Home | History | Annotate | Download | only in ADT
      1 //===--- ImmutableSet.h - Immutable (functional) set interface --*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the ImutAVLTree and ImmutableSet classes.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_ADT_IMSET_H
     15 #define LLVM_ADT_IMSET_H
     16 
     17 #include "llvm/Support/Allocator.h"
     18 #include "llvm/ADT/DenseMap.h"
     19 #include "llvm/ADT/FoldingSet.h"
     20 #include "llvm/Support/DataTypes.h"
     21 #include <cassert>
     22 #include <functional>
     23 #include <vector>
     24 #include <stdio.h>
     25 
     26 namespace llvm {
     27 
     28 //===----------------------------------------------------------------------===//
     29 // Immutable AVL-Tree Definition.
     30 //===----------------------------------------------------------------------===//
     31 
     32 template <typename ImutInfo> class ImutAVLFactory;
     33 template <typename ImutInfo> class ImutIntervalAVLFactory;
     34 template <typename ImutInfo> class ImutAVLTreeInOrderIterator;
     35 template <typename ImutInfo> class ImutAVLTreeGenericIterator;
     36 
     37 template <typename ImutInfo >
     38 class ImutAVLTree {
     39 public:
     40   typedef typename ImutInfo::key_type_ref   key_type_ref;
     41   typedef typename ImutInfo::value_type     value_type;
     42   typedef typename ImutInfo::value_type_ref value_type_ref;
     43 
     44   typedef ImutAVLFactory<ImutInfo>          Factory;
     45   friend class ImutAVLFactory<ImutInfo>;
     46   friend class ImutIntervalAVLFactory<ImutInfo>;
     47 
     48   friend class ImutAVLTreeGenericIterator<ImutInfo>;
     49 
     50   typedef ImutAVLTreeInOrderIterator<ImutInfo>  iterator;
     51 
     52   //===----------------------------------------------------===//
     53   // Public Interface.
     54   //===----------------------------------------------------===//
     55 
     56   /// Return a pointer to the left subtree.  This value
     57   ///  is NULL if there is no left subtree.
     58   ImutAVLTree *getLeft() const { return left; }
     59 
     60   /// Return a pointer to the right subtree.  This value is
     61   ///  NULL if there is no right subtree.
     62   ImutAVLTree *getRight() const { return right; }
     63 
     64   /// getHeight - Returns the height of the tree.  A tree with no subtrees
     65   ///  has a height of 1.
     66   unsigned getHeight() const { return height; }
     67 
     68   /// getValue - Returns the data value associated with the tree node.
     69   const value_type& getValue() const { return value; }
     70 
     71   /// find - Finds the subtree associated with the specified key value.
     72   ///  This method returns NULL if no matching subtree is found.
     73   ImutAVLTree* find(key_type_ref K) {
     74     ImutAVLTree *T = this;
     75     while (T) {
     76       key_type_ref CurrentKey = ImutInfo::KeyOfValue(T->getValue());
     77       if (ImutInfo::isEqual(K,CurrentKey))
     78         return T;
     79       else if (ImutInfo::isLess(K,CurrentKey))
     80         T = T->getLeft();
     81       else
     82         T = T->getRight();
     83     }
     84     return NULL;
     85   }
     86 
     87   /// getMaxElement - Find the subtree associated with the highest ranged
     88   ///  key value.
     89   ImutAVLTree* getMaxElement() {
     90     ImutAVLTree *T = this;
     91     ImutAVLTree *Right = T->getRight();
     92     while (Right) { T = right; right = T->getRight(); }
     93     return T;
     94   }
     95 
     96   /// size - Returns the number of nodes in the tree, which includes
     97   ///  both leaves and non-leaf nodes.
     98   unsigned size() const {
     99     unsigned n = 1;
    100     if (const ImutAVLTree* L = getLeft())
    101       n += L->size();
    102     if (const ImutAVLTree* R = getRight())
    103       n += R->size();
    104     return n;
    105   }
    106 
    107   /// begin - Returns an iterator that iterates over the nodes of the tree
    108   ///  in an inorder traversal.  The returned iterator thus refers to the
    109   ///  the tree node with the minimum data element.
    110   iterator begin() const { return iterator(this); }
    111 
    112   /// end - Returns an iterator for the tree that denotes the end of an
    113   ///  inorder traversal.
    114   iterator end() const { return iterator(); }
    115 
    116   bool isElementEqual(value_type_ref V) const {
    117     // Compare the keys.
    118     if (!ImutInfo::isEqual(ImutInfo::KeyOfValue(getValue()),
    119                            ImutInfo::KeyOfValue(V)))
    120       return false;
    121 
    122     // Also compare the data values.
    123     if (!ImutInfo::isDataEqual(ImutInfo::DataOfValue(getValue()),
    124                                ImutInfo::DataOfValue(V)))
    125       return false;
    126 
    127     return true;
    128   }
    129 
    130   bool isElementEqual(const ImutAVLTree* RHS) const {
    131     return isElementEqual(RHS->getValue());
    132   }
    133 
    134   /// isEqual - Compares two trees for structural equality and returns true
    135   ///   if they are equal.  This worst case performance of this operation is
    136   //    linear in the sizes of the trees.
    137   bool isEqual(const ImutAVLTree& RHS) const {
    138     if (&RHS == this)
    139       return true;
    140 
    141     iterator LItr = begin(), LEnd = end();
    142     iterator RItr = RHS.begin(), REnd = RHS.end();
    143 
    144     while (LItr != LEnd && RItr != REnd) {
    145       if (*LItr == *RItr) {
    146         LItr.skipSubTree();
    147         RItr.skipSubTree();
    148         continue;
    149       }
    150 
    151       if (!LItr->isElementEqual(*RItr))
    152         return false;
    153 
    154       ++LItr;
    155       ++RItr;
    156     }
    157 
    158     return LItr == LEnd && RItr == REnd;
    159   }
    160 
    161   /// isNotEqual - Compares two trees for structural inequality.  Performance
    162   ///  is the same is isEqual.
