Home | History | Annotate | Download | only in Analysis
      1 //===- RegionInfo.h - SESE region analysis ----------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Calculate a program structure tree built out of single entry single exit
     11 // regions.
     12 // The basic ideas are taken from "The Program Structure Tree - Richard Johnson,
     13 // David Pearson, Keshav Pingali - 1994", however enriched with ideas from "The
     14 // Refined Process Structure Tree - Jussi Vanhatalo, Hagen Voelyer, Jana
     15 // Koehler - 2009".
     16 // The algorithm to calculate these data structures however is completely
     17 // different, as it takes advantage of existing information already available
     18 // in (Post)dominace tree and dominance frontier passes. This leads to a simpler
     19 // and in practice hopefully better performing algorithm. The runtime of the
     20 // algorithms described in the papers above are both linear in graph size,
     21 // O(V+E), whereas this algorithm is not, as the dominance frontier information
     22 // itself is not, but in practice runtime seems to be in the order of magnitude
     23 // of dominance tree calculation.
     24 //
     25 //===----------------------------------------------------------------------===//
     26 
     27 #ifndef LLVM_ANALYSIS_REGION_INFO_H
     28 #define LLVM_ANALYSIS_REGION_INFO_H
     29 
     30 #include "llvm/ADT/PointerIntPair.h"
     31 #include "llvm/Analysis/DominanceFrontier.h"
     32 #include "llvm/Analysis/PostDominators.h"
     33 #include "llvm/Support/Allocator.h"
     34 #include <map>
     35 
     36 namespace llvm {
     37 
     38 class Region;
     39 class RegionInfo;
     40 class raw_ostream;
     41 class Loop;
     42 class LoopInfo;
     43 
     44 /// @brief Marker class to iterate over the elements of a Region in flat mode.
     45 ///
     46 /// The class is used to either iterate in Flat mode or by not using it to not
     47 /// iterate in Flat mode.  During a Flat mode iteration all Regions are entered
     48 /// and the iteration returns every BasicBlock.  If the Flat mode is not
     49 /// selected for SubRegions just one RegionNode containing the subregion is
     50 /// returned.
     51 template <class GraphType>
     52 class FlatIt {};
     53 
     54 /// @brief A RegionNode represents a subregion or a BasicBlock that is part of a
     55 /// Region.
     56 class RegionNode {
     57   // DO NOT IMPLEMENT
     58   RegionNode(const RegionNode &);
     59   // DO NOT IMPLEMENT
     60   const RegionNode &operator=(const RegionNode &);
     61 
     62 protected:
     63   /// This is the entry basic block that starts this region node.  If this is a
     64   /// BasicBlock RegionNode, then entry is just the basic block, that this
     65   /// RegionNode represents.  Otherwise it is the entry of this (Sub)RegionNode.
     66   ///
     67   /// In the BBtoRegionNode map of the parent of this node, BB will always map
     68   /// to this node no matter which kind of node this one is.
     69   ///
     70   /// The node can hold either a Region or a BasicBlock.
     71   /// Use one bit to save, if this RegionNode is a subregion or BasicBlock
     72   /// RegionNode.
     73   PointerIntPair<BasicBlock*, 1, bool> entry;
     74 
     75   /// @brief The parent Region of this RegionNode.
     76   /// @see getParent()
     77   Region* parent;
     78 
     79 public:
     80   /// @brief Create a RegionNode.
     81   ///
     82   /// @param Parent      The parent of this RegionNode.
     83   /// @param Entry       The entry BasicBlock of the RegionNode.  If this
     84   ///                    RegionNode represents a BasicBlock, this is the
     85   ///                    BasicBlock itself.  If it represents a subregion, this
     86   ///                    is the entry BasicBlock of the subregion.
     87   /// @param isSubRegion If this RegionNode represents a SubRegion.
     88   inline RegionNode(Region* Parent, BasicBlock* Entry, bool isSubRegion = 0)
     89     : entry(Entry, isSubRegion), parent(Parent) {}
     90 
     91   /// @brief Get the parent Region of this RegionNode.
     92   ///
     93   /// The parent Region is the Region this RegionNode belongs to. If for
     94   /// example a BasicBlock is element of two Regions, there exist two
     95   /// RegionNodes for this BasicBlock. Each with the getParent() function
     96   /// pointing to the Region this RegionNode belongs to.
