Home | History | Annotate | Download | only in Analysis
      1 //===-- Lint.cpp - Check for common errors in LLVM IR ---------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass statically checks for common and easily-identified constructs
     11 // which produce undefined or likely unintended behavior in LLVM IR.
     12 //
     13 // It is not a guarantee of correctness, in two ways. First, it isn't
     14 // comprehensive. There are checks which could be done statically which are
     15 // not yet implemented. Some of these are indicated by TODO comments, but
     16 // those aren't comprehensive either. Second, many conditions cannot be
     17 // checked statically. This pass does no dynamic instrumentation, so it
     18 // can't check for all possible problems.
     19 //
     20 // Another limitation is that it assumes all code will be executed. A store
     21 // through a null pointer in a basic block which is never reached is harmless,
     22 // but this pass will warn about it anyway. This is the main reason why most
     23 // of these checks live here instead of in the Verifier pass.
     24 //
     25 // Optimization passes may make conditions that this pass checks for more or
     26 // less obvious. If an optimization pass appears to be introducing a warning,
     27 // it may be that the optimization pass is merely exposing an existing
     28 // condition in the code.
     29 //
     30 // This code may be run before instcombine. In many cases, instcombine checks
     31 // for the same kinds of things and turns instructions with undefined behavior
     32 // into unreachable (or equivalent). Because of this, this pass makes some
     33 // effort to look through bitcasts and so on.
     34 //
     35 //===----------------------------------------------------------------------===//
     36 
     37 #include "llvm/Analysis/Passes.h"
     38 #include "llvm/Analysis/AliasAnalysis.h"
     39 #include "llvm/Analysis/InstructionSimplify.h"
     40 #include "llvm/Analysis/ConstantFolding.h"
     41 #include "llvm/Analysis/Dominators.h"
     42 #include "llvm/Analysis/Lint.h"
     43 #include "llvm/Analysis/Loads.h"
     44 #include "llvm/Analysis/ValueTracking.h"
     45 #include "llvm/Assembly/Writer.h"
     46 #include "llvm/Target/TargetData.h"
     47 #include "llvm/Pass.h"
     48 #include "llvm/PassManager.h"
     49 #include "llvm/IntrinsicInst.h"
     50 #include "llvm/Function.h"
     51 #include "llvm/Support/CallSite.h"
     52 #include "llvm/Support/Debug.h"
     53 #include "llvm/Support/InstVisitor.h"
     54 #include "llvm/Support/raw_ostream.h"
     55 #include "llvm/ADT/STLExtras.h"
     56 using namespace llvm;
     57 
     58 namespace {
     59   namespace MemRef {
     60     static unsigned Read     = 1;
     61     static unsigned Write    = 2;
     62     static unsigned Callee   = 4;
     63     static unsigned Branchee = 8;
     64   }
     65 
     66   class Lint : public FunctionPass, public InstVisitor<Lint> {
     67     friend class InstVisitor<Lint>;
     68 
     69     void visitFunction(Function &F);
     70 
     71     void visitCallSite(CallSite CS);
     72     void visitMemoryReference(Instruction &I, Value *Ptr,
     73                               uint64_t Size, unsigned Align,
     74                               Type *Ty, unsigned Flags);
     75 
     76     void visitCallInst(CallInst &I);
     77     void visitInvokeInst(InvokeInst &I);
     78     void visitReturnInst(ReturnInst &I);
     79     void visitLoadInst(LoadInst &I);
     80     void visitStoreInst(StoreInst &I);
     81     void visitXor(BinaryOperator &I);
     82     void visitSub(BinaryOperator &I);
     83     void visitLShr(BinaryOperator &I);
     84     void visitAShr(BinaryOperator &I);
     85     void visitShl(BinaryOperator &I);
     86     void visitSDiv(BinaryOperator &I);
     87     void visitUDiv(BinaryOperator &I);
     88     void visitSRem(BinaryOperator &I);
     89     void visitURem(BinaryOperator &I);
     90     void visitAllocaInst(AllocaInst &I);
     91     void visitVAArgInst(VAArgInst &I);
