Home | History | Annotate | Download | only in Target
      1 //===- Target.td - Target Independent TableGen interface ---*- tablegen -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the target-independent interfaces which should be
     11 // implemented by each target which is using a TableGen based code generator.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 // Include all information about LLVM intrinsics.
     16 include "llvm/Intrinsics.td"
     17 
     18 //===----------------------------------------------------------------------===//
     19 // Register file description - These classes are used to fill in the target
     20 // description classes.
     21 
     22 class RegisterClass; // Forward def
     23 
     24 // SubRegIndex - Use instances of SubRegIndex to identify subregisters.
     25 class SubRegIndex {
     26   string Namespace = "";
     27 }
     28 
     29 // RegAltNameIndex - The alternate name set to use for register operands of
     30 // this register class when printing.
     31 class RegAltNameIndex {
     32   string Namespace = "";
     33 }
     34 def NoRegAltName : RegAltNameIndex;
     35 
     36 // Register - You should define one instance of this class for each register
     37 // in the target machine.  String n will become the "name" of the register.
     38 class Register<string n, list<string> altNames = []> {
     39   string Namespace = "";
     40   string AsmName = n;
     41   list<string> AltNames = altNames;
     42 
     43   // Aliases - A list of registers that this register overlaps with.  A read or
     44   // modification of this register can potentially read or modify the aliased
     45   // registers.
     46   list<Register> Aliases = [];
     47 
     48   // SubRegs - A list of registers that are parts of this register. Note these
     49   // are "immediate" sub-registers and the registers within the list do not
     50   // themselves overlap. e.g. For X86, EAX's SubRegs list contains only [AX],
     51   // not [AX, AH, AL].
     52   list<Register> SubRegs = [];
     53 
     54   // SubRegIndices - For each register in SubRegs, specify the SubRegIndex used
     55   // to address it. Sub-sub-register indices are automatically inherited from
     56   // SubRegs.
     57   list<SubRegIndex> SubRegIndices = [];
     58 
     59   // RegAltNameIndices - The alternate name indices which are valid for this
     60   // register.
     61   list<RegAltNameIndex> RegAltNameIndices = [];
     62 
     63   // CompositeIndices - Specify subreg indices that don't correspond directly to
     64   // a register in SubRegs and are not inherited. The following formats are
     65   // supported:
     66   //
     67   // (a)     Identity  - Reg:a == Reg
     68   // (a b)   Alias     - Reg:a == Reg:b
     69   // (a b,c) Composite - Reg:a == (Reg:b):c
     70   //
     71   // This can be used to disambiguate a sub-sub-register that exists in more
     72   // than one subregister and other weird stuff.
     73   list<dag> CompositeIndices = [];
     74 
     75   // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
     76   // These values can be determined by locating the <target>.h file in the
     77   // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES.  The
     78   // order of these names correspond to the enumeration used by gcc.  A value of
     79   // -1 indicates that the gcc number is undefined and -2 that register number
     80   // is invalid for this mode/flavour.
     81   list<int> DwarfNumbers = [];
     82 
     83   // CostPerUse - Additional cost of instructions using this register compared
     84   // to other registers in its class. The register allocator will try to
     85   // minimize the number of instructions using a register with a CostPerUse.
     86   // This is used by the x86-64 and ARM Thumb targets where some registers 
     87   // require larger instruction encodings.
     88   int CostPerUse = 0;
     89 }
     90 
     91 // RegisterWithSubRegs - This can be used to define instances of Register which
     92 // need to specify sub-registers.
     93 // List "subregs" specifies which registers are sub-registers to this one. This
     94 // is used to populate the SubRegs and AliasSet fields of TargetRegisterDesc.
     95 // This allows the code generator to be careful not to put two values with
     96 // overlapping live ranges into registers which alias.
     97 class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {
     98   let SubRegs = subregs;
     99 }
    100 
    101 // RegisterClass - Now that all of the registers are defined, and aliases
    102 // between registers are defined, specify which registers belong to which
    103 // register classes.  This also defines the default allocation order of
    104 // registers by register allocators.
    105 //
    106 class RegisterClass<string namespace, list<ValueType> regTypes, int alignment,
    107                     dag regList, RegAltNameIndex idx = NoRegAltName> {
    108   string Namespace = namespace;
    109 
    110   // RegType - Specify the list ValueType of the registers in this register
    111   // class.  Note that all registers in a register class must have the same
    112   // ValueTypes.  This is a list because some targets permit storing different
    113   // types in same register, for example vector values with 128-bit total size,
    114   // but different count/size of items, like SSE on x86.
    115   //
    116   list<ValueType> RegTypes = regTypes;
    117 
    118   // Size - Specify the spill size in bits of the registers.  A default value of
    119   // zero lets tablgen pick an appropriate size.
    120   int Size = 0;
    121 
    122   // Alignment - Specify the alignment required of the registers when they are
    123   // stored or loaded to memory.