    163   bool isNotEqual(const ImutAVLTree& RHS) const { return !isEqual(RHS); }
    164 
    165   /// contains - Returns true if this tree contains a subtree (node) that
    166   ///  has an data element that matches the specified key.  Complexity
    167   ///  is logarithmic in the size of the tree.
    168   bool contains(key_type_ref K) { return (bool) find(K); }
    169 
    170   /// foreach - A member template the accepts invokes operator() on a functor
    171   ///  object (specifed by Callback) for every node/subtree in the tree.
    172   ///  Nodes are visited using an inorder traversal.
    173   template <typename Callback>
    174   void foreach(Callback& C) {
    175     if (ImutAVLTree* L = getLeft())
    176       L->foreach(C);
    177 
    178     C(value);
    179 
    180     if (ImutAVLTree* R = getRight())
    181       R->foreach(C);
    182   }
    183 
    184   /// validateTree - A utility method that checks that the balancing and
    185   ///  ordering invariants of the tree are satisifed.  It is a recursive
    186   ///  method that returns the height of the tree, which is then consumed
    187   ///  by the enclosing validateTree call.  External callers should ignore the
    188   ///  return value.  An invalid tree will cause an assertion to fire in
    189   ///  a debug build.
    190   unsigned validateTree() const {
    191     unsigned HL = getLeft() ? getLeft()->validateTree() : 0;
    192     unsigned HR = getRight() ? getRight()->validateTree() : 0;
    193     (void) HL;
    194     (void) HR;
    195 
    196     assert(getHeight() == ( HL > HR ? HL : HR ) + 1
    197             && "Height calculation wrong");
    198 
    199     assert((HL > HR ? HL-HR : HR-HL) <= 2
    200            && "Balancing invariant violated");
    201 
    202     assert((!getLeft() ||
    203             ImutInfo::isLess(ImutInfo::KeyOfValue(getLeft()->getValue()),
    204                              ImutInfo::KeyOfValue(getValue()))) &&
    205            "Value in left child is not less that current value");
    206 
    207 
    208     assert(!(getRight() ||
    209              ImutInfo::isLess(ImutInfo::KeyOfValue(getValue()),
    210                               ImutInfo::KeyOfValue(getRight()->getValue()))) &&
    211            "Current value is not less that value of right child");
    212 
    213     return getHeight();
    214   }
    215 
    216   //===----------------------------------------------------===//
    217   // Internal values.
    218   //===----------------------------------------------------===//
    219 
    220 private:
    221   Factory *factory;
    222   ImutAVLTree *left;
    223   ImutAVLTree *right;
    224   ImutAVLTree *prev;
    225   ImutAVLTree *next;
    226 
    227   unsigned height         : 28;
    228   unsigned IsMutable      : 1;
    229   unsigned IsDigestCached : 1;
    230   unsigned IsCanonicalized : 1;
    231 
    232   value_type value;
    233   uint32_t digest;
    234   uint32_t refCount;
    235 
    236   //===----------------------------------------------------===//
    237   // Internal methods (node manipulation; used by Factory).
    238   //===----------------------------------------------------===//
    239 
    240 private:
    241   /// ImutAVLTree - Internal constructor that is only called by
    242   ///   ImutAVLFactory.
    243   ImutAVLTree(Factory *f, ImutAVLTree* l, ImutAVLTree* r, value_type_ref v,
    244               unsigned height)
    245     : factory(f), left(l), right(r), prev(0), next(0), height(height),
    246       IsMutable(true), IsDigestCached(false), IsCanonicalized(0),
    247       value(v), digest(0), refCount(0)
    248   {
    249     if (left) left->retain();
    250     if (right) right->retain();
    251   }
    252 
    253   /// isMutable - Returns true if the left and right subtree references
    254   ///  (as well as height) can be changed.  If this method returns false,
    255   ///  the tree is truly immutable.  Trees returned from an ImutAVLFactory
    256   ///  object should always have this method return true.  Further, if this
    257   ///  method returns false for an instance of ImutAVLTree, all subtrees
    258   ///  will also have this method return false.  The converse is not true.
    259   bool isMutable() const { return IsMutable; }
    260 
    261   /// hasCachedDigest - Returns true if the digest for this tree is cached.
    262   ///  This can only be true if the tree is immutable.
    263   bool hasCachedDigest() const { return IsDigestCached; }
    264 
    265   //===----------------------------------------------------===//
    266   // Mutating operations.  A tree root can be manipulated as
    267   // long as its reference has not "escaped" from internal
    268   // methods of a factory object (see below).  When a tree
    269   // pointer is externally viewable by client code, the
    270   // internal "mutable bit" is cleared to mark the tree
    271   // immutable.  Note that a tree that still has its mutable
    272   // bit set may have children (subtrees) that are themselves
    273   // immutable.
    274   //===----------------------------------------------------===//
    275 
    276   /// markImmutable - Clears the mutable flag for a tree.  After this happens,
    277   ///   it is an error to call setLeft(), setRight(), and setHeight().
    278   void markImmutable() {
    279     assert(isMutable() && "Mutable flag already removed.");
    280     IsMutable = false;
    281   }
    282 
    283   /// markedCachedDigest - Clears the NoCachedDigest flag for a tree.
    284   void markedCachedDigest() {
    285     assert(!hasCachedDigest() && "NoCachedDigest flag already removed.");
    286     IsDigestCached = true;
    287   }
    288 
    289   /// setHeight - Changes the height of the tree.  Used internally by
    290   ///  ImutAVLFactory.
    291   void setHeight(unsigned h) {
    292     assert(isMutable() && "Only a mutable tree can have its height changed.");
    293     height = h;
    294   }
    295 
    296   static inline
    297   uint32_t computeDigest(ImutAVLTree* L, ImutAVLTree* R, value_type_ref V) {
    298     uint32_t digest = 0;
    299 
    300     if (L)
    301       digest += L->computeDigest();
    302 
    303     // Compute digest of stored data.