     92     void visitIndirectBrInst(IndirectBrInst &I);
     93     void visitExtractElementInst(ExtractElementInst &I);
     94     void visitInsertElementInst(InsertElementInst &I);
     95     void visitUnreachableInst(UnreachableInst &I);
     96 
     97     Value *findValue(Value *V, bool OffsetOk) const;
     98     Value *findValueImpl(Value *V, bool OffsetOk,
     99                          SmallPtrSet<Value *, 4> &Visited) const;
    100 
    101   public:
    102     Module *Mod;
    103     AliasAnalysis *AA;
    104     DominatorTree *DT;
    105     TargetData *TD;
    106 
    107     std::string Messages;
    108     raw_string_ostream MessagesStr;
    109 
    110     static char ID; // Pass identification, replacement for typeid
    111     Lint() : FunctionPass(ID), MessagesStr(Messages) {
    112       initializeLintPass(*PassRegistry::getPassRegistry());
    113     }
    114 
    115     virtual bool runOnFunction(Function &F);
    116 
    117     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    118       AU.setPreservesAll();
    119       AU.addRequired<AliasAnalysis>();
    120       AU.addRequired<DominatorTree>();
    121     }
    122     virtual void print(raw_ostream &O, const Module *M) const {}
    123 
    124     void WriteValue(const Value *V) {
    125       if (!V) return;
    126       if (isa<Instruction>(V)) {
    127         MessagesStr << *V << '\n';
    128       } else {
    129         WriteAsOperand(MessagesStr, V, true, Mod);
    130         MessagesStr << '\n';
    131       }
    132     }
    133 
    134     // CheckFailed - A check failed, so print out the condition and the message
    135     // that failed.  This provides a nice place to put a breakpoint if you want
    136     // to see why something is not correct.
    137     void CheckFailed(const Twine &Message,
    138                      const Value *V1 = 0, const Value *V2 = 0,
    139                      const Value *V3 = 0, const Value *V4 = 0) {
    140       MessagesStr << Message.str() << "\n";
    141       WriteValue(V1);
    142       WriteValue(V2);
    143       WriteValue(V3);
    144       WriteValue(V4);
    145     }
    146   };
    147 }
    148 
    149 char Lint::ID = 0;
    150 INITIALIZE_PASS_BEGIN(Lint, "lint", "Statically lint-checks LLVM IR",
    151                       false, true)
    152 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
    153 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
    154 INITIALIZE_PASS_END(Lint, "lint", "Statically lint-checks LLVM IR",
    155                     false, true)
    156 
    157 // Assert - We know that cond should be true, if not print an error message.
    158 #define Assert(C, M) \
    159     do { if (!(C)) { CheckFailed(M); return; } } while (0)
    160 #define Assert1(C, M, V1) \
    161     do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
    162 #define Assert2(C, M, V1, V2) \
    163     do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
    164 #define Assert3(C, M, V1, V2, V3) \
    165     do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
    166 #define Assert4(C, M, V1, V2, V3, V4) \
    167     do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
    168 
    169 // Lint::run - This is the main Analysis entry point for a
    170 // function.
    171 //
    172 bool Lint::runOnFunction(Function &F) {
    173   Mod = F.getParent();
    174   AA = &getAnalysis<AliasAnalysis>();
    175   DT = &getAnalysis<DominatorTree>();
    176   TD = getAnalysisIfAvailable<TargetData>();
    177   visit(F);
    178   dbgs() << MessagesStr.str();
    179   Messages.clear();
    180   return false;
    181 }
    182 
    183 void Lint::visitFunction(Function &F) {
    184   // This isn't undefined behavior, it's just a little unusual, and it's a
    185   // fairly common mistake to neglect to name a function.
    186   Assert1(F.hasName() || F.hasLocalLinkage(),
    187           "Unusual: Unnamed function with non-local linkage", &F);
    188 
    189   // TODO: Check for irreducible control flow.