    124   //
    125   int Alignment = alignment;
    126 
    127   // CopyCost - This value is used to specify the cost of copying a value
    128   // between two registers in this register class. The default value is one
    129   // meaning it takes a single instruction to perform the copying. A negative
    130   // value means copying is extremely expensive or impossible.
    131   int CopyCost = 1;
    132 
    133   // MemberList - Specify which registers are in this class.  If the
    134   // allocation_order_* method are not specified, this also defines the order of
    135   // allocation used by the register allocator.
    136   //
    137   dag MemberList = regList;
    138 
    139   // AltNameIndex - The alternate register name to use when printing operands
    140   // of this register class. Every register in the register class must have
    141   // a valid alternate name for the given index.
    142   RegAltNameIndex altNameIndex = idx;
    143 
    144   // SubRegClasses - Specify the register class of subregisters as a list of
    145   // dags: (RegClass SubRegIndex, SubRegindex, ...)
    146   list<dag> SubRegClasses = [];
    147 
    148   // isAllocatable - Specify that the register class can be used for virtual
    149   // registers and register allocation.  Some register classes are only used to
    150   // model instruction operand constraints, and should have isAllocatable = 0.
    151   bit isAllocatable = 1;
    152 
    153   // AltOrders - List of alternative allocation orders. The default order is
    154   // MemberList itself, and that is good enough for most targets since the
    155   // register allocators automatically remove reserved registers and move
    156   // callee-saved registers to the end.
    157   list<dag> AltOrders = [];
    158 
    159   // AltOrderSelect - The body of a function that selects the allocation order
    160   // to use in a given machine function. The code will be inserted in a
    161   // function like this:
    162   //
    163   //   static inline unsigned f(const MachineFunction &MF) { ... }
    164   //
    165   // The function should return 0 to select the default order defined by
    166   // MemberList, 1 to select the first AltOrders entry and so on.
    167   code AltOrderSelect = [{}];
    168 }
    169 
    170 // The memberList in a RegisterClass is a dag of set operations. TableGen
    171 // evaluates these set operations and expand them into register lists. These
    172 // are the most common operation, see test/TableGen/SetTheory.td for more
    173 // examples of what is possible:
    174 //
    175 // (add R0, R1, R2) - Set Union. Each argument can be an individual register, a
    176 // register class, or a sub-expression. This is also the way to simply list
    177 // registers.
    178 //
    179 // (sub GPR, SP) - Set difference. Subtract the last arguments from the first.
    180 //
    181 // (and GPR, CSR) - Set intersection. All registers from the first set that are
    182 // also in the second set.
    183 //
    184 // (sequence "R%u", 0, 15) -> [R0, R1, ..., R15]. Generate a sequence of
    185 // numbered registers.
    186 //
    187 // (shl GPR, 4) - Remove the first N elements.
    188 //
    189 // (trunc GPR, 4) - Truncate after the first N elements.
    190 //
    191 // (rotl GPR, 1) - Rotate N places to the left.
    192 //
    193 // (rotr GPR, 1) - Rotate N places to the right.
    194 //
    195 // (decimate GPR, 2) - Pick every N'th element, starting with the first.
    196 //
    197 // All of these operators work on ordered sets, not lists. That means
    198 // duplicates are removed from sub-expressions.
    199 
    200 // Set operators. The rest is defined in TargetSelectionDAG.td.
    201 def sequence;
    202 def decimate;
    203 
    204 // RegisterTuples - Automatically generate super-registers by forming tuples of
    205 // sub-registers. This is useful for modeling register sequence constraints
    206 // with pseudo-registers that are larger than the architectural registers.
    207 //
    208 // The sub-register lists are zipped together:
    209 //
    210 //   def EvenOdd : RegisterTuples<[sube, subo], [(add R0, R2), (add R1, R3)]>;
    211 //
    212 // Generates the same registers as:
    213 //
    214 //   let SubRegIndices = [sube, subo] in {
    215 //     def R0_R1 : RegisterWithSubRegs<"", [R0, R1]>;
    216 //     def R2_R3 : RegisterWithSubRegs<"", [R2, R3]>;
    217 //   }
    218 //
    219 // The generated pseudo-registers inherit super-classes and fields from their
    220 // first sub-register. Most fields from the Register class are inferred, and
    221 // the AsmName and Dwarf numbers are cleared.
    222 //
    223 // RegisterTuples instances can be used in other set operations to form
    224 // register classes and so on. This is the only way of using the generated
    225 // registers.
    226 class RegisterTuples<list<SubRegIndex> Indices, list<dag> Regs> {
    227   // SubRegs - N lists of registers to be zipped up. Super-registers are
    228   // synthesized from the first element of each SubRegs list, the second
    229   // element and so on.