     97   ///
     98   /// @return Get the parent Region of this RegionNode.
     99   inline Region* getParent() const { return parent; }
    100 
    101   /// @brief Get the entry BasicBlock of this RegionNode.
    102   ///
    103   /// If this RegionNode represents a BasicBlock this is just the BasicBlock
    104   /// itself, otherwise we return the entry BasicBlock of the Subregion
    105   ///
    106   /// @return The entry BasicBlock of this RegionNode.
    107   inline BasicBlock* getEntry() const { return entry.getPointer(); }
    108 
    109   /// @brief Get the content of this RegionNode.
    110   ///
    111   /// This can be either a BasicBlock or a subregion. Before calling getNodeAs()
    112   /// check the type of the content with the isSubRegion() function call.
    113   ///
    114   /// @return The content of this RegionNode.
    115   template<class T>
    116   inline T* getNodeAs() const;
    117 
    118   /// @brief Is this RegionNode a subregion?
    119   ///
    120   /// @return True if it contains a subregion. False if it contains a
    121   ///         BasicBlock.
    122   inline bool isSubRegion() const {
    123     return entry.getInt();
    124   }
    125 };
    126 
    127 /// Print a RegionNode.
    128 inline raw_ostream &operator<<(raw_ostream &OS, const RegionNode &Node);
    129 
    130 template<>
    131 inline BasicBlock* RegionNode::getNodeAs<BasicBlock>() const {
    132   assert(!isSubRegion() && "This is not a BasicBlock RegionNode!");
    133   return getEntry();
    134 }
    135 
    136 template<>
    137 inline Region* RegionNode::getNodeAs<Region>() const {
    138   assert(isSubRegion() && "This is not a subregion RegionNode!");
    139   return reinterpret_cast<Region*>(const_cast<RegionNode*>(this));
    140 }
    141 
    142 //===----------------------------------------------------------------------===//
    143 /// @brief A single entry single exit Region.
    144 ///
    145 /// A Region is a connected subgraph of a control flow graph that has exactly
    146 /// two connections to the remaining graph. It can be used to analyze or
    147 /// optimize parts of the control flow graph.
    148 ///
    149 /// A <em> simple Region </em> is connected to the remaining graph by just two
    150 /// edges. One edge entering the Region and another one leaving the Region.
    151 ///
    152 /// An <em> extended Region </em> (or just Region) is a subgraph that can be
    153 /// transform into a simple Region. The transformation is done by adding
    154 /// BasicBlocks that merge several entry or exit edges so that after the merge
    155 /// just one entry and one exit edge exists.
    156 ///
    157 /// The \e Entry of a Region is the first BasicBlock that is passed after
    158 /// entering the Region. It is an element of the Region. The entry BasicBlock
    159 /// dominates all BasicBlocks in the Region.
    160 ///
    161 /// The \e Exit of a Region is the first BasicBlock that is passed after
    162 /// leaving the Region. It is not an element of the Region. The exit BasicBlock,
    163 /// postdominates all BasicBlocks in the Region.
    164 ///
    165 /// A <em> canonical Region </em> cannot be constructed by combining smaller
    166 /// Regions.
    167 ///
    168 /// Region A is the \e parent of Region B, if B is completely contained in A.
    169 ///
    170 /// Two canonical Regions either do not intersect at all or one is
    171 /// the parent of the other.
    172 ///
    173 /// The <em> Program Structure Tree</em> is a graph (V, E) where V is the set of
    174 /// Regions in the control flow graph and E is the \e parent relation of these
    175 /// Regions.
    176 ///
    177 /// Example:
    178 ///
    179 /// \verbatim
    180 /// A simple control flow graph, that contains two regions.
    181 ///
    182 ///        1
    183 ///       / |
    184 ///      2   |
    185 ///     / \   3
    186 ///    4   5  |
    187 ///    |   |  |
    188 ///    6   7  8
    189 ///     \  | /
    190 ///      \ |/       Region A: 1 -> 9 {1,2,3,4,5,6,7,8}
    191 ///        9        Region B: 2 -> 9 {2,4,5,6,7}
    192 /// \endverbatim
    193 ///
    194 /// You can obtain more examples by either calling
    195 ///
    196 /// <tt> "opt -regions -analyze anyprogram.ll" </tt>
    197 /// or
    198 /// <tt> "opt -view-regions-only anyprogram.ll" </tt>
    199 ///
    200 /// on any LLVM file you are interested in.