    190 }
    191 
    192 void Lint::visitCallSite(CallSite CS) {
    193   Instruction &I = *CS.getInstruction();
    194   Value *Callee = CS.getCalledValue();
    195 
    196   visitMemoryReference(I, Callee, AliasAnalysis::UnknownSize,
    197                        0, 0, MemRef::Callee);
    198 
    199   if (Function *F = dyn_cast<Function>(findValue(Callee, /*OffsetOk=*/false))) {
    200     Assert1(CS.getCallingConv() == F->getCallingConv(),
    201             "Undefined behavior: Caller and callee calling convention differ",
    202             &I);
    203 
    204     FunctionType *FT = F->getFunctionType();
    205     unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
    206 
    207     Assert1(FT->isVarArg() ?
    208               FT->getNumParams() <= NumActualArgs :
    209               FT->getNumParams() == NumActualArgs,
    210             "Undefined behavior: Call argument count mismatches callee "
    211             "argument count", &I);
    212 
    213     Assert1(FT->getReturnType() == I.getType(),
    214             "Undefined behavior: Call return type mismatches "
    215             "callee return type", &I);
    216 
    217     // Check argument types (in case the callee was casted) and attributes.
    218     // TODO: Verify that caller and callee attributes are compatible.
    219     Function::arg_iterator PI = F->arg_begin(), PE = F->arg_end();
    220     CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
    221     for (; AI != AE; ++AI) {
    222       Value *Actual = *AI;
    223       if (PI != PE) {
    224         Argument *Formal = PI++;
    225         Assert1(Formal->getType() == Actual->getType(),
    226                 "Undefined behavior: Call argument type mismatches "
    227                 "callee parameter type", &I);
    228 
    229         // Check that noalias arguments don't alias other arguments. This is
    230         // not fully precise because we don't know the sizes of the dereferenced
    231         // memory regions.
    232         if (Formal->hasNoAliasAttr() && Actual->getType()->isPointerTy())
    233           for (CallSite::arg_iterator BI = CS.arg_begin(); BI != AE; ++BI)
    234             if (AI != BI && (*BI)->getType()->isPointerTy()) {
    235               AliasAnalysis::AliasResult Result = AA->alias(*AI, *BI);
    236               Assert1(Result != AliasAnalysis::MustAlias &&
    237                       Result != AliasAnalysis::PartialAlias,
    238                       "Unusual: noalias argument aliases another argument", &I);
    239             }
    240 
    241         // Check that an sret argument points to valid memory.
    242         if (Formal->hasStructRetAttr() && Actual->getType()->isPointerTy()) {
    243           Type *Ty =
    244             cast<PointerType>(Formal->getType())->getElementType();
    245           visitMemoryReference(I, Actual, AA->getTypeStoreSize(Ty),
    246                                TD ? TD->getABITypeAlignment(Ty) : 0,
    247                                Ty, MemRef::Read | MemRef::Write);
    248         }
    249       }
    250     }
    251   }
    252 
    253   if (CS.isCall() && cast<CallInst>(CS.getInstruction())->isTailCall())
    254     for (CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
    255          AI != AE; ++AI) {
    256       Value *Obj = findValue(*AI, /*OffsetOk=*/true);
    257       Assert1(!isa<AllocaInst>(Obj),
    258               "Undefined behavior: Call with \"tail\" keyword references "
    259               "alloca", &I);
    260     }
    261 
    262 
    263   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I))
    264     switch (II->getIntrinsicID()) {
    265     default: break;
    266 
    267     // TODO: Check more intrinsics
    268 
    269     case Intrinsic::memcpy: {
    270       MemCpyInst *MCI = cast<MemCpyInst>(&I);
    271       // TODO: If the size is known, use it.
    272       visitMemoryReference(I, MCI->getDest(), AliasAnalysis::UnknownSize,
    273                            MCI->getAlignment(), 0,
    274                            MemRef::Write);
    275       visitMemoryReference(I, MCI->getSource(), AliasAnalysis::UnknownSize,
    276                            MCI->getAlignment(), 0,
    277                            MemRef::Read);
    278 
    279       // Check that the memcpy arguments don't overlap. The AliasAnalysis API
    280       // isn't expressive enough for what we really want to do. Known partial
    281       // overlap is not distinguished from the case where nothing is known.
    282       uint64_t Size = 0;
    283       if (const ConstantInt *Len =
    284             dyn_cast<ConstantInt>(findValue(MCI->getLength(),
    285                                             /*OffsetOk=*/false)))
    286         if (Len->getValue().isIntN(32))
    287           Size = Len->getValue().getZExtValue();
    288       Assert1(AA->alias(MCI->getSource(), Size, MCI->getDest(), Size) !=
    289               AliasAnalysis::MustAlias,
    290               "Undefined behavior: memcpy source and destination overlap", &I);
    291       break;
    292     }
    293     case Intrinsic::memmove: {
    294       MemMoveInst *MMI = cast<MemMoveInst>(&I);
    295       // TODO: If the size is known, use it.