    230   list<dag> SubRegs = Regs;
    231 
    232   // SubRegIndices - N SubRegIndex instances. This provides the names of the
    233   // sub-registers in the synthesized super-registers.
    234   list<SubRegIndex> SubRegIndices = Indices;
    235 
    236   // Compose sub-register indices like in a normal Register.
    237   list<dag> CompositeIndices = [];
    238 }
    239 
    240 
    241 //===----------------------------------------------------------------------===//
    242 // DwarfRegNum - This class provides a mapping of the llvm register enumeration
    243 // to the register numbering used by gcc and gdb.  These values are used by a
    244 // debug information writer to describe where values may be located during
    245 // execution.
    246 class DwarfRegNum<list<int> Numbers> {
    247   // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
    248   // These values can be determined by locating the <target>.h file in the
    249   // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES.  The
    250   // order of these names correspond to the enumeration used by gcc.  A value of
    251   // -1 indicates that the gcc number is undefined and -2 that register number
    252   // is invalid for this mode/flavour.
    253   list<int> DwarfNumbers = Numbers;
    254 }
    255 
    256 // DwarfRegAlias - This class declares that a given register uses the same dwarf
    257 // numbers as another one. This is useful for making it clear that the two
    258 // registers do have the same number. It also lets us build a mapping
    259 // from dwarf register number to llvm register.
    260 class DwarfRegAlias<Register reg> {
    261       Register DwarfAlias = reg;
    262 }
    263 
    264 //===----------------------------------------------------------------------===//
    265 // Pull in the common support for scheduling
    266 //
    267 include "llvm/Target/TargetSchedule.td"
    268 
    269 class Predicate; // Forward def
    270 
    271 //===----------------------------------------------------------------------===//
    272 // Instruction set description - These classes correspond to the C++ classes in
    273 // the Target/TargetInstrInfo.h file.
    274 //
    275 class Instruction {
    276   string Namespace = "";
    277 
    278   dag OutOperandList;       // An dag containing the MI def operand list.
    279   dag InOperandList;        // An dag containing the MI use operand list.
    280   string AsmString = "";    // The .s format to print the instruction with.
    281 
    282   // Pattern - Set to the DAG pattern for this instruction, if we know of one,
    283   // otherwise, uninitialized.
    284   list<dag> Pattern;
    285 
    286   // The follow state will eventually be inferred automatically from the
    287   // instruction pattern.
    288 
    289   list<Register> Uses = []; // Default to using no non-operand registers
    290   list<Register> Defs = []; // Default to modifying no non-operand registers
    291 
    292   // Predicates - List of predicates which will be turned into isel matching
    293   // code.
    294   list<Predicate> Predicates = [];
    295 
    296   // Size - Size of encoded instruction, or zero if the size cannot be determined
    297   // from the opcode.
    298   int Size = 0;
    299 
    300   // DecoderNamespace - The "namespace" in which this instruction exists, on
    301   // targets like ARM which multiple ISA namespaces exist.
    302   string DecoderNamespace = "";
    303 
    304   // Code size, for instruction selection.
    305   // FIXME: What does this actually mean?
    306   int CodeSize = 0;
    307 
    308   // Added complexity passed onto matching pattern.
    309   int AddedComplexity  = 0;
    310 
    311   // These bits capture information about the high-level semantics of the
    312   // instruction.
    313   bit isReturn     = 0;     // Is this instruction a return instruction?
    314   bit isBranch     = 0;     // Is this instruction a branch instruction?
    315   bit isIndirectBranch = 0; // Is this instruction an indirect branch?
    316   bit isCompare    = 0;     // Is this instruction a comparison instruction?
    317   bit isMoveImm    = 0;     // Is this instruction a move immediate instruction?
    318   bit isBitcast    = 0;     // Is this instruction a bitcast instruction?
    319   bit isBarrier    = 0;     // Can control flow fall through this instruction?
    320   bit isCall       = 0;     // Is this instruction a call instruction?
    321   bit canFoldAsLoad = 0;    // Can this be folded as a simple memory operand?
    322   bit mayLoad      = 0;     // Is it possible for this inst to read memory?
    323   bit mayStore     = 0;     // Is it possible for this inst to write memory?
    324   bit isConvertibleToThreeAddress = 0;  // Can this 2-addr instruction promote?
    325   bit isCommutable = 0;     // Is this 3 operand instruction commutable?
    326   bit isTerminator = 0;     // Is this part of the terminator for a basic block?
    327   bit isReMaterializable = 0; // Is this instruction re-materializable?
    328   bit isPredicable = 0;     // Is this instruction predicable?
    329   bit hasDelaySlot = 0;     // Does this instruction have an delay slot?
    330   bit usesCustomInserter = 0; // Pseudo instr needing special help.
    331   bit hasPostISelHook = 0;  // To be *adjusted* after isel by target hook.
    332   bit hasCtrlDep   = 0;     // Does this instruction r/w ctrl-flow chains?