    304     FoldingSetNodeID ID;
    305     ImutInfo::Profile(ID,V);
    306     digest += ID.ComputeHash();
    307 
    308     if (R)
    309       digest += R->computeDigest();
    310 
    311     return digest;
    312   }
    313 
    314   inline uint32_t computeDigest() {
    315     // Check the lowest bit to determine if digest has actually been
    316     // pre-computed.
    317     if (hasCachedDigest())
    318       return digest;
    319 
    320     uint32_t X = computeDigest(getLeft(), getRight(), getValue());
    321     digest = X;
    322     markedCachedDigest();
    323     return X;
    324   }
    325 
    326   //===----------------------------------------------------===//
    327   // Reference count operations.
    328   //===----------------------------------------------------===//
    329 
    330 public:
    331   void retain() { ++refCount; }
    332   void release() {
    333     assert(refCount > 0);
    334     if (--refCount == 0)
    335       destroy();
    336   }
    337   void destroy() {
    338     if (left)
    339       left->release();
    340     if (right)
    341       right->release();
    342     if (IsCanonicalized) {
    343       if (next)
    344         next->prev = prev;
    345 
    346       if (prev)
    347         prev->next = next;
    348       else
    349         factory->Cache[computeDigest()] = next;
    350     }
    351 
    352     // We need to clear the mutability bit in case we are
    353     // destroying the node as part of a sweep in ImutAVLFactory::recoverNodes().
    354     IsMutable = false;
    355     factory->freeNodes.push_back(this);
    356   }
    357 };
    358 
    359 //===----------------------------------------------------------------------===//
    360 // Immutable AVL-Tree Factory class.
    361 //===----------------------------------------------------------------------===//
    362 
    363 template <typename ImutInfo >
    364 class ImutAVLFactory {
    365   friend class ImutAVLTree<ImutInfo>;
    366   typedef ImutAVLTree<ImutInfo> TreeTy;
    367   typedef typename TreeTy::value_type_ref value_type_ref;
    368   typedef typename TreeTy::key_type_ref   key_type_ref;
    369 
    370   typedef DenseMap<unsigned, TreeTy*> CacheTy;
    371 
    372   CacheTy Cache;
    373   uintptr_t Allocator;
    374   std::vector<TreeTy*> createdNodes;
    375   std::vector<TreeTy*> freeNodes;
    376 
    377   bool ownsAllocator() const {
    378     return Allocator & 0x1 ? false : true;
    379   }
    380 
    381   BumpPtrAllocator& getAllocator() const {
    382     return *reinterpret_cast<BumpPtrAllocator*>(Allocator & ~0x1);
    383   }
    384 
    385   //===--------------------------------------------------===//
    386   // Public interface.
    387   //===--------------------------------------------------===//
    388 
    389 public:
    390   ImutAVLFactory()
    391     : Allocator(reinterpret_cast<uintptr_t>(new BumpPtrAllocator())) {}
    392 
    393   ImutAVLFactory(BumpPtrAllocator& Alloc)
    394     : Allocator(reinterpret_cast<uintptr_t>(&Alloc) | 0x1) {}
    395 
    396   ~ImutAVLFactory() {
    397     if (ownsAllocator()) delete &getAllocator();
    398   }
    399 
    400   TreeTy* add(TreeTy* T, value_type_ref V) {
    401     T = add_internal(V,T);
    402     markImmutable(T);
    403     recoverNodes();
    404     return T;
    405   }
    406 
    407   TreeTy* remove(TreeTy* T, key_type_ref V) {
    408     T = remove_internal(V,T);
    409     markImmutable(T);
    410     recoverNodes();
    411     return T;
    412   }
    413 
    414   TreeTy* getEmptyTree() const { return NULL; }
    415 
    416 protected:
    417 
    418   //===--------------------------------------------------===//
    419   // A bunch of quick helper functions used for reasoning
    420   // about the properties of trees and their children.
    421   // These have succinct names so that the balancing code
    422   // is as terse (and readable) as possible.
    423   //===--------------------------------------------------===//
    424 
    425   bool            isEmpty(TreeTy* T) const { return !T; }
    426   unsigned        getHeight(TreeTy* T) const { return T ? T->getHeight() : 0; }
    427   TreeTy*         getLeft(TreeTy* T) const { return T->getLeft(); }
    428   TreeTy*         getRight(TreeTy* T) const { return T->getRight(); }
    429   value_type_ref  getValue(TreeTy* T) const { return T->value; }
    430 
    431   unsigned incrementHeight(TreeTy* L, TreeTy* R) const {
    432     unsigned hl = getHeight(L);
    433     unsigned hr = getHeight(R);
    434     return (hl > hr ? hl : hr) + 1;
    435   }
    436 
    437   static bool compareTreeWithSection(TreeTy* T,
    438                                      typename TreeTy::iterator& TI,
    439                                      typename TreeTy::iterator& TE) {
    440     typename TreeTy::iterator I = T->begin(), E = T->end();
    441     for ( ; I!=E ; ++I, ++TI) {
    442       if (TI == TE || !I->isElementEqual(*TI))
    443         return false;
    444     }
    445     return true;
    446   }
    447 
    448   //===--------------------------------------------------===//
    449   // "createNode" is used to generate new tree roots that link
    450   // to other trees.  The functon may also simply move links
    451   // in an existing root if that root is still marked mutable.
    452   // This is necessary because otherwise our balancing code
    453   // would leak memory as it would create nodes that are
    454   // then discarded later before the finished tree is
    455   // returned to the caller.
    456   //===--------------------------------------------------===//
    457 
    458   TreeTy* createNode(TreeTy* L, value_type_ref V, TreeTy* R) {
    459     BumpPtrAllocator& A = getAllocator();
    460     TreeTy* T;
    461     if (!freeNodes.empty()) {
    462       T = freeNodes.back();
    463       freeNodes.pop_back();
    464       assert(T != L);
    465       assert(T != R);
    466     }
    467     else {
    468       T = (TreeTy*) A.Allocate<TreeTy>();
    469     }
    470     new (T) TreeTy(this, L, R, V, incrementHeight(L,R));
    471     createdNodes.push_back(T);
    472     return T;
    473   }
    474 
    475   TreeTy* createNode(TreeTy* newLeft, TreeTy* oldTree, TreeTy* newRight) {
    476     return createNode(newLeft, getValue(oldTree), newRight);
    477   }
    478 
    479   void recoverNodes() {
    480     for (unsigned i = 0, n = createdNodes.size(); i < n; ++i) {
    481       TreeTy *N = createdNodes[i];
    482       if (N->isMutable() && N->refCount == 0)
    483         N->destroy();
    484     }
    485     createdNodes.clear();
    486   }
    487 
    488   /// balanceTree - Used by add_internal and remove_internal to
    489   ///  balance a newly created tree.
