
   2472 	/* reject negative numbers as invalid */
   2473 	if(number < 0)
   2474 		return 0;
   2475 
   2476 	/* check if long result will overflow signed int */
   2477 	if(number > INT_MAX)
   2478 		return 0;
   2479 
   2480 	*res = number;
   2481 	return 1;
   2482 }
   2483 
   2484 
   2485 #define VERSION() \
   2486 	printf("unsquashfs version 4.3 (2014/05/12)\n");\
   2487 	printf("copyright (C) 2014 Phillip Lougher "\
   2488 		"<phillip (at) squashfs.org.uk>\n\n");\
   2489     	printf("This program is free software; you can redistribute it and/or"\
   2490 		"\n");\
   2491 	printf("modify it under the terms of the GNU General Public License"\
   2492 		"\n");\
   2493 	printf("as published by the Free Software Foundation; either version "\
   2494 		"2,\n");\
   2495 	printf("or (at your option) any later version.\n\n");\
   2496 	printf("This program is distributed in the hope that it will be "\
   2497 		"useful,\n");\
   2498 	printf("but WITHOUT ANY WARRANTY; without even the implied warranty of"\
   2499 		"\n");\
   2500 	printf("MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the"\
   2501 		"\n");\
   2502 	printf("GNU General Public License for more details.\n");
   2503 int main(int argc, char *argv[])
   2504 {
   2505 	char *dest = "squashfs-root";
   2506 	int i, stat_sys = FALSE, version = FALSE;
   2507 	int n;
   2508 	struct pathnames *paths = NULL;
   2509 	struct pathname *path = NULL;
   2510 	long long directory_table_end;
   2511 	int fragment_buffer_size = FRAGMENT_BUFFER_DEFAULT;
   2512 	int data_buffer_size = DATA_BUFFER_DEFAULT;
   2513 
   2514 	pthread_mutex_init(&screen_mutex, NULL);
   2515 	root_process = geteuid() == 0;
   2516 	if(root_process)
   2517 		umask(0);
   2518 
   2519 	for(i = 1; i < argc; i++) {
   2520 		if(*argv[i] != '-')
   2521 			break;
   2522 		if(strcmp(argv[i], "-version") == 0 ||
   2523 				strcmp(argv[i], "-v") == 0) {
   2524 			VERSION();
   2525 			version = TRUE;
   2526 		} else if(strcmp(argv[i], "-info") == 0 ||
   2527 				strcmp(argv[i], "-i") == 0)
   2528 			info = TRUE;
   2529 		else if(strcmp(argv[i], "-ls") == 0 ||
   2530 				strcmp(argv[i], "-l") == 0)
   2531 			lsonly = TRUE;
   2532 		else if(strcmp(argv[i], "-no-progress") == 0 ||
   2533 				strcmp(argv[i], "-n") == 0)
   2534 			progress = FALSE;
   2535 		else if(strcmp(argv[i], "-no-xattrs") == 0 ||
   2536 				strcmp(argv[i], "-no") == 0)
   2537 			no_xattrs = TRUE;
   2538 		else if(strcmp(argv[i], "-xattrs") == 0 ||
   2539 				strcmp(argv[i], "-x") == 0)
   2540 			no_xattrs = FALSE;
   2541 		else if(strcmp(argv[i], "-user-xattrs") == 0 ||
   2542 				strcmp(argv[i], "-u") == 0) {
   2543 			user_xattrs = TRUE;
   2544 			no_xattrs = FALSE;
   2545 		} else if(strcmp(argv[i], "-dest") == 0 ||
   2546 				strcmp(argv[i], "-d") == 0) {