    333   bit isNotDuplicable = 0;  // Is it unsafe to duplicate this instruction?
    334   bit isAsCheapAsAMove = 0; // As cheap (or cheaper) than a move instruction.
    335   bit hasExtraSrcRegAllocReq = 0; // Sources have special regalloc requirement?
    336   bit hasExtraDefRegAllocReq = 0; // Defs have special regalloc requirement?
    337   bit isPseudo     = 0;     // Is this instruction a pseudo-instruction?
    338                             // If so, won't have encoding information for
    339                             // the [MC]CodeEmitter stuff.
    340 
    341   // Side effect flags - When set, the flags have these meanings:
    342   //
    343   //  hasSideEffects - The instruction has side effects that are not
    344   //    captured by any operands of the instruction or other flags.
    345   //
    346   //  neverHasSideEffects - Set on an instruction with no pattern if it has no
    347   //    side effects.
    348   bit hasSideEffects = 0;
    349   bit neverHasSideEffects = 0;
    350 
    351   // Is this instruction a "real" instruction (with a distinct machine
    352   // encoding), or is it a pseudo instruction used for codegen modeling
    353   // purposes.
    354   // FIXME: For now this is distinct from isPseudo, above, as code-gen-only
    355   // instructions can (and often do) still have encoding information
    356   // associated with them. Once we've migrated all of them over to true
    357   // pseudo-instructions that are lowered to real instructions prior to
    358   // the printer/emitter, we can remove this attribute and just use isPseudo.
    359   bit isCodeGenOnly = 0;
    360 
    361   // Is this instruction a pseudo instruction for use by the assembler parser.
    362   bit isAsmParserOnly = 0;
    363 
    364   InstrItinClass Itinerary = NoItinerary;// Execution steps used for scheduling.
    365 
    366   string Constraints = "";  // OperandConstraint, e.g. $src = $dst.
    367 
    368   /// DisableEncoding - List of operand names (e.g. "$op1,$op2") that should not
    369   /// be encoded into the output machineinstr.
    370   string DisableEncoding = "";
    371 
    372   string PostEncoderMethod = "";
    373   string DecoderMethod = "";
    374 
    375   /// Target-specific flags. This becomes the TSFlags field in TargetInstrDesc.
    376   bits<64> TSFlags = 0;
    377 
    378   ///@name Assembler Parser Support
    379   ///@{
    380 
    381   string AsmMatchConverter = "";
    382 
    383   ///@}
    384 }
    385 
    386 /// PseudoInstExpansion - Expansion information for a pseudo-instruction.
    387 /// Which instruction it expands to and how the operands map from the
    388 /// pseudo.
    389 class PseudoInstExpansion<dag Result> {
    390   dag ResultInst = Result;     // The instruction to generate.
    391   bit isPseudo = 1;
    392 }
    393 
    394 /// Predicates - These are extra conditionals which are turned into instruction
    395 /// selector matching code. Currently each predicate is just a string.
    396 class Predicate<string cond> {
    397   string CondString = cond;
    398 
    399   /// AssemblerMatcherPredicate - If this feature can be used by the assembler
    400   /// matcher, this is true.  Targets should set this by inheriting their
    401   /// feature from the AssemblerPredicate class in addition to Predicate.
    402   bit AssemblerMatcherPredicate = 0;
    403 
    404   /// AssemblerCondString - Name of the subtarget feature being tested used
    405   /// as alternative condition string used for assembler matcher.
    406   /// e.g. "ModeThumb" is translated to "(Bits & ModeThumb) != 0".
    407   ///      "!ModeThumb" is translated to "(Bits & ModeThumb) == 0".
    408   /// It can also list multiple features separated by ",".
    409   /// e.g. "ModeThumb,FeatureThumb2" is translated to
    410   ///      "(Bits & ModeThumb) != 0 && (Bits & FeatureThumb2) != 0".
    411   string AssemblerCondString = "";
    412 }
    413 
    414 /// NoHonorSignDependentRounding - This predicate is true if support for
    415 /// sign-dependent-rounding is not enabled.
    416 def NoHonorSignDependentRounding
    417  : Predicate<"!HonorSignDependentRoundingFPMath()">;
    418 
    419 class Requires<list<Predicate> preds> {
    420   list<Predicate> Predicates = preds;
    421 }
    422 
    423 /// ops definition - This is just a simple marker used to identify the operand
    424 /// list for an instruction. outs and ins are identical both syntactically and
    425 /// semanticallyr; they are used to define def operands and use operands to
    426 /// improve readibility. This should be used like this:
    427 ///     (outs R32:$dst), (ins R32:$src1, R32:$src2) or something similar.
    428 def ops;
    429 def outs;
    430 def ins;
    431 
    432 /// variable_ops definition - Mark this instruction as taking a variable number
    433 /// of operands.