    201 ///
    202 /// The first call returns a textual representation of the program structure
    203 /// tree, the second one creates a graphical representation using graphviz.
    204 class Region : public RegionNode {
    205   friend class RegionInfo;
    206   // DO NOT IMPLEMENT
    207   Region(const Region &);
    208   // DO NOT IMPLEMENT
    209   const Region &operator=(const Region &);
    210 
    211   // Information necessary to manage this Region.
    212   RegionInfo* RI;
    213   DominatorTree *DT;
    214 
    215   // The exit BasicBlock of this region.
    216   // (The entry BasicBlock is part of RegionNode)
    217   BasicBlock *exit;
    218 
    219   typedef std::vector<Region*> RegionSet;
    220 
    221   // The subregions of this region.
    222   RegionSet children;
    223 
    224   typedef std::map<BasicBlock*, RegionNode*> BBNodeMapT;
    225 
    226   // Save the BasicBlock RegionNodes that are element of this Region.
    227   mutable BBNodeMapT BBNodeMap;
    228 
    229   /// verifyBBInRegion - Check if a BB is in this Region. This check also works
    230   /// if the region is incorrectly built. (EXPENSIVE!)
    231   void verifyBBInRegion(BasicBlock* BB) const;
    232 
    233   /// verifyWalk - Walk over all the BBs of the region starting from BB and
    234   /// verify that all reachable basic blocks are elements of the region.
    235   /// (EXPENSIVE!)
    236   void verifyWalk(BasicBlock* BB, std::set<BasicBlock*>* visitedBB) const;
    237 
    238   /// verifyRegionNest - Verify if the region and its children are valid
    239   /// regions (EXPENSIVE!)
    240   void verifyRegionNest() const;
    241 
    242 public:
    243   /// @brief Create a new region.
    244   ///
    245   /// @param Entry  The entry basic block of the region.
    246   /// @param Exit   The exit basic block of the region.
    247   /// @param RI     The region info object that is managing this region.
    248   /// @param DT     The dominator tree of the current function.
    249   /// @param Parent The surrounding region or NULL if this is a top level
    250   ///               region.
    251   Region(BasicBlock *Entry, BasicBlock *Exit, RegionInfo* RI,
    252          DominatorTree *DT, Region *Parent = 0);
    253 
    254   /// Delete the Region and all its subregions.
    255   ~Region();
    256 
    257   /// @brief Get the entry BasicBlock of the Region.
    258   /// @return The entry BasicBlock of the region.
    259   BasicBlock *getEntry() const { return RegionNode::getEntry(); }
    260 
    261   /// @brief Replace the entry basic block of the region with the new basic
    262   ///        block.
    263   ///
    264   /// @param BB  The new entry basic block of the region.
    265   void replaceEntry(BasicBlock *BB);
    266 
    267   /// @brief Replace the exit basic block of the region with the new basic
    268   ///        block.
    269   ///
    270   /// @param BB  The new exit basic block of the region.
    271   void replaceExit(BasicBlock *BB);
    272 
    273   /// @brief Get the exit BasicBlock of the Region.
    274   /// @return The exit BasicBlock of the Region, NULL if this is the TopLevel
    275   ///         Region.
    276   BasicBlock *getExit() const { return exit; }
    277 
    278   /// @brief Get the parent of the Region.
    279   /// @return The parent of the Region or NULL if this is a top level
    280   ///         Region.
    281   Region *getParent() const { return RegionNode::getParent(); }
    282 
    283   /// @brief Get the RegionNode representing the current Region.
    284   /// @return The RegionNode representing the current Region.
    285   RegionNode* getNode() const {
    286     return const_cast<RegionNode*>(reinterpret_cast<const RegionNode*>(this));
    287   }
    288 
    289   /// @brief Get the nesting level of this Region.
    290   ///
    291   /// An toplevel Region has depth 0.
    292   ///
    293   /// @return The depth of the region.