    490   TreeTy* balanceTree(TreeTy* L, value_type_ref V, TreeTy* R) {
    491     unsigned hl = getHeight(L);
    492     unsigned hr = getHeight(R);
    493 
    494     if (hl > hr + 2) {
    495       assert(!isEmpty(L) && "Left tree cannot be empty to have a height >= 2");
    496 
    497       TreeTy *LL = getLeft(L);
    498       TreeTy *LR = getRight(L);
    499 
    500       if (getHeight(LL) >= getHeight(LR))
    501         return createNode(LL, L, createNode(LR,V,R));
    502 
    503       assert(!isEmpty(LR) && "LR cannot be empty because it has a height >= 1");
    504 
    505       TreeTy *LRL = getLeft(LR);
    506       TreeTy *LRR = getRight(LR);
    507 
    508       return createNode(createNode(LL,L,LRL), LR, createNode(LRR,V,R));
    509     }
    510     else if (hr > hl + 2) {
    511       assert(!isEmpty(R) && "Right tree cannot be empty to have a height >= 2");
    512 
    513       TreeTy *RL = getLeft(R);
    514       TreeTy *RR = getRight(R);
    515 
    516       if (getHeight(RR) >= getHeight(RL))
    517         return createNode(createNode(L,V,RL), R, RR);
    518 
    519       assert(!isEmpty(RL) && "RL cannot be empty because it has a height >= 1");
    520 
    521       TreeTy *RLL = getLeft(RL);
    522       TreeTy *RLR = getRight(RL);
    523 
    524       return createNode(createNode(L,V,RLL), RL, createNode(RLR,R,RR));
    525     }
    526     else
    527       return createNode(L,V,R);
    528   }
    529 
    530   /// add_internal - Creates a new tree that includes the specified
    531   ///  data and the data from the original tree.  If the original tree
    532   ///  already contained the data item, the original tree is returned.
    533   TreeTy* add_internal(value_type_ref V, TreeTy* T) {
    534     if (isEmpty(T))
    535       return createNode(T, V, T);
    536     assert(!T->isMutable());
    537 
    538     key_type_ref K = ImutInfo::KeyOfValue(V);
    539     key_type_ref KCurrent = ImutInfo::KeyOfValue(getValue(T));
    540 
    541     if (ImutInfo::isEqual(K,KCurrent))
    542       return createNode(getLeft(T), V, getRight(T));
    543     else if (ImutInfo::isLess(K,KCurrent))
    544       return balanceTree(add_internal(V, getLeft(T)), getValue(T), getRight(T));
    545     else
    546       return balanceTree(getLeft(T), getValue(T), add_internal(V, getRight(T)));
    547   }
    548 
    549   /// remove_internal - Creates a new tree that includes all the data
    550   ///  from the original tree except the specified data.  If the
    551   ///  specified data did not exist in the original tree, the original
    552   ///  tree is returned.
    553   TreeTy* remove_internal(key_type_ref K, TreeTy* T) {
    554     if (isEmpty(T))
    555       return T;
    556 
    557     assert(!T->isMutable());
    558 
    559     key_type_ref KCurrent = ImutInfo::KeyOfValue(getValue(T));
    560 
    561     if (ImutInfo::isEqual(K,KCurrent)) {
    562       return combineTrees(getLeft(T), getRight(T));
    563     } else if (ImutInfo::isLess(K,KCurrent)) {
    564       return balanceTree(remove_internal(K, getLeft(T)),
    565                                             getValue(T), getRight(T));
    566     } else {
    567       return balanceTree(getLeft(T), getValue(T),
    568                          remove_internal(K, getRight(T)));
    569     }
    570   }
    571 
    572   TreeTy* combineTrees(TreeTy* L, TreeTy* R) {
    573     if (isEmpty(L))
    574       return R;
    575     if (isEmpty(R))
    576       return L;
    577     TreeTy* OldNode;
    578     TreeTy* newRight = removeMinBinding(R,OldNode);
    579     return balanceTree(L, getValue(OldNode), newRight);
    580   }
    581 
    582   TreeTy* removeMinBinding(TreeTy* T, TreeTy*& Noderemoved) {
    583     assert(!isEmpty(T));
    584     if (isEmpty(getLeft(T))) {
    585       Noderemoved = T;
    586       return getRight(T);
    587     }
    588     return balanceTree(removeMinBinding(getLeft(T), Noderemoved),
    589                        getValue(T), getRight(T));
    590   }
    591 
    592   /// markImmutable - Clears the mutable bits of a root and all of its
    593   ///  descendants.
    594   void markImmutable(TreeTy* T) {
    595     if (!T || !T->isMutable())
    596       return;
    597     T->markImmutable();
    598     markImmutable(getLeft(T));
    599     markImmutable(getRight(T));
    600   }
    601 
    602 public:
    603   TreeTy *getCanonicalTree(TreeTy *TNew) {
    604     if (!TNew)
    605       return 0;
    606 
    607     if (TNew->IsCanonicalized)
    608       return TNew;
    609 
    610     // Search the hashtable for another tree with the same digest, and
    611     // if find a collision compare those trees by their contents.
    612     unsigned digest = TNew->computeDigest();
    613     TreeTy *&entry = Cache[digest];
    614     do {
    615       if (!entry)
    616         break;
    617       for (TreeTy *T = entry ; T != 0; T = T->next) {
    618         // Compare the Contents('T') with Contents('TNew')
    619         typename TreeTy::iterator TI = T->begin(), TE = T->end();
    620         if (!compareTreeWithSection(TNew, TI, TE))
    621           continue;
    622         if (TI != TE)
    623           continue; // T has more contents than TNew.