    434 def variable_ops;
    435 
    436 
    437 /// PointerLikeRegClass - Values that are designed to have pointer width are
    438 /// derived from this.  TableGen treats the register class as having a symbolic
    439 /// type that it doesn't know, and resolves the actual regclass to use by using
    440 /// the TargetRegisterInfo::getPointerRegClass() hook at codegen time.
    441 class PointerLikeRegClass<int Kind> {
    442   int RegClassKind = Kind;
    443 }
    444 
    445 
    446 /// ptr_rc definition - Mark this operand as being a pointer value whose
    447 /// register class is resolved dynamically via a callback to TargetInstrInfo.
    448 /// FIXME: We should probably change this to a class which contain a list of
    449 /// flags. But currently we have but one flag.
    450 def ptr_rc : PointerLikeRegClass<0>;
    451 
    452 /// unknown definition - Mark this operand as being of unknown type, causing
    453 /// it to be resolved by inference in the context it is used.
    454 def unknown;
    455 
    456 /// AsmOperandClass - Representation for the kinds of operands which the target
    457 /// specific parser can create and the assembly matcher may need to distinguish.
    458 ///
    459 /// Operand classes are used to define the order in which instructions are
    460 /// matched, to ensure that the instruction which gets matched for any
    461 /// particular list of operands is deterministic.
    462 ///
    463 /// The target specific parser must be able to classify a parsed operand into a
    464 /// unique class which does not partially overlap with any other classes. It can
    465 /// match a subset of some other class, in which case the super class field
    466 /// should be defined.
    467 class AsmOperandClass {
    468   /// The name to use for this class, which should be usable as an enum value.
    469   string Name = ?;
    470 
    471   /// The super classes of this operand.
    472   list<AsmOperandClass> SuperClasses = [];
    473 
    474   /// The name of the method on the target specific operand to call to test
    475   /// whether the operand is an instance of this class. If not set, this will
    476   /// default to "isFoo", where Foo is the AsmOperandClass name. The method
    477   /// signature should be:
    478   ///   bool isFoo() const;
    479   string PredicateMethod = ?;
    480 
    481   /// The name of the method on the target specific operand to call to add the
    482   /// target specific operand to an MCInst. If not set, this will default to
    483   /// "addFooOperands", where Foo is the AsmOperandClass name. The method
    484   /// signature should be:
    485   ///   void addFooOperands(MCInst &Inst, unsigned N) const;
    486   string RenderMethod = ?;
    487 
    488   /// The name of the method on the target specific operand to call to custom
    489   /// handle the operand parsing. This is useful when the operands do not relate
    490   /// to immediates or registers and are very instruction specific (as flags to
    491   /// set in a processor register, coprocessor number, ...).
    492   string ParserMethod = ?;
    493 }
    494 
    495 def ImmAsmOperand : AsmOperandClass {
    496   let Name = "Imm";
    497 }
    498 
    499 /// Operand Types - These provide the built-in operand types that may be used
    500 /// by a target.  Targets can optionally provide their own operand types as
    501 /// needed, though this should not be needed for RISC targets.
    502 class Operand<ValueType ty> {
    503   ValueType Type = ty;
    504   string PrintMethod = "printOperand";
    505   string EncoderMethod = "";
    506   string DecoderMethod = "";
    507   string AsmOperandLowerMethod = ?;
    508   string OperandType = "OPERAND_UNKNOWN";
    509   dag MIOperandInfo = (ops);
    510 
    511   // ParserMatchClass - The "match class" that operands of this type fit
    512   // in. Match classes are used to define the order in which instructions are
    513   // match, to ensure that which instructions gets matched is deterministic.
    514   //
    515   // The target specific parser must be able to classify an parsed operand into
    516   // a unique class, which does not partially overlap with any other classes. It
    517   // can match a subset of some other class, in which case the AsmOperandClass
    518   // should declare the other operand as one of its super classes.
    519   AsmOperandClass ParserMatchClass = ImmAsmOperand;
    520 }
    521 
    522 class RegisterOperand<RegisterClass regclass, string pm = "printOperand"> {
    523   // RegClass - The register class of the operand.
    524   RegisterClass RegClass = regclass;
    525   // PrintMethod - The target method to call to print register operands of
    526   // this type. The method normally will just use an alt-name index to look
    527   // up the name to print. Default to the generic printOperand().
    528   string PrintMethod = pm;
    529   // ParserMatchClass - The "match class" that operands of this type fit
    530   // in. Match classes are used to define the order in which instructions are
    531   // match, to ensure that which instructions gets matched is deterministic.
    532   //
    533   // The target specific parser must be able to classify an parsed operand into
    534   // a unique class, which does not partially overlap with any other classes. It
    535   // can match a subset of some other class, in which case the AsmOperandClass
    536   // should declare the other operand as one of its super classes.