    294   unsigned getDepth() const;
    295 
    296   /// @brief Check if a Region is the TopLevel region.
    297   ///
    298   /// The toplevel region represents the whole function.
    299   bool isTopLevelRegion() const { return exit == NULL; }
    300 
    301   /// @brief Return a new (non canonical) region, that is obtained by joining
    302   ///        this region with its predecessors.
    303   ///
    304   /// @return A region also starting at getEntry(), but reaching to the next
    305   ///         basic block that forms with getEntry() a (non canonical) region.
    306   ///         NULL if such a basic block does not exist.
    307   Region *getExpandedRegion() const;
    308 
    309   /// @brief Return the first block of this region's single entry edge,
    310   ///        if existing.
    311   ///
    312   /// @return The BasicBlock starting this region's single entry edge,
    313   ///         else NULL.
    314   BasicBlock *getEnteringBlock() const;
    315 
    316   /// @brief Return the first block of this region's single exit edge,
    317   ///        if existing.
    318   ///
    319   /// @return The BasicBlock starting this region's single exit edge,
    320   ///         else NULL.
    321   BasicBlock *getExitingBlock() const;
    322 
    323   /// @brief Is this a simple region?
    324   ///
    325   /// A region is simple if it has exactly one exit and one entry edge.
    326   ///
    327   /// @return True if the Region is simple.
    328   bool isSimple() const;
    329 
    330   /// @brief Returns the name of the Region.
    331   /// @return The Name of the Region.
    332   std::string getNameStr() const;
    333 
    334   /// @brief Return the RegionInfo object, that belongs to this Region.
    335   RegionInfo *getRegionInfo() const {
    336     return RI;
    337   }
    338 
    339   /// PrintStyle - Print region in difference ways.
    340   enum PrintStyle { PrintNone, PrintBB, PrintRN  };
    341 
    342   /// @brief Print the region.
    343   ///
    344   /// @param OS The output stream the Region is printed to.
    345   /// @param printTree Print also the tree of subregions.
    346   /// @param level The indentation level used for printing.
    347   void print(raw_ostream& OS, bool printTree = true, unsigned level = 0,
    348              enum PrintStyle Style = PrintNone) const;
    349 
    350   /// @brief Print the region to stderr.
    351   void dump() const;
    352 
    353   /// @brief Check if the region contains a BasicBlock.
    354   ///
    355   /// @param BB The BasicBlock that might be contained in this Region.
    356   /// @return True if the block is contained in the region otherwise false.
    357   bool contains(const BasicBlock *BB) const;
    358 
    359   /// @brief Check if the region contains another region.
    360   ///
    361   /// @param SubRegion The region that might be contained in this Region.
    362   /// @return True if SubRegion is contained in the region otherwise false.
    363   bool contains(const Region *SubRegion) const {
    364     // Toplevel Region.
    365     if (!getExit())
    366       return true;
    367 
    368     return contains(SubRegion->getEntry())
    369       && (contains(SubRegion->getExit()) || SubRegion->getExit() == getExit());
    370   }
    371 
    372   /// @brief Check if the region contains an Instruction.
    373   ///
    374   /// @param Inst The Instruction that might be contained in this region.
    375   /// @return True if the Instruction is contained in the region otherwise false.
    376   bool contains(const Instruction *Inst) const {
    377     return contains(Inst->getParent());
    378   }
    379 
    380   /// @brief Check if the region contains a loop.
    381   ///
    382   /// @param L The loop that might be contained in this region.
    383   /// @return True if the loop is contained in the region otherwise false.
    384   ///         In case a NULL pointer is passed to this function the result
    385   ///         is false, except for the region that describes the whole function.
    386   ///         In that case true is returned.
    387   bool contains(const Loop *L) const;
    388 
    389   /// @brief Get the outermost loop in the region that contains a loop.
    390   ///
    391   /// Find for a Loop L the outermost loop OuterL that is a parent loop of L
    392   /// and is itself contained in the region.
    393   ///
    394   /// @param L The loop the lookup is started.
    395   /// @return The outermost loop in the region, NULL if such a loop does not
    396   ///         exist or if the region describes the whole function.
    397   Loop *outermostLoopInRegion(Loop *L) const;
    398 
    399   /// @brief Get the outermost loop in the region that contains a basic block.