    296       visitMemoryReference(I, MMI->getDest(), AliasAnalysis::UnknownSize,
    297                            MMI->getAlignment(), 0,
    298                            MemRef::Write);
    299       visitMemoryReference(I, MMI->getSource(), AliasAnalysis::UnknownSize,
    300                            MMI->getAlignment(), 0,
    301                            MemRef::Read);
    302       break;
    303     }
    304     case Intrinsic::memset: {
    305       MemSetInst *MSI = cast<MemSetInst>(&I);
    306       // TODO: If the size is known, use it.
    307       visitMemoryReference(I, MSI->getDest(), AliasAnalysis::UnknownSize,
    308                            MSI->getAlignment(), 0,
    309                            MemRef::Write);
    310       break;
    311     }
    312 
    313     case Intrinsic::vastart:
    314       Assert1(I.getParent()->getParent()->isVarArg(),
    315               "Undefined behavior: va_start called in a non-varargs function",
    316               &I);
    317 
    318       visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
    319                            0, 0, MemRef::Read | MemRef::Write);
    320       break;
    321     case Intrinsic::vacopy:
    322       visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
    323                            0, 0, MemRef::Write);
    324       visitMemoryReference(I, CS.getArgument(1), AliasAnalysis::UnknownSize,
    325                            0, 0, MemRef::Read);
    326       break;
    327     case Intrinsic::vaend:
    328       visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
    329                            0, 0, MemRef::Read | MemRef::Write);
    330       break;
    331 
    332     case Intrinsic::stackrestore:
    333       // Stackrestore doesn't read or write memory, but it sets the
    334       // stack pointer, which the compiler may read from or write to
    335       // at any time, so check it for both readability and writeability.
    336       visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
    337                            0, 0, MemRef::Read | MemRef::Write);
    338       break;
    339     }
    340 }
    341 
    342 void Lint::visitCallInst(CallInst &I) {
    343   return visitCallSite(&I);
    344 }
    345 
    346 void Lint::visitInvokeInst(InvokeInst &I) {
    347   return visitCallSite(&I);
    348 }
    349 
    350 void Lint::visitReturnInst(ReturnInst &I) {
    351   Function *F = I.getParent()->getParent();
    352   Assert1(!F->doesNotReturn(),
    353           "Unusual: Return statement in function with noreturn attribute",
    354           &I);
    355 
    356   if (Value *V = I.getReturnValue()) {
    357     Value *Obj = findValue(V, /*OffsetOk=*/true);
    358     Assert1(!isa<AllocaInst>(Obj),
    359             "Unusual: Returning alloca value", &I);
    360   }
    361 }
    362 
    363 // TODO: Check that the reference is in bounds.
    364 // TODO: Check readnone/readonly function attributes.
    365 void Lint::visitMemoryReference(Instruction &I,
    366                                 Value *Ptr, uint64_t Size, unsigned Align,
    367                                 Type *Ty, unsigned Flags) {
    368   // If no memory is being referenced, it doesn't matter if the pointer
    369   // is valid.