    537   AsmOperandClass ParserMatchClass;
    538 }
    539 
    540 let OperandType = "OPERAND_IMMEDIATE" in {
    541 def i1imm  : Operand<i1>;
    542 def i8imm  : Operand<i8>;
    543 def i16imm : Operand<i16>;
    544 def i32imm : Operand<i32>;
    545 def i64imm : Operand<i64>;
    546 
    547 def f32imm : Operand<f32>;
    548 def f64imm : Operand<f64>;
    549 }
    550 
    551 /// zero_reg definition - Special node to stand for the zero register.
    552 ///
    553 def zero_reg;
    554 
    555 /// PredicateOperand - This can be used to define a predicate operand for an
    556 /// instruction.  OpTypes specifies the MIOperandInfo for the operand, and
    557 /// AlwaysVal specifies the value of this predicate when set to "always
    558 /// execute".
    559 class PredicateOperand<ValueType ty, dag OpTypes, dag AlwaysVal>
    560   : Operand<ty> {
    561   let MIOperandInfo = OpTypes;
    562   dag DefaultOps = AlwaysVal;
    563 }
    564 
    565 /// OptionalDefOperand - This is used to define a optional definition operand
    566 /// for an instruction. DefaultOps is the register the operand represents if
    567 /// none is supplied, e.g. zero_reg.
    568 class OptionalDefOperand<ValueType ty, dag OpTypes, dag defaultops>
    569   : Operand<ty> {
    570   let MIOperandInfo = OpTypes;
    571   dag DefaultOps = defaultops;
    572 }
    573 
    574 
    575 // InstrInfo - This class should only be instantiated once to provide parameters
    576 // which are global to the target machine.
    577 //
    578 class InstrInfo {
    579   // Target can specify its instructions in either big or little-endian formats.
    580   // For instance, while both Sparc and PowerPC are big-endian platforms, the
    581   // Sparc manual specifies its instructions in the format [31..0] (big), while
    582   // PowerPC specifies them using the format [0..31] (little).
    583   bit isLittleEndianEncoding = 0;
    584 }
    585 
    586 // Standard Pseudo Instructions.
    587 // This list must match TargetOpcodes.h and CodeGenTarget.cpp.
    588 // Only these instructions are allowed in the TargetOpcode namespace.
    589 let isCodeGenOnly = 1, isPseudo = 1, Namespace = "TargetOpcode" in {
    590 def PHI : Instruction {
    591   let OutOperandList = (outs);
    592   let InOperandList = (ins variable_ops);
    593   let AsmString = "PHINODE";
    594 }
    595 def INLINEASM : Instruction {
    596   let OutOperandList = (outs);
    597   let InOperandList = (ins variable_ops);
    598   let AsmString = "";
    599   let neverHasSideEffects = 1;  // Note side effect is encoded in an operand.
    600 }
    601 def PROLOG_LABEL : Instruction {
    602   let OutOperandList = (outs);
    603   let InOperandList = (ins i32imm:$id);
    604   let AsmString = "";
    605   let hasCtrlDep = 1;
    606   let isNotDuplicable = 1;
    607 }
    608 def EH_LABEL : Instruction {
    609   let OutOperandList = (outs);
    610   let InOperandList = (ins i32imm:$id);
    611   let AsmString = "";
    612   let hasCtrlDep = 1;
    613   let isNotDuplicable = 1;
    614 }
    615 def GC_LABEL : Instruction {
    616   let OutOperandList = (outs);
    617   let InOperandList = (ins i32imm:$id);
    618   let AsmString = "";
    619   let hasCtrlDep = 1;
    620   let isNotDuplicable = 1;
    621 }
    622 def KILL : Instruction {
    623   let OutOperandList = (outs);
    624   let InOperandList = (ins variable_ops);
    625   let AsmString = "";
    626   let neverHasSideEffects = 1;
    627 }
    628 def EXTRACT_SUBREG : Instruction {
    629   let OutOperandList = (outs unknown:$dst);
    630   let InOperandList = (ins unknown:$supersrc, i32imm:$subidx);
    631   let AsmString = "";
    632   let neverHasSideEffects = 1;
    633 }
    634 def INSERT_SUBREG : Instruction {
    635   let OutOperandList = (outs unknown:$dst);
    636   let InOperandList = (ins unknown:$supersrc, unknown:$subsrc, i32imm:$subidx);
    637   let AsmString = "";
    638   let neverHasSideEffects = 1;
    639   let Constraints = "$supersrc = $dst";
    640 }
    641 def IMPLICIT_DEF : Instruction {
    642   let OutOperandList = (outs unknown:$dst);
    643   let InOperandList = (ins);
    644   let AsmString = "";
    645   let neverHasSideEffects = 1;
    646   let isReMaterializable = 1;
    647   let isAsCheapAsAMove = 1;
    648 }
    649 def SUBREG_TO_REG : Instruction {
    650   let OutOperandList = (outs unknown:$dst);
    651   let InOperandList = (ins unknown:$implsrc, unknown:$subsrc, i32imm:$subidx);
    652   let AsmString = "";
    653   let neverHasSideEffects = 1;
    654 }
    655 def COPY_TO_REGCLASS : Instruction {