    624         // Trees did match!  Return 'T'.
    625         if (TNew->refCount == 0)
    626           TNew->destroy();
    627         return T;
    628       }
    629       entry->prev = TNew;
    630       TNew->next = entry;
    631     }
    632     while (false);
    633 
    634     entry = TNew;
    635     TNew->IsCanonicalized = true;
    636     return TNew;
    637   }
    638 };
    639 
    640 //===----------------------------------------------------------------------===//
    641 // Immutable AVL-Tree Iterators.
    642 //===----------------------------------------------------------------------===//
    643 
    644 template <typename ImutInfo>
    645 class ImutAVLTreeGenericIterator {
    646   SmallVector<uintptr_t,20> stack;
    647 public:
    648   enum VisitFlag { VisitedNone=0x0, VisitedLeft=0x1, VisitedRight=0x3,
    649                    Flags=0x3 };
    650 
    651   typedef ImutAVLTree<ImutInfo> TreeTy;
    652   typedef ImutAVLTreeGenericIterator<ImutInfo> _Self;
    653 
    654   inline ImutAVLTreeGenericIterator() {}
    655   inline ImutAVLTreeGenericIterator(const TreeTy* Root) {
    656     if (Root) stack.push_back(reinterpret_cast<uintptr_t>(Root));
    657   }
    658 
    659   TreeTy* operator*() const {
    660     assert(!stack.empty());
    661     return reinterpret_cast<TreeTy*>(stack.back() & ~Flags);
    662   }
    663 
    664   uintptr_t getVisitState() {
    665     assert(!stack.empty());
    666     return stack.back() & Flags;
    667   }
    668 
    669 
    670   bool atEnd() const { return stack.empty(); }
    671 
    672   bool atBeginning() const {
    673     return stack.size() == 1 && getVisitState() == VisitedNone;
    674   }
    675 
    676   void skipToParent() {
    677     assert(!stack.empty());
    678     stack.pop_back();
    679     if (stack.empty())
    680       return;
    681     switch (getVisitState()) {
    682       case VisitedNone:
    683         stack.back() |= VisitedLeft;
    684         break;
    685       case VisitedLeft:
    686         stack.back() |= VisitedRight;
    687         break;
    688       default:
    689         assert(false && "Unreachable.");
    690     }
    691   }
    692 
    693   inline bool operator==(const _Self& x) const {
    694     if (stack.size() != x.stack.size())
    695       return false;
    696     for (unsigned i = 0 ; i < stack.size(); i++)
    697       if (stack[i] != x.stack[i])
    698         return false;
    699     return true;
    700   }
    701 
    702   inline bool operator!=(const _Self& x) const { return !operator==(x); }
    703 
    704   _Self& operator++() {
    705     assert(!stack.empty());
    706     TreeTy* Current = reinterpret_cast<TreeTy*>(stack.back() & ~Flags);
    707     assert(Current);
    708     switch (getVisitState()) {
    709       case VisitedNone:
    710         if (TreeTy* L = Current->getLeft())
    711           stack.push_back(reinterpret_cast<uintptr_t>(L));
    712         else
    713           stack.back() |= VisitedLeft;
    714         break;
    715       case VisitedLeft:
    716         if (TreeTy* R = Current->getRight())
    717           stack.push_back(reinterpret_cast<uintptr_t>(R));
    718         else
    719           stack.back() |= VisitedRight;
    720         break;
    721       case VisitedRight:
    722         skipToParent();
    723         break;
    724       default:
    725         assert(false && "Unreachable.");
    726     }
    727     return *this;
    728   }
    729 
    730   _Self& operator--() {
    731     assert(!stack.empty());
    732     TreeTy* Current = reinterpret_cast<TreeTy*>(stack.back() & ~Flags);
    733     assert(Current);
    734     switch (getVisitState()) {
    735       case VisitedNone:
    736         stack.pop_back();
    737         break;
    738       case VisitedLeft:
    739         stack.back() &= ~Flags; // Set state to "VisitedNone."
    740         if (TreeTy* L = Current->getLeft())
    741           stack.push_back(reinterpret_cast<uintptr_t>(L) | VisitedRight);
    742         break;
    743       case VisitedRight:
    744         stack.back() &= ~Flags;
    745         stack.back() |= VisitedLeft;
    746         if (TreeTy* R = Current->getRight())
    747           stack.push_back(reinterpret_cast<uintptr_t>(R) | VisitedRight);
    748         break;
    749       default:
    750         assert(false && "Unreachable.");
    751     }
    752     return *this;
    753   }
    754 };
    755 
    756 template <typename ImutInfo>
    757 class ImutAVLTreeInOrderIterator {
    758   typedef ImutAVLTreeGenericIterator<ImutInfo> InternalIteratorTy;
    759   InternalIteratorTy InternalItr;
    760 
    761 public:
    762   typedef ImutAVLTree<ImutInfo> TreeTy;
    763   typedef ImutAVLTreeInOrderIterator<ImutInfo> _Self;
    764 
    765   ImutAVLTreeInOrderIterator(const TreeTy* Root) : InternalItr(Root) {
    766     if (Root) operator++(); // Advance to first element.
    767   }
    768 
    769   ImutAVLTreeInOrderIterator() : InternalItr() {}
    770 
    771   inline bool operator==(const _Self& x) const {
    772     return InternalItr == x.InternalItr;
    773   }
    774 
    775   inline bool operator!=(const _Self& x) const { return !operator==(x); }
    776 
    777   inline TreeTy* operator*() const { return *InternalItr; }
    778   inline TreeTy* operator->() const { return *InternalItr; }
    779 
    780   inline _Self& operator++() {
    781     do ++InternalItr;
    782     while (!InternalItr.atEnd() &&
    783            InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft);
    784 
    785     return *this;
    786   }
    787 
    788   inline _Self& operator--() {
    789     do --InternalItr;
    790     while (!InternalItr.atBeginning() &&
    791            InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft);
    792 
    793     return *this;
    794   }
    795 
    796   inline void skipSubTree() {
    797     InternalItr.skipToParent();
    798 
    799     while (!InternalItr.atEnd() &&
    800            InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft)
    801       ++InternalItr;
    802   }
    803 };
    804 
    805 //===----------------------------------------------------------------------===//
    806 // Trait classes for Profile information.