   2547 			if(++i == argc) {
   2548 				fprintf(stderr, "%s: -dest missing filename\n",
   2549 					argv[0]);
   2550 				exit(1);
   2551 			}
   2552 			dest = argv[i];
   2553 		} else if(strcmp(argv[i], "-processors") == 0 ||
   2554 				strcmp(argv[i], "-p") == 0) {
   2555 			if((++i == argc) ||
   2556 					!parse_number(argv[i],
   2557 						&processors)) {
   2558 				ERROR("%s: -processors missing or invalid "
   2559 					"processor number\n", argv[0]);
   2560 				exit(1);
   2561 			}
   2562 			if(processors < 1) {
   2563 				ERROR("%s: -processors should be 1 or larger\n",
   2564 					argv[0]);
   2565 				exit(1);
   2566 			}
   2567 		} else if(strcmp(argv[i], "-data-queue") == 0 ||
   2568 					 strcmp(argv[i], "-da") == 0) {
   2569 			if((++i == argc) ||
   2570 					!parse_number(argv[i],
   2571 						&data_buffer_size)) {
   2572 				ERROR("%s: -data-queue missing or invalid "
   2573 					"queue size\n", argv[0]);
   2574 				exit(1);
   2575 			}
   2576 			if(data_buffer_size < 1) {
   2577 				ERROR("%s: -data-queue should be 1 Mbyte or "
   2578 					"larger\n", argv[0]);
   2579 				exit(1);
   2580 			}
   2581 		} else if(strcmp(argv[i], "-frag-queue") == 0 ||
   2582 					strcmp(argv[i], "-fr") == 0) {
   2583 			if((++i == argc) ||
   2584 					!parse_number(argv[i],
   2585 						&fragment_buffer_size)) {
   2586 				ERROR("%s: -frag-queue missing or invalid "
   2587 					"queue size\n", argv[0]);
   2588 				exit(1);
   2589 			}
   2590 			if(fragment_buffer_size < 1) {
   2591 				ERROR("%s: -frag-queue should be 1 Mbyte or "
   2592 					"larger\n", argv[0]);
   2593 				exit(1);
   2594 			}
   2595 		} else if(strcmp(argv[i], "-force") == 0 ||
   2596 				strcmp(argv[i], "-f") == 0)
   2597 			force = TRUE;
   2598 		else if(strcmp(argv[i], "-stat") == 0 ||
   2599 				strcmp(argv[i], "-s") == 0)
   2600 			stat_sys = TRUE;
   2601 		else if(strcmp(argv[i], "-lls") == 0 ||
   2602 				strcmp(argv[i], "-ll") == 0) {
   2603 			lsonly = TRUE;
   2604 			short_ls = FALSE;
   2605 		} else if(strcmp(argv[i], "-linfo") == 0 ||
   2606 				strcmp(argv[i], "-li") == 0) {
   2607 			info = TRUE;
   2608 			short_ls = FALSE;
   2609 		} else if(strcmp(argv[i], "-ef") == 0 ||
   2610 				strcmp(argv[i], "-e") == 0) {
   2611 			if(++i == argc) {
   2612 				fprintf(stderr, "%s: -ef missing filename\n",
   2613 					argv[0]);
   2614 				exit(1);
   2615 			}
   2616 			path = process_extract_files(path, argv[i]);
   2617 		} else if(strcmp(argv[i], "-regex") == 0 ||
   2618 				strcmp(argv[i], "-r") == 0)
   2619 			use_regex = TRUE;
   2620 		else
   2621 			goto options;
   2622 	}
   2623 
   2624 	if(lsonly || info)
   2625 		progress = FALSE;
   2626 
   2627 #ifdef SQUASHFS_TRACE
   2628 	/*
   2629 	 * Disable progress bar if full debug tracing is enabled.