    656   let OutOperandList = (outs unknown:$dst);
    657   let InOperandList = (ins unknown:$src, i32imm:$regclass);
    658   let AsmString = "";
    659   let neverHasSideEffects = 1;
    660   let isAsCheapAsAMove = 1;
    661 }
    662 def DBG_VALUE : Instruction {
    663   let OutOperandList = (outs);
    664   let InOperandList = (ins variable_ops);
    665   let AsmString = "DBG_VALUE";
    666   let neverHasSideEffects = 1;
    667 }
    668 def REG_SEQUENCE : Instruction {
    669   let OutOperandList = (outs unknown:$dst);
    670   let InOperandList = (ins variable_ops);
    671   let AsmString = "";
    672   let neverHasSideEffects = 1;
    673   let isAsCheapAsAMove = 1;
    674 }
    675 def COPY : Instruction {
    676   let OutOperandList = (outs unknown:$dst);
    677   let InOperandList = (ins unknown:$src);
    678   let AsmString = "";
    679   let neverHasSideEffects = 1;
    680   let isAsCheapAsAMove = 1;
    681 }
    682 }
    683 
    684 //===----------------------------------------------------------------------===//
    685 // AsmParser - This class can be implemented by targets that wish to implement
    686 // .s file parsing.
    687 //
    688 // Subtargets can have multiple different assembly parsers (e.g. AT&T vs Intel
    689 // syntax on X86 for example).
    690 //
    691 class AsmParser {
    692   // AsmParserClassName - This specifies the suffix to use for the asmparser
    693   // class.  Generated AsmParser classes are always prefixed with the target
    694   // name.
    695   string AsmParserClassName  = "AsmParser";
    696 
    697   // AsmParserInstCleanup - If non-empty, this is the name of a custom member
    698   // function of the AsmParser class to call on every matched instruction.
    699   // This can be used to perform target specific instruction post-processing.
    700   string AsmParserInstCleanup  = "";
    701 
    702   // Variant - AsmParsers can be of multiple different variants.  Variants are
    703   // used to support targets that need to parser multiple formats for the
    704   // assembly language.
    705   int Variant = 0;
    706 
    707   // CommentDelimiter - If given, the delimiter string used to recognize
    708   // comments which are hard coded in the .td assembler strings for individual
    709   // instructions.
    710   string CommentDelimiter = "";
    711 
    712   // RegisterPrefix - If given, the token prefix which indicates a register
    713   // token. This is used by the matcher to automatically recognize hard coded
    714   // register tokens as constrained registers, instead of tokens, for the
    715   // purposes of matching.
    716   string RegisterPrefix = "";
    717 }
    718 def DefaultAsmParser : AsmParser;
    719 
    720 /// AssemblerPredicate - This is a Predicate that can be used when the assembler
    721 /// matches instructions and aliases.
    722 class AssemblerPredicate<string cond> {
    723   bit AssemblerMatcherPredicate = 1;
    724   string AssemblerCondString = cond;
    725 }
    726 
    727 
    728 
    729 /// MnemonicAlias - This class allows targets to define assembler mnemonic
    730 /// aliases.  This should be used when all forms of one mnemonic are accepted
    731 /// with a different mnemonic.  For example, X86 allows:
    732 ///   sal %al, 1    -> shl %al, 1
    733 ///   sal %ax, %cl  -> shl %ax, %cl
    734 ///   sal %eax, %cl -> shl %eax, %cl
    735 /// etc.  Though "sal" is accepted with many forms, all of them are directly
    736 /// translated to a shl, so it can be handled with (in the case of X86, it
    737 /// actually has one for each suffix as well):
    738 ///   def : MnemonicAlias<"sal", "shl">;
    739 ///
    740 /// Mnemonic aliases are mapped before any other translation in the match phase,
    741 /// and do allow Requires predicates, e.g.:
    742 ///
    743 ///  def : MnemonicAlias<"pushf", "pushfq">, Requires<[In64BitMode]>;
    744 ///  def : MnemonicAlias<"pushf", "pushfl">, Requires<[In32BitMode]>;
    745 ///
    746 class MnemonicAlias<string From, string To> {
    747   string FromMnemonic = From;
    748   string ToMnemonic = To;
    749 
    750   // Predicates - Predicates that must be true for this remapping to happen.
    751   list<Predicate> Predicates = [];
    752 }
    753 
    754 /// InstAlias - This defines an alternate assembly syntax that is allowed to
    755 /// match an instruction that has a different (more canonical) assembly
    756 /// representation.
    757 class InstAlias<string Asm, dag Result, bit Emit = 0b1> {
    758   string AsmString = Asm;      // The .s format to match the instruction with.