    807 //===----------------------------------------------------------------------===//
    808 
    809 /// Generic profile template.  The default behavior is to invoke the
    810 /// profile method of an object.  Specializations for primitive integers
    811 /// and generic handling of pointers is done below.
    812 template <typename T>
    813 struct ImutProfileInfo {
    814   typedef const T  value_type;
    815   typedef const T& value_type_ref;
    816 
    817   static inline void Profile(FoldingSetNodeID& ID, value_type_ref X) {
    818     FoldingSetTrait<T>::Profile(X,ID);
    819   }
    820 };
    821 
    822 /// Profile traits for integers.
    823 template <typename T>
    824 struct ImutProfileInteger {
    825   typedef const T  value_type;
    826   typedef const T& value_type_ref;
    827 
    828   static inline void Profile(FoldingSetNodeID& ID, value_type_ref X) {
    829     ID.AddInteger(X);
    830   }
    831 };
    832 
    833 #define PROFILE_INTEGER_INFO(X)\
    834 template<> struct ImutProfileInfo<X> : ImutProfileInteger<X> {};
    835 
    836 PROFILE_INTEGER_INFO(char)
    837 PROFILE_INTEGER_INFO(unsigned char)
    838 PROFILE_INTEGER_INFO(short)
    839 PROFILE_INTEGER_INFO(unsigned short)
    840 PROFILE_INTEGER_INFO(unsigned)
    841 PROFILE_INTEGER_INFO(signed)
    842 PROFILE_INTEGER_INFO(long)
    843 PROFILE_INTEGER_INFO(unsigned long)
    844 PROFILE_INTEGER_INFO(long long)
    845 PROFILE_INTEGER_INFO(unsigned long long)
    846 
    847 #undef PROFILE_INTEGER_INFO
    848 
    849 /// Generic profile trait for pointer types.  We treat pointers as
    850 /// references to unique objects.
    851 template <typename T>
    852 struct ImutProfileInfo<T*> {
    853   typedef const T*   value_type;
    854   typedef value_type value_type_ref;
    855 
    856   static inline void Profile(FoldingSetNodeID &ID, value_type_ref X) {
    857     ID.AddPointer(X);
    858   }
    859 };
    860 
    861 //===----------------------------------------------------------------------===//
    862 // Trait classes that contain element comparison operators and type
    863 //  definitions used by ImutAVLTree, ImmutableSet, and ImmutableMap.  These
    864 //  inherit from the profile traits (ImutProfileInfo) to include operations
    865 //  for element profiling.
    866 //===----------------------------------------------------------------------===//
    867 
    868 
    869 /// ImutContainerInfo - Generic definition of comparison operations for
    870 ///   elements of immutable containers that defaults to using
    871 ///   std::equal_to<> and std::less<> to perform comparison of elements.
    872 template <typename T>
    873 struct ImutContainerInfo : public ImutProfileInfo<T> {
    874   typedef typename ImutProfileInfo<T>::value_type      value_type;
    875   typedef typename ImutProfileInfo<T>::value_type_ref  value_type_ref;
    876   typedef value_type      key_type;
    877   typedef value_type_ref  key_type_ref;
    878   typedef bool            data_type;
    879   typedef bool            data_type_ref;
    880 
    881   static inline key_type_ref KeyOfValue(value_type_ref D) { return D; }
    882   static inline data_type_ref DataOfValue(value_type_ref) { return true; }
    883 
    884   static inline bool isEqual(key_type_ref LHS, key_type_ref RHS) {
    885     return std::equal_to<key_type>()(LHS,RHS);
    886   }
    887 
    888   static inline bool isLess(key_type_ref LHS, key_type_ref RHS) {
    889     return std::less<key_type>()(LHS,RHS);
    890   }
    891 
    892   static inline bool isDataEqual(data_type_ref,data_type_ref) { return true; }
    893 };
    894 
    895 /// ImutContainerInfo - Specialization for pointer values to treat pointers
    896 ///  as references to unique objects.  Pointers are thus compared by
    897 ///  their addresses.
    898 template <typename T>
    899 struct ImutContainerInfo<T*> : public ImutProfileInfo<T*> {
    900   typedef typename ImutProfileInfo<T*>::value_type      value_type;
    901   typedef typename ImutProfileInfo<T*>::value_type_ref  value_type_ref;
    902   typedef value_type      key_type;
    903   typedef value_type_ref  key_type_ref;
    904   typedef bool            data_type;
    905   typedef bool            data_type_ref;
    906 
    907   static inline key_type_ref KeyOfValue(value_type_ref D) { return D; }
    908   static inline data_type_ref DataOfValue(value_type_ref) { return true; }
    909 
    910   static inline bool isEqual(key_type_ref LHS, key_type_ref RHS) {
    911     return LHS == RHS;
    912   }
    913 
    914   static inline bool isLess(key_type_ref LHS, key_type_ref RHS) {
    915     return LHS < RHS;
    916   }
    917 
    918   static inline bool isDataEqual(data_type_ref,data_type_ref) { return true; }
    919 };
    920 
    921 //===----------------------------------------------------------------------===//
    922 // Immutable Set
    923 //===----------------------------------------------------------------------===//
    924 
    925 template <typename ValT, typename ValInfo = ImutContainerInfo<ValT> >
    926 class ImmutableSet {
    927 public:
    928   typedef typename ValInfo::value_type      value_type;
    929   typedef typename ValInfo::value_type_ref  value_type_ref;
    930   typedef ImutAVLTree<ValInfo> TreeTy;
    931 
    932 private:
    933   TreeTy *Root;
    934 
    935 public:
    936   /// Constructs a set from a pointer to a tree root.  In general one
    937   /// should use a Factory object to create sets instead of directly
    938   /// invoking the constructor, but there are cases where make this
    939   /// constructor public is useful.