    400   ///
    401   /// Find for a basic block BB the outermost loop L that contains BB and is
    402   /// itself contained in the region.
    403   ///
    404   /// @param LI A pointer to a LoopInfo analysis.
    405   /// @param BB The basic block surrounded by the loop.
    406   /// @return The outermost loop in the region, NULL if such a loop does not
    407   ///         exist or if the region describes the whole function.
    408   Loop *outermostLoopInRegion(LoopInfo *LI, BasicBlock* BB) const;
    409 
    410   /// @brief Get the subregion that starts at a BasicBlock
    411   ///
    412   /// @param BB The BasicBlock the subregion should start.
    413   /// @return The Subregion if available, otherwise NULL.
    414   Region* getSubRegionNode(BasicBlock *BB) const;
    415 
    416   /// @brief Get the RegionNode for a BasicBlock
    417   ///
    418   /// @param BB The BasicBlock at which the RegionNode should start.
    419   /// @return If available, the RegionNode that represents the subregion
    420   ///         starting at BB. If no subregion starts at BB, the RegionNode
    421   ///         representing BB.
    422   RegionNode* getNode(BasicBlock *BB) const;
    423 
    424   /// @brief Get the BasicBlock RegionNode for a BasicBlock
    425   ///
    426   /// @param BB The BasicBlock for which the RegionNode is requested.
    427   /// @return The RegionNode representing the BB.
    428   RegionNode* getBBNode(BasicBlock *BB) const;
    429 
    430   /// @brief Add a new subregion to this Region.
    431   ///
    432   /// @param SubRegion The new subregion that will be added.
    433   /// @param moveChildren Move the children of this region, that are also
    434   ///                     contained in SubRegion into SubRegion.
    435   void addSubRegion(Region *SubRegion, bool moveChildren = false);
    436 
    437   /// @brief Remove a subregion from this Region.
    438   ///
    439   /// The subregion is not deleted, as it will probably be inserted into another
    440   /// region.
    441   /// @param SubRegion The SubRegion that will be removed.
    442   Region *removeSubRegion(Region *SubRegion);
    443 
    444   /// @brief Move all direct child nodes of this Region to another Region.
    445   ///
    446   /// @param To The Region the child nodes will be transferred to.
    447   void transferChildrenTo(Region *To);
    448 
    449   /// @brief Verify if the region is a correct region.
    450   ///
    451   /// Check if this is a correctly build Region. This is an expensive check, as
    452   /// the complete CFG of the Region will be walked.
    453   void verifyRegion() const;
    454 
    455   /// @brief Clear the cache for BB RegionNodes.
    456   ///
    457   /// After calling this function the BasicBlock RegionNodes will be stored at
    458   /// different memory locations. RegionNodes obtained before this function is
    459   /// called are therefore not comparable to RegionNodes abtained afterwords.
    460   void clearNodeCache();
    461 
    462   /// @name Subregion Iterators
    463   ///
    464   /// These iterators iterator over all subregions of this Region.
    465   //@{
    466   typedef RegionSet::iterator iterator;
    467   typedef RegionSet::const_iterator const_iterator;
    468 
    469   iterator begin() { return children.begin(); }
    470   iterator end() { return children.end(); }
    471 
    472   const_iterator begin() const { return children.begin(); }
    473   const_iterator end() const { return children.end(); }
    474   //@}
    475 
    476   /// @name BasicBlock Iterators
    477   ///
    478   /// These iterators iterate over all BasicBlock RegionNodes that are
    479   /// contained in this Region. The iterator also iterates over BasicBlocks
    480   /// that are elements of a subregion of this Region. It is therefore called a
    481   /// flat iterator.
    482   //@{
    483   typedef df_iterator<RegionNode*, SmallPtrSet<RegionNode*, 8>, false,
    484                       GraphTraits<FlatIt<RegionNode*> > > block_iterator;
    485 
    486   typedef df_iterator<const RegionNode*, SmallPtrSet<const RegionNode*, 8>,
    487                       false, GraphTraits<FlatIt<const RegionNode*> > >
    488             const_block_iterator;
    489 
    490   block_iterator block_begin();
    491   block_iterator block_end();
    492 
    493   const_block_iterator block_begin() const;
    494   const_block_iterator block_end() const;
    495   //@}
    496 
    497   /// @name Element Iterators
    498   ///
    499   /// These iterators iterate over all BasicBlock and subregion RegionNodes that
    500   /// are direct children of this Region. It does not iterate over any
    501   /// RegionNodes that are also element of a subregion of this Region.