    759   dag ResultInst = Result;     // The MCInst to generate.
    760   bit EmitAlias = Emit;        // Emit the alias instead of what's aliased.
    761 
    762   // Predicates - Predicates that must be true for this to match.
    763   list<Predicate> Predicates = [];
    764 }
    765 
    766 //===----------------------------------------------------------------------===//
    767 // AsmWriter - This class can be implemented by targets that need to customize
    768 // the format of the .s file writer.
    769 //
    770 // Subtargets can have multiple different asmwriters (e.g. AT&T vs Intel syntax
    771 // on X86 for example).
    772 //
    773 class AsmWriter {
    774   // AsmWriterClassName - This specifies the suffix to use for the asmwriter
    775   // class.  Generated AsmWriter classes are always prefixed with the target
    776   // name.
    777   string AsmWriterClassName  = "AsmPrinter";
    778 
    779   // Variant - AsmWriters can be of multiple different variants.  Variants are
    780   // used to support targets that need to emit assembly code in ways that are
    781   // mostly the same for different targets, but have minor differences in
    782   // syntax.  If the asmstring contains {|} characters in them, this integer
    783   // will specify which alternative to use.  For example "{x|y|z}" with Variant
    784   // == 1, will expand to "y".
    785   int Variant = 0;
    786 
    787 
    788   // FirstOperandColumn/OperandSpacing - If the assembler syntax uses a columnar
    789   // layout, the asmwriter can actually generate output in this columns (in
    790   // verbose-asm mode).  These two values indicate the width of the first column
    791   // (the "opcode" area) and the width to reserve for subsequent operands.  When
    792   // verbose asm mode is enabled, operands will be indented to respect this.
    793   int FirstOperandColumn = -1;
    794 
    795   // OperandSpacing - Space between operand columns.
    796   int OperandSpacing = -1;
    797 
    798   // isMCAsmWriter - Is this assembly writer for an MC emitter? This controls
    799   // generation of the printInstruction() method. For MC printers, it takes
    800   // an MCInstr* operand, otherwise it takes a MachineInstr*.
    801   bit isMCAsmWriter = 0;
    802 }
    803 def DefaultAsmWriter : AsmWriter;
    804 
    805 
    806 //===----------------------------------------------------------------------===//
    807 // Target - This class contains the "global" target information
    808 //
    809 class Target {
    810   // InstructionSet - Instruction set description for this target.
    811   InstrInfo InstructionSet;
    812 
    813   // AssemblyParsers - The AsmParser instances available for this target.
    814   list<AsmParser> AssemblyParsers = [DefaultAsmParser];
    815 
    816   // AssemblyWriters - The AsmWriter instances available for this target.
    817   list<AsmWriter> AssemblyWriters = [DefaultAsmWriter];
    818 }
    819 
    820 //===----------------------------------------------------------------------===//
    821 // SubtargetFeature - A characteristic of the chip set.
    822 //
    823 class SubtargetFeature<string n, string a,  string v, string d,
    824                        list<SubtargetFeature> i = []> {
    825   // Name - Feature name.  Used by command line (-mattr=) to determine the
    826   // appropriate target chip.
    827   //
    828   string Name = n;
    829 
    830   // Attribute - Attribute to be set by feature.
    831   //
    832   string Attribute = a;
    833 
    834   // Value - Value the attribute to be set to by feature.
    835   //
    836   string Value = v;
    837 
    838   // Desc - Feature description.  Used by command line (-mattr=) to display help
    839   // information.
    840   //
    841   string Desc = d;
    842 
    843   // Implies - Features that this feature implies are present. If one of those
    844   // features isn't set, then this one shouldn't be set either.
    845   //
    846   list<SubtargetFeature> Implies = i;
    847 }
    848 
    849 //===----------------------------------------------------------------------===//
    850 // Processor chip sets - These values represent each of the chip sets supported
    851 // by the scheduler.  Each Processor definition requires corresponding
    852 // instruction itineraries.
    853 //
    854 class Processor<string n, ProcessorItineraries pi, list<SubtargetFeature> f> {
    855   // Name - Chip set name.  Used by command line (-mcpu=) to determine the
    856   // appropriate target chip.
    857   //
    858   string Name = n;
    859 
    860   // ProcItin - The scheduling information for the target processor.
    861   //
    862   ProcessorItineraries ProcItin = pi;
    863 
    864   // Features - list of
    865   list<SubtargetFeature> Features = f;
    866 }
    867 
    868 //===----------------------------------------------------------------------===//
    869 // Pull in the common support for calling conventions.
    870 //
    871 include "llvm/Target/TargetCallingConv.td"
    872 
    873 //===----------------------------------------------------------------------===//
    874 // Pull in the common support for DAG isel generation.
    875 //
    876 include "llvm/Target/TargetSelectionDAG.td"
    877