    370   if (Size == 0)
    371     return;
    372 
    373   Value *UnderlyingObject = findValue(Ptr, /*OffsetOk=*/true);
    374   Assert1(!isa<ConstantPointerNull>(UnderlyingObject),
    375           "Undefined behavior: Null pointer dereference", &I);
    376   Assert1(!isa<UndefValue>(UnderlyingObject),
    377           "Undefined behavior: Undef pointer dereference", &I);
    378   Assert1(!isa<ConstantInt>(UnderlyingObject) ||
    379           !cast<ConstantInt>(UnderlyingObject)->isAllOnesValue(),
    380           "Unusual: All-ones pointer dereference", &I);
    381   Assert1(!isa<ConstantInt>(UnderlyingObject) ||
    382           !cast<ConstantInt>(UnderlyingObject)->isOne(),
    383           "Unusual: Address one pointer dereference", &I);
    384 
    385   if (Flags & MemRef::Write) {
    386     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(UnderlyingObject))
    387       Assert1(!GV->isConstant(),
    388               "Undefined behavior: Write to read-only memory", &I);
    389     Assert1(!isa<Function>(UnderlyingObject) &&
    390             !isa<BlockAddress>(UnderlyingObject),
    391             "Undefined behavior: Write to text section", &I);
    392   }
    393   if (Flags & MemRef::Read) {
    394     Assert1(!isa<Function>(UnderlyingObject),
    395             "Unusual: Load from function body", &I);
    396     Assert1(!isa<BlockAddress>(UnderlyingObject),
    397             "Undefined behavior: Load from block address", &I);
    398   }
    399   if (Flags & MemRef::Callee) {
    400     Assert1(!isa<BlockAddress>(UnderlyingObject),
    401             "Undefined behavior: Call to block address", &I);
    402   }
    403   if (Flags & MemRef::Branchee) {
    404     Assert1(!isa<Constant>(UnderlyingObject) ||
    405             isa<BlockAddress>(UnderlyingObject),
    406             "Undefined behavior: Branch to non-blockaddress", &I);
    407   }
    408 
    409   if (TD) {
    410     if (Align == 0 && Ty) Align = TD->getABITypeAlignment(Ty);
    411 
    412     if (Align != 0) {
    413       unsigned BitWidth = TD->getTypeSizeInBits(Ptr->getType());
    414       APInt Mask = APInt::getAllOnesValue(BitWidth),
    415                    KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
    416       ComputeMaskedBits(Ptr, Mask, KnownZero, KnownOne, TD);
    417       Assert1(!(KnownOne & APInt::getLowBitsSet(BitWidth, Log2_32(Align))),
    418               "Undefined behavior: Memory reference address is misaligned", &I);
    419     }
    420   }
    421 }
    422 
    423 void Lint::visitLoadInst(LoadInst &I) {
    424   visitMemoryReference(I, I.getPointerOperand(),
    425                        AA->getTypeStoreSize(I.getType()), I.getAlignment(),
    426                        I.getType(), MemRef::Read);
    427 }
    428 
    429 void Lint::visitStoreInst(StoreInst &I) {
    430   visitMemoryReference(I, I.getPointerOperand(),
    431                        AA->getTypeStoreSize(I.getOperand(0)->getType()),
    432                        I.getAlignment(),
    433                        I.getOperand(0)->getType(), MemRef::Write);
    434 }
    435 
    436 void Lint::visitXor(BinaryOperator &I) {
    437   Assert1(!isa<UndefValue>(I.getOperand(0)) ||
    438           !isa<UndefValue>(I.getOperand(1)),
    439           "Undefined result: xor(undef, undef)", &I);
    440 }
    441 
    442 void Lint::visitSub(BinaryOperator &I) {
    443   Assert1(!isa<UndefValue>(I.getOperand(0)) ||
    444           !isa<UndefValue>(I.getOperand(1)),
    445           "Undefined result: sub(undef, undef)", &I);
    446 }
    447 
    448 void Lint::visitLShr(BinaryOperator &I) {
    449   if (ConstantInt *CI =
    450         dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
    451     Assert1(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
    452             "Undefined result: Shift count out of range", &I);
    453 }
    454 
    455 void Lint::visitAShr(BinaryOperator &I) {
    456   if (ConstantInt *CI =
    457         dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
    458     Assert1(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
    459             "Undefined result: Shift count out of range", &I);
    460 }
    461 
    462 void Lint::visitShl(BinaryOperator &I) {
    463   if (ConstantInt *CI =
    464         dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
    465     Assert1(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
    466             "Undefined result: Shift count out of range", &I);
    467 }
    468 
    469 static bool isZero(Value *V, TargetData *TD) {
    470   // Assume undef could be zero.