    940   explicit ImmutableSet(TreeTy* R) : Root(R) {
    941     if (Root) { Root->retain(); }
    942   }
    943   ImmutableSet(const ImmutableSet &X) : Root(X.Root) {
    944     if (Root) { Root->retain(); }
    945   }
    946   ImmutableSet &operator=(const ImmutableSet &X) {
    947     if (Root != X.Root) {
    948       if (X.Root) { X.Root->retain(); }
    949       if (Root) { Root->release(); }
    950       Root = X.Root;
    951     }
    952     return *this;
    953   }
    954   ~ImmutableSet() {
    955     if (Root) { Root->release(); }
    956   }
    957 
    958   class Factory {
    959     typename TreeTy::Factory F;
    960     const bool Canonicalize;
    961 
    962   public:
    963     Factory(bool canonicalize = true)
    964       : Canonicalize(canonicalize) {}
    965 
    966     Factory(BumpPtrAllocator& Alloc, bool canonicalize = true)
    967       : F(Alloc), Canonicalize(canonicalize) {}
    968 
    969     /// getEmptySet - Returns an immutable set that contains no elements.
    970     ImmutableSet getEmptySet() {
    971       return ImmutableSet(F.getEmptyTree());
    972     }
    973 
    974     /// add - Creates a new immutable set that contains all of the values
    975     ///  of the original set with the addition of the specified value.  If
    976     ///  the original set already included the value, then the original set is
    977     ///  returned and no memory is allocated.  The time and space complexity
    978     ///  of this operation is logarithmic in the size of the original set.
    979     ///  The memory allocated to represent the set is released when the
    980     ///  factory object that created the set is destroyed.
    981     ImmutableSet add(ImmutableSet Old, value_type_ref V) {
    982       TreeTy *NewT = F.add(Old.Root, V);
    983       return ImmutableSet(Canonicalize ? F.getCanonicalTree(NewT) : NewT);
    984     }
    985 
    986     /// remove - Creates a new immutable set that contains all of the values
    987     ///  of the original set with the exception of the specified value.  If
    988     ///  the original set did not contain the value, the original set is
    989     ///  returned and no memory is allocated.  The time and space complexity
    990     ///  of this operation is logarithmic in the size of the original set.
    991     ///  The memory allocated to represent the set is released when the
    992     ///  factory object that created the set is destroyed.
    993     ImmutableSet remove(ImmutableSet Old, value_type_ref V) {
    994       TreeTy *NewT = F.remove(Old.Root, V);
    995       return ImmutableSet(Canonicalize ? F.getCanonicalTree(NewT) : NewT);
    996     }
    997 
    998     BumpPtrAllocator& getAllocator() { return F.getAllocator(); }
    999 
   1000     typename TreeTy::Factory *getTreeFactory() const {
   1001       return const_cast<typename TreeTy::Factory *>(&F);
   1002     }
   1003 
   1004   private:
   1005     Factory(const Factory& RHS); // DO NOT IMPLEMENT
   1006     void operator=(const Factory& RHS); // DO NOT IMPLEMENT
   1007   };
   1008 
   1009   friend class Factory;
   1010 
   1011   /// Returns true if the set contains the specified value.
   1012   bool contains(value_type_ref V) const {
   1013     return Root ? Root->contains(V) : false;
   1014   }
   1015 
   1016   bool operator==(const ImmutableSet &RHS) const {
   1017     return Root && RHS.Root ? Root->isEqual(*RHS.Root) : Root == RHS.Root;
   1018   }
   1019 
   1020   bool operator!=(const ImmutableSet &RHS) const {
   1021     return Root && RHS.Root ? Root->isNotEqual(*RHS.Root) : Root != RHS.Root;
   1022   }
   1023 
   1024   TreeTy *getRoot() {
   1025     if (Root) { Root->retain(); }
   1026     return Root;
   1027   }
   1028 
   1029   TreeTy *getRootWithoutRetain() const {
   1030     return Root;
   1031   }
   1032 
   1033   /// isEmpty - Return true if the set contains no elements.
   1034   bool isEmpty() const { return !Root; }
   1035 
   1036   /// isSingleton - Return true if the set contains exactly one element.
   1037   ///   This method runs in constant time.
   1038   bool isSingleton() const { return getHeight() == 1; }
   1039 
   1040   template <typename Callback>
   1041   void foreach(Callback& C) { if (Root) Root->foreach(C); }
   1042 
   1043   template <typename Callback>
   1044   void foreach() { if (Root) { Callback C; Root->foreach(C); } }
   1045 
   1046   //===--------------------------------------------------===//
   1047   // Iterators.
   1048   //===--------------------------------------------------===//
   1049 
   1050   class iterator {
   1051     typename TreeTy::iterator itr;
   1052     iterator(TreeTy* t) : itr(t) {}
   1053     friend class ImmutableSet<ValT,ValInfo>;
   1054   public:
   1055     iterator() {}
   1056     inline value_type_ref operator*() const { return itr->getValue(); }
   1057     inline iterator& operator++() { ++itr; return *this; }
   1058     inline iterator  operator++(int) { iterator tmp(*this); ++itr; return tmp; }
   1059     inline iterator& operator--() { --itr; return *this; }
   1060     inline iterator  operator--(int) { iterator tmp(*this); --itr; return tmp; }
   1061     inline bool operator==(const iterator& RHS) const { return RHS.itr == itr; }
   1062     inline bool operator!=(const iterator& RHS) const { return RHS.itr != itr; }
   1063     inline value_type *operator->() const { return &(operator*()); }
   1064   };
   1065 
   1066   iterator begin() const { return iterator(Root); }
   1067   iterator end() const { return iterator(); }
   1068 
   1069   //===--------------------------------------------------===//
   1070   // Utility methods.