    502   //@{
    503   typedef df_iterator<RegionNode*, SmallPtrSet<RegionNode*, 8>, false,
    504                       GraphTraits<RegionNode*> > element_iterator;
    505 
    506   typedef df_iterator<const RegionNode*, SmallPtrSet<const RegionNode*, 8>,
    507                       false, GraphTraits<const RegionNode*> >
    508             const_element_iterator;
    509 
    510   element_iterator element_begin();
    511   element_iterator element_end();
    512 
    513   const_element_iterator element_begin() const;
    514   const_element_iterator element_end() const;
    515   //@}
    516 };
    517 
    518 //===----------------------------------------------------------------------===//
    519 /// @brief Analysis that detects all canonical Regions.
    520 ///
    521 /// The RegionInfo pass detects all canonical regions in a function. The Regions
    522 /// are connected using the parent relation. This builds a Program Structure
    523 /// Tree.
    524 class RegionInfo : public FunctionPass {
    525   typedef DenseMap<BasicBlock*,BasicBlock*> BBtoBBMap;
    526   typedef DenseMap<BasicBlock*, Region*> BBtoRegionMap;
    527   typedef SmallPtrSet<Region*, 4> RegionSet;
    528 
    529   // DO NOT IMPLEMENT
    530   RegionInfo(const RegionInfo &);
    531   // DO NOT IMPLEMENT
    532   const RegionInfo &operator=(const RegionInfo &);
    533 
    534   DominatorTree *DT;
    535   PostDominatorTree *PDT;
    536   DominanceFrontier *DF;
    537 
    538   /// The top level region.
    539   Region *TopLevelRegion;
    540 
    541   /// Map every BB to the smallest region, that contains BB.
    542   BBtoRegionMap BBtoRegion;
    543 
    544   // isCommonDomFrontier - Returns true if BB is in the dominance frontier of
    545   // entry, because it was inherited from exit. In the other case there is an
    546   // edge going from entry to BB without passing exit.
    547   bool isCommonDomFrontier(BasicBlock* BB, BasicBlock* entry,
    548                            BasicBlock* exit) const;
    549 
    550   // isRegion - Check if entry and exit surround a valid region, based on
    551   // dominance tree and dominance frontier.
    552   bool isRegion(BasicBlock* entry, BasicBlock* exit) const;
    553 
    554   // insertShortCut - Saves a shortcut pointing from entry to exit.
    555   // This function may extend this shortcut if possible.
    556   void insertShortCut(BasicBlock* entry, BasicBlock* exit,
    557                       BBtoBBMap* ShortCut) const;
    558 
    559   // getNextPostDom - Returns the next BB that postdominates N, while skipping
    560   // all post dominators that cannot finish a canonical region.
    561   DomTreeNode *getNextPostDom(DomTreeNode* N, BBtoBBMap *ShortCut) const;
    562 
    563   // isTrivialRegion - A region is trivial, if it contains only one BB.
    564   bool isTrivialRegion(BasicBlock *entry, BasicBlock *exit) const;
    565 
    566   // createRegion - Creates a single entry single exit region.
    567   Region *createRegion(BasicBlock *entry, BasicBlock *exit);
    568 
    569   // findRegionsWithEntry - Detect all regions starting with bb 'entry'.
    570   void findRegionsWithEntry(BasicBlock *entry, BBtoBBMap *ShortCut);
    571 
    572   // scanForRegions - Detects regions in F.
    573   void scanForRegions(Function &F, BBtoBBMap *ShortCut);
    574 
    575   // getTopMostParent - Get the top most parent with the same entry block.
    576   Region *getTopMostParent(Region *region);
    577 
    578   // buildRegionsTree - build the region hierarchy after all region detected.
    579   void buildRegionsTree(DomTreeNode *N, Region *region);
    580 
    581   // Calculate - detecte all regions in function and build the region tree.