    471   if (isa<UndefValue>(V)) return true;
    472 
    473   unsigned BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
    474   APInt Mask = APInt::getAllOnesValue(BitWidth),
    475                KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
    476   ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD);
    477   return KnownZero.isAllOnesValue();
    478 }
    479 
    480 void Lint::visitSDiv(BinaryOperator &I) {
    481   Assert1(!isZero(I.getOperand(1), TD),
    482           "Undefined behavior: Division by zero", &I);
    483 }
    484 
    485 void Lint::visitUDiv(BinaryOperator &I) {
    486   Assert1(!isZero(I.getOperand(1), TD),
    487           "Undefined behavior: Division by zero", &I);
    488 }
    489 
    490 void Lint::visitSRem(BinaryOperator &I) {
    491   Assert1(!isZero(I.getOperand(1), TD),
    492           "Undefined behavior: Division by zero", &I);
    493 }
    494 
    495 void Lint::visitURem(BinaryOperator &I) {
    496   Assert1(!isZero(I.getOperand(1), TD),
    497           "Undefined behavior: Division by zero", &I);
    498 }
    499 
    500 void Lint::visitAllocaInst(AllocaInst &I) {
    501   if (isa<ConstantInt>(I.getArraySize()))
    502     // This isn't undefined behavior, it's just an obvious pessimization.
    503     Assert1(&I.getParent()->getParent()->getEntryBlock() == I.getParent(),
    504             "Pessimization: Static alloca outside of entry block", &I);
    505 
    506   // TODO: Check for an unusual size (MSB set?)
    507 }
    508 
    509 void Lint::visitVAArgInst(VAArgInst &I) {
    510   visitMemoryReference(I, I.getOperand(0), AliasAnalysis::UnknownSize, 0, 0,
    511                        MemRef::Read | MemRef::Write);
    512 }
    513 
    514 void Lint::visitIndirectBrInst(IndirectBrInst &I) {
    515   visitMemoryReference(I, I.getAddress(), AliasAnalysis::UnknownSize, 0, 0,
    516                        MemRef::Branchee);
    517 
    518   Assert1(I.getNumDestinations() != 0,
    519           "Undefined behavior: indirectbr with no destinations", &I);
    520 }
    521 
    522 void Lint::visitExtractElementInst(ExtractElementInst &I) {
    523   if (ConstantInt *CI =
    524         dyn_cast<ConstantInt>(findValue(I.getIndexOperand(),
    525                                         /*OffsetOk=*/false)))
    526     Assert1(CI->getValue().ult(I.getVectorOperandType()->getNumElements()),
    527             "Undefined result: extractelement index out of range", &I);
    528 }
    529 
    530 void Lint::visitInsertElementInst(InsertElementInst &I) {
    531   if (ConstantInt *CI =
    532         dyn_cast<ConstantInt>(findValue(I.getOperand(2),
    533                                         /*OffsetOk=*/false)))
    534     Assert1(CI->getValue().ult(I.getType()->getNumElements()),
    535             "Undefined result: insertelement index out of range", &I);
    536 }
    537 
    538 void Lint::visitUnreachableInst(UnreachableInst &I) {
    539   // This isn't undefined behavior, it's merely suspicious.
    540   Assert1(&I == I.getParent()->begin() ||
    541           prior(BasicBlock::iterator(&I))->mayHaveSideEffects(),
    542           "Unusual: unreachable immediately preceded by instruction without "
    543           "side effects", &I);
    544 }
    545 
    546 /// findValue - Look through bitcasts and simple memory reference patterns
    547 /// to identify an equivalent, but more informative, value.  If OffsetOk
    548 /// is true, look through getelementptrs with non-zero offsets too.
    549 ///
    550 /// Most analysis passes don't require this logic, because instcombine
    551 /// will simplify most of these kinds of things away. But it's a goal of
    552 /// this Lint pass to be useful even on non-optimized IR.
    553 Value *Lint::findValue(Value *V, bool OffsetOk) const {
    554   SmallPtrSet<Value *, 4> Visited;
    555   return findValueImpl(V, OffsetOk, Visited);
    556 }
    557 
    558 /// findValueImpl - Implementation helper for findValue.
    559 Value *Lint::findValueImpl(Value *V, bool OffsetOk,
    560                            SmallPtrSet<Value *, 4> &Visited) const {
    561   // Detect self-referential values.
    562   if (!Visited.insert(V))
    563     return UndefValue::get(V->getType());
    564 
    565   // TODO: Look through sext or zext cast, when the result is known to
    566   // be interpreted as signed or unsigned, respectively.