   2630 	 * The progress bar in this case just gets in the way of the
   2631 	 * debug trace output
   2632 	 */
   2633 	progress = FALSE;
   2634 #endif
   2635 
   2636 	if(i == argc) {
   2637 		if(!version) {
   2638 options:
   2639 			ERROR("SYNTAX: %s [options] filesystem [directories or "
   2640 				"files to extract]\n", argv[0]);
   2641 			ERROR("\t-v[ersion]\t\tprint version, licence and "
   2642 				"copyright information\n");
   2643 			ERROR("\t-d[est] <pathname>\tunsquash to <pathname>, "
   2644 				"default \"squashfs-root\"\n");
   2645 			ERROR("\t-n[o-progress]\t\tdon't display the progress "
   2646 				"bar\n");
   2647 			ERROR("\t-no[-xattrs]\t\tdon't extract xattrs in file system"
   2648 				NOXOPT_STR"\n");
   2649 			ERROR("\t-x[attrs]\t\textract xattrs in file system"
   2650 				XOPT_STR "\n");
   2651 			ERROR("\t-u[ser-xattrs]\t\tonly extract user xattrs in "
   2652 				"file system.\n\t\t\t\tEnables extracting "
   2653 				"xattrs\n");
   2654 			ERROR("\t-p[rocessors] <number>\tuse <number> "
   2655 				"processors.  By default will use\n");
   2656 			ERROR("\t\t\t\tnumber of processors available\n");
   2657 			ERROR("\t-i[nfo]\t\t\tprint files as they are "
   2658 				"unsquashed\n");
   2659 			ERROR("\t-li[nfo]\t\tprint files as they are "
   2660 				"unsquashed with file\n");
   2661 			ERROR("\t\t\t\tattributes (like ls -l output)\n");
   2662 			ERROR("\t-l[s]\t\t\tlist filesystem, but don't unsquash"
   2663 				"\n");
   2664 			ERROR("\t-ll[s]\t\t\tlist filesystem with file "
   2665 				"attributes (like\n");
   2666 			ERROR("\t\t\t\tls -l output), but don't unsquash\n");
   2667 			ERROR("\t-f[orce]\t\tif file already exists then "
   2668 				"overwrite\n");
   2669 			ERROR("\t-s[tat]\t\t\tdisplay filesystem superblock "
   2670 				"information\n");
   2671 			ERROR("\t-e[f] <extract file>\tlist of directories or "
   2672 				"files to extract.\n\t\t\t\tOne per line\n");
   2673 			ERROR("\t-da[ta-queue] <size>\tSet data queue to "
   2674 				"<size> Mbytes.  Default %d\n\t\t\t\tMbytes\n",
   2675 				DATA_BUFFER_DEFAULT);
   2676 			ERROR("\t-fr[ag-queue] <size>\tSet fragment queue to "
   2677 				"<size> Mbytes.  Default\n\t\t\t\t%d Mbytes\n",
   2678 				FRAGMENT_BUFFER_DEFAULT);
   2679 			ERROR("\t-r[egex]\t\ttreat extract names as POSIX "
   2680 				"regular expressions\n");
   2681 			ERROR("\t\t\t\trather than use the default shell "
   2682 				"wildcard\n\t\t\t\texpansion (globbing)\n");
   2683 			ERROR("\nDecompressors available:\n");
   2684 			display_compressors("", "");
   2685 		}
   2686 		exit(1);
   2687 	}
   2688 
   2689 	for(n = i + 1; n < argc; n++)
   2690 		path = add_path(path, argv[n], argv[n]);
   2691 
   2692 	if((fd = open(argv[i], O_RDONLY)) == -1) {
   2693 		ERROR("Could not open %s, because %s\n", argv[i],
   2694 			strerror(errno));
   2695 		exit(1);
   2696 	}
   2697 
   2698 	if(read_super(argv[i]) == FALSE)
   2699 		exit(1);
   2700 
   2701 	if(stat_sys) {
   2702 		squashfs_stat(argv[i]);
   2703 		exit(0);
   2704 	}
   2705 
   2706 	if(!check_compression(comp))
   2707 		exit(1);
   2708 
   2709 	block_size = sBlk.s.block_size;
   2710 	block_log = sBlk.s.block_log;
   2711 
   2712 	/*
   2713 	 * Sanity check block size and block log.
   2714 	 *
   2715 	 * Check they're within correct limits
   2716 	 */
   2717 	if(block_size > SQUASHFS_FILE_MAX_SIZE ||
   2718 					block_log > SQUASHFS_FILE_MAX_LOG)
   2719 		EXIT_UNSQUASH("Block size or block_log too large."
   2720 			"  File system is corrupt.\n");
   2721 
   2722 	/*
   2723 	 * Check block_size and block_log match
   2724 	 */
   2725 	if(block_size != (1 << block_log))
   2726 		EXIT_UNSQUASH("Block size and block_log do not match."
   2727 			"  File system is corrupt.\n");
   2728 
   2729 	/*
   2730 	 * convert from queue size in Mbytes to queue size in
   2731 	 * blocks.