    582   void Calculate(Function& F);
    583 
    584   void releaseMemory();
    585 
    586   // updateStatistics - Update statistic about created regions.
    587   void updateStatistics(Region *R);
    588 
    589   // isSimple - Check if a region is a simple region with exactly one entry
    590   // edge and exactly one exit edge.
    591   bool isSimple(Region* R) const;
    592 
    593 public:
    594   static char ID;
    595   explicit RegionInfo();
    596 
    597   ~RegionInfo();
    598 
    599   /// @name FunctionPass interface
    600   //@{
    601   virtual bool runOnFunction(Function &F);
    602   virtual void getAnalysisUsage(AnalysisUsage &AU) const;
    603   virtual void print(raw_ostream &OS, const Module *) const;
    604   virtual void verifyAnalysis() const;
    605   //@}
    606 
    607   /// @brief Get the smallest region that contains a BasicBlock.
    608   ///
    609   /// @param BB The basic block.
    610   /// @return The smallest region, that contains BB or NULL, if there is no
    611   /// region containing BB.
    612   Region *getRegionFor(BasicBlock *BB) const;
    613 
    614   /// @brief  Set the smallest region that surrounds a basic block.
    615   ///
    616   /// @param BB The basic block surrounded by a region.
    617   /// @param R The smallest region that surrounds BB.
    618   void setRegionFor(BasicBlock *BB, Region *R);
    619 
    620   /// @brief A shortcut for getRegionFor().
    621   ///
    622   /// @param BB The basic block.
    623   /// @return The smallest region, that contains BB or NULL, if there is no
    624   /// region containing BB.
    625   Region *operator[](BasicBlock *BB) const;
    626 
    627   /// @brief Return the exit of the maximal refined region, that starts at a
    628   /// BasicBlock.
    629   ///
    630   /// @param BB The BasicBlock the refined region starts.
    631   BasicBlock *getMaxRegionExit(BasicBlock *BB) const;
    632 
    633   /// @brief Find the smallest region that contains two regions.
    634   ///
    635   /// @param A The first region.
    636   /// @param B The second region.
    637   /// @return The smallest region containing A and B.
    638   Region *getCommonRegion(Region* A, Region *B) const;
    639 
    640   /// @brief Find the smallest region that contains two basic blocks.
    641   ///
    642   /// @param A The first basic block.
    643   /// @param B The second basic block.
    644   /// @return The smallest region that contains A and B.
    645   Region* getCommonRegion(BasicBlock* A, BasicBlock *B) const {
    646     return getCommonRegion(getRegionFor(A), getRegionFor(B));
    647   }
    648 
    649   /// @brief Find the smallest region that contains a set of regions.
    650   ///
    651   /// @param Regions A vector of regions.
    652   /// @return The smallest region that contains all regions in Regions.
    653   Region* getCommonRegion(SmallVectorImpl<Region*> &Regions) const;
    654 
    655   /// @brief Find the smallest region that contains a set of basic blocks.
    656   ///
    657   /// @param BBs A vector of basic blocks.
    658   /// @return The smallest region that contains all basic blocks in BBS.
    659   Region* getCommonRegion(SmallVectorImpl<BasicBlock*> &BBs) const;
    660 
    661   Region *getTopLevelRegion() const {
    662     return TopLevelRegion;
    663   }
    664 
    665   /// @brief Update RegionInfo after a basic block was split.
    666   ///
    667   /// @param NewBB The basic block that was created before OldBB.
    668   /// @param OldBB The old basic block.
    669   void splitBlock(BasicBlock* NewBB, BasicBlock *OldBB);
    670 
    671   /// @brief Clear the Node Cache for all Regions.
    672   ///
    673   /// @see Region::clearNodeCache()
    674   void clearNodeCache() {
    675     if (TopLevelRegion)
    676       TopLevelRegion->clearNodeCache();
    677   }
    678 };
    679 
    680 inline raw_ostream &operator<<(raw_ostream &OS, const RegionNode &Node) {
    681   if (Node.isSubRegion())
    682     return OS << Node.getNodeAs<Region>()->getNameStr();
    683   else
    684     return OS << Node.getNodeAs<BasicBlock>()->getNameStr();
    685 }
    686 } // End llvm namespace
    687 #endif
    688 
    689