    567   // TODO: Look through eliminable cast pairs.
    568   // TODO: Look through calls with unique return values.
    569   // TODO: Look through vector insert/extract/shuffle.
    570   V = OffsetOk ? GetUnderlyingObject(V, TD) : V->stripPointerCasts();
    571   if (LoadInst *L = dyn_cast<LoadInst>(V)) {
    572     BasicBlock::iterator BBI = L;
    573     BasicBlock *BB = L->getParent();
    574     SmallPtrSet<BasicBlock *, 4> VisitedBlocks;
    575     for (;;) {
    576       if (!VisitedBlocks.insert(BB)) break;
    577       if (Value *U = FindAvailableLoadedValue(L->getPointerOperand(),
    578                                               BB, BBI, 6, AA))
    579         return findValueImpl(U, OffsetOk, Visited);
    580       if (BBI != BB->begin()) break;
    581       BB = BB->getUniquePredecessor();
    582       if (!BB) break;
    583       BBI = BB->end();
    584     }
    585   } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
    586     if (Value *W = PN->hasConstantValue())
    587       if (W != V)
    588         return findValueImpl(W, OffsetOk, Visited);
    589   } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
    590     if (CI->isNoopCast(TD ? TD->getIntPtrType(V->getContext()) :
    591                             Type::getInt64Ty(V->getContext())))
    592       return findValueImpl(CI->getOperand(0), OffsetOk, Visited);
    593   } else if (ExtractValueInst *Ex = dyn_cast<ExtractValueInst>(V)) {
    594     if (Value *W = FindInsertedValue(Ex->getAggregateOperand(),
    595                                      Ex->getIndices()))
    596       if (W != V)
    597         return findValueImpl(W, OffsetOk, Visited);
    598   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
    599     // Same as above, but for ConstantExpr instead of Instruction.
    600     if (Instruction::isCast(CE->getOpcode())) {
    601       if (CastInst::isNoopCast(Instruction::CastOps(CE->getOpcode()),
    602                                CE->getOperand(0)->getType(),
    603                                CE->getType(),
    604                                TD ? TD->getIntPtrType(V->getContext()) :
    605                                     Type::getInt64Ty(V->getContext())))
    606         return findValueImpl(CE->getOperand(0), OffsetOk, Visited);
    607     } else if (CE->getOpcode() == Instruction::ExtractValue) {
    608       ArrayRef<unsigned> Indices = CE->getIndices();
    609       if (Value *W = FindInsertedValue(CE->getOperand(0), Indices))
    610         if (W != V)
    611           return findValueImpl(W, OffsetOk, Visited);
    612     }
    613   }
    614 
    615   // As a last resort, try SimplifyInstruction or constant folding.
    616   if (Instruction *Inst = dyn_cast<Instruction>(V)) {
    617     if (Value *W = SimplifyInstruction(Inst, TD, DT))
    618       return findValueImpl(W, OffsetOk, Visited);
    619   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
    620     if (Value *W = ConstantFoldConstantExpression(CE, TD))
    621       if (W != V)
    622         return findValueImpl(W, OffsetOk, Visited);
    623   }
    624 
    625   return V;
    626 }
    627 
    628 //===----------------------------------------------------------------------===//
    629 //  Implement the public interfaces to this file...
    630 //===----------------------------------------------------------------------===//
    631 
    632 FunctionPass *llvm::createLintPass() {
    633   return new Lint();
    634 }
    635 
    636 /// lintFunction - Check a function for errors, printing messages on stderr.
    637 ///
    638 void llvm::lintFunction(const Function &f) {
    639   Function &F = const_cast<Function&>(f);
    640   assert(!F.isDeclaration() && "Cannot lint external functions");
    641 
    642   FunctionPassManager FPM(F.getParent());
    643   Lint *V = new Lint();
    644   FPM.add(V);
    645   FPM.run(F);
    646 }
    647 
    648 /// lintModule - Check a module for errors, printing messages on stderr.
    649 ///
    650 void llvm::lintModule(const Module &M) {
    651   PassManager PM;
    652   Lint *V = new Lint();
    653   PM.add(V);
    654   PM.run(const_cast<Module&>(M));
    655 }
    656