   2732 	 *
   2733 	 * In doing so, check that the user supplied values do not
   2734 	 * overflow a signed int
   2735 	 */
   2736 	if(shift_overflow(fragment_buffer_size, 20 - block_log))
   2737 		EXIT_UNSQUASH("Fragment queue size is too large\n");
   2738 	else
   2739 		fragment_buffer_size <<= 20 - block_log;
   2740 
   2741 	if(shift_overflow(data_buffer_size, 20 - block_log))
   2742 		EXIT_UNSQUASH("Data queue size is too large\n");
   2743 	else
   2744 		data_buffer_size <<= 20 - block_log;
   2745 
   2746 	initialise_threads(fragment_buffer_size, data_buffer_size);
   2747 
   2748 	fragment_data = malloc(block_size);
   2749 	if(fragment_data == NULL)
   2750 		EXIT_UNSQUASH("failed to allocate fragment_data\n");
   2751 
   2752 	file_data = malloc(block_size);
   2753 	if(file_data == NULL)
   2754 		EXIT_UNSQUASH("failed to allocate file_data");
   2755 
   2756 	data = malloc(block_size);
   2757 	if(data == NULL)
   2758 		EXIT_UNSQUASH("failed to allocate data\n");
   2759 
   2760 	created_inode = malloc(sBlk.s.inodes * sizeof(char *));
   2761 	if(created_inode == NULL)
   2762 		EXIT_UNSQUASH("failed to allocate created_inode\n");
   2763 
   2764 	memset(created_inode, 0, sBlk.s.inodes * sizeof(char *));
   2765 
   2766 	if(s_ops.read_uids_guids() == FALSE)
   2767 		EXIT_UNSQUASH("failed to uid/gid table\n");
   2768 
   2769 	if(s_ops.read_fragment_table(&directory_table_end) == FALSE)
   2770 		EXIT_UNSQUASH("failed to read fragment table\n");
   2771 
   2772 	if(read_inode_table(sBlk.s.inode_table_start,
   2773 				sBlk.s.directory_table_start) == FALSE)
   2774 		EXIT_UNSQUASH("failed to read inode table\n");
   2775 
   2776 	if(read_directory_table(sBlk.s.directory_table_start,
   2777 				directory_table_end) == FALSE)
   2778 		EXIT_UNSQUASH("failed to read directory table\n");
   2779 
   2780 	if(no_xattrs)
   2781 		sBlk.s.xattr_id_table_start = SQUASHFS_INVALID_BLK;
   2782 
   2783 	if(read_xattrs_from_disk(fd, &sBlk.s) == 0)
   2784 		EXIT_UNSQUASH("failed to read the xattr table\n");
   2785 
   2786 	if(path) {
   2787 		paths = init_subdir();
   2788 		paths = add_subdir(paths, path);
   2789 	}
   2790 
   2791 	pre_scan(dest, SQUASHFS_INODE_BLK(sBlk.s.root_inode),
   2792 		SQUASHFS_INODE_OFFSET(sBlk.s.root_inode), paths);
   2793 
   2794 	memset(created_inode, 0, sBlk.s.inodes * sizeof(char *));
   2795 	inode_number = 1;
   2796 
   2797 	printf("%d inodes (%d blocks) to write\n\n", total_inodes,
   2798 		total_inodes - total_files + total_blocks);
   2799 
   2800 	enable_progress_bar();
   2801 
   2802 	dir_scan(dest, SQUASHFS_INODE_BLK(sBlk.s.root_inode),
   2803 		SQUASHFS_INODE_OFFSET(sBlk.s.root_inode), paths);
   2804 
   2805 	queue_put(to_writer, NULL);
   2806 	queue_get(from_writer);
   2807 
   2808 	disable_progress_bar();
   2809 
   2810 	if(!lsonly) {
   2811 		printf("\n");
   2812 		printf("created %d files\n", file_count);
   2813 		printf("created %d directories\n", dir_count);
   2814 		printf("created %d symlinks\n", sym_count);
   2815 		printf("created %d devices\n", dev_count);
   2816 		printf("created %d fifos\n", fifo_count);
   2817 	}
   2818 
   2819 	return 0;
   2820 }
   2821