   1071   //===--------------------------------------------------===//
   1072 
   1073   unsigned getHeight() const { return Root ? Root->getHeight() : 0; }
   1074 
   1075   static inline void Profile(FoldingSetNodeID& ID, const ImmutableSet& S) {
   1076     ID.AddPointer(S.Root);
   1077   }
   1078 
   1079   inline void Profile(FoldingSetNodeID& ID) const {
   1080     return Profile(ID,*this);
   1081   }
   1082 
   1083   //===--------------------------------------------------===//
   1084   // For testing.
   1085   //===--------------------------------------------------===//
   1086 
   1087   void validateTree() const { if (Root) Root->validateTree(); }
   1088 };
   1089 
   1090 // NOTE: This may some day replace the current ImmutableSet.
   1091 template <typename ValT, typename ValInfo = ImutContainerInfo<ValT> >
   1092 class ImmutableSetRef {
   1093 public:
   1094   typedef typename ValInfo::value_type      value_type;
   1095   typedef typename ValInfo::value_type_ref  value_type_ref;
   1096   typedef ImutAVLTree<ValInfo> TreeTy;
   1097   typedef typename TreeTy::Factory          FactoryTy;
   1098 
   1099 private:
   1100   TreeTy *Root;
   1101   FactoryTy *Factory;
   1102 
   1103 public:
   1104   /// Constructs a set from a pointer to a tree root.  In general one
   1105   /// should use a Factory object to create sets instead of directly
   1106   /// invoking the constructor, but there are cases where make this
   1107   /// constructor public is useful.
   1108   explicit ImmutableSetRef(TreeTy* R, FactoryTy *F)
   1109     : Root(R),
   1110       Factory(F) {
   1111     if (Root) { Root->retain(); }
   1112   }
   1113   ImmutableSetRef(const ImmutableSetRef &X)
   1114     : Root(X.Root),
   1115       Factory(X.Factory) {
   1116     if (Root) { Root->retain(); }
   1117   }
   1118   ImmutableSetRef &operator=(const ImmutableSetRef &X) {
   1119     if (Root != X.Root) {
   1120       if (X.Root) { X.Root->retain(); }
   1121       if (Root) { Root->release(); }
   1122       Root = X.Root;
   1123       Factory = X.Factory;
   1124     }
   1125     return *this;
   1126   }
   1127   ~ImmutableSetRef() {
   1128     if (Root) { Root->release(); }
   1129   }
   1130 
   1131   static inline ImmutableSetRef getEmptySet(FactoryTy *F) {
   1132     return ImmutableSetRef(0, F);
   1133   }
   1134 
   1135   ImmutableSetRef add(value_type_ref V) {
   1136     return ImmutableSetRef(Factory->add(Root, V), Factory);
   1137   }
   1138 
   1139   ImmutableSetRef remove(value_type_ref V) {
   1140     return ImmutableSetRef(Factory->remove(Root, V), Factory);
   1141   }
   1142 
   1143   /// Returns true if the set contains the specified value.
   1144   bool contains(value_type_ref V) const {
   1145     return Root ? Root->contains(V) : false;
   1146   }
   1147 
   1148   ImmutableSet<ValT> asImmutableSet(bool canonicalize = true) const {
   1149     return ImmutableSet<ValT>(canonicalize ?
   1150                               Factory->getCanonicalTree(Root) : Root);
   1151   }
   1152 
   1153   TreeTy *getRootWithoutRetain() const {
   1154     return Root;
   1155   }
   1156 
   1157   bool operator==(const ImmutableSetRef &RHS) const {
   1158     return Root && RHS.Root ? Root->isEqual(*RHS.Root) : Root == RHS.Root;
   1159   }
   1160 
   1161   bool operator!=(const ImmutableSetRef &RHS) const {
   1162     return Root && RHS.Root ? Root->isNotEqual(*RHS.Root) : Root != RHS.Root;
   1163   }
   1164 
   1165   /// isEmpty - Return true if the set contains no elements.
   1166   bool isEmpty() const { return !Root; }
   1167 
   1168   /// isSingleton - Return true if the set contains exactly one element.
   1169   ///   This method runs in constant time.
   1170   bool isSingleton() const { return getHeight() == 1; }
   1171 
   1172   //===--------------------------------------------------===//
   1173   // Iterators.
   1174   //===--------------------------------------------------===//
   1175 
   1176   class iterator {
   1177     typename TreeTy::iterator itr;
   1178     iterator(TreeTy* t) : itr(t) {}
   1179     friend class ImmutableSetRef<ValT,ValInfo>;
   1180   public:
   1181     iterator() {}
   1182     inline value_type_ref operator*() const { return itr->getValue(); }
   1183     inline iterator& operator++() { ++itr; return *this; }
   1184     inline iterator  operator++(int) { iterator tmp(*this); ++itr; return tmp; }
   1185     inline iterator& operator--() { --itr; return *this; }
   1186     inline iterator  operator--(int) { iterator tmp(*this); --itr; return tmp; }
   1187     inline bool operator==(const iterator& RHS) const { return RHS.itr == itr; }
   1188     inline bool operator!=(const iterator& RHS) const { return RHS.itr != itr; }
   1189     inline value_type *operator->() const { return &(operator*()); }
   1190   };
   1191 
   1192   iterator begin() const { return iterator(Root); }
   1193   iterator end() const { return iterator(); }
   1194 
   1195   //===--------------------------------------------------===//
   1196   // Utility methods.
   1197   //===--------------------------------------------------===//
   1198 
   1199   unsigned getHeight() const { return Root ? Root->getHeight() : 0; }
   1200 
   1201   static inline void Profile(FoldingSetNodeID& ID, const ImmutableSetRef& S) {
   1202     ID.AddPointer(S.Root);
   1203   }
   1204 
   1205   inline void Profile(FoldingSetNodeID& ID) const {
   1206     return Profile(ID,*this);
   1207   }
   1208 
   1209   //===--------------------------------------------------===//
   1210   // For testing.
   1211   //===--------------------------------------------------===//
   1212 
   1213   void validateTree() const { if (Root) Root->validateTree(); }
   1214 };
   1215 
   1216 } // end namespace llvm
   1217 
   1218 #endif
   1219