Home | History | Annotate | Download | only in Analysis
      1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation  --*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements an analysis that determines, for a given memory
     11 // operation, what preceding memory operations it depends on.  It builds on
     12 // alias analysis information, and tries to provide a lazy, caching interface to
     13 // a common kind of alias information query.
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #define DEBUG_TYPE "memdep"
     18 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
     19 #include "llvm/Analysis/ValueTracking.h"
     20 #include "llvm/Instructions.h"
     21 #include "llvm/IntrinsicInst.h"
     22 #include "llvm/Function.h"
     23 #include "llvm/LLVMContext.h"
     24 #include "llvm/Analysis/AliasAnalysis.h"
     25 #include "llvm/Analysis/Dominators.h"
     26 #include "llvm/Analysis/InstructionSimplify.h"
     27 #include "llvm/Analysis/MemoryBuiltins.h"
     28 #include "llvm/Analysis/PHITransAddr.h"
     29 #include "llvm/Analysis/ValueTracking.h"
     30 #include "llvm/ADT/Statistic.h"
     31 #include "llvm/ADT/STLExtras.h"
     32 #include "llvm/Support/PredIteratorCache.h"
     33 #include "llvm/Support/Debug.h"
     34 #include "llvm/Target/TargetData.h"
     35 using namespace llvm;
     36 
     37 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
     38 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
     39 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
     40 
     41 STATISTIC(NumCacheNonLocalPtr,
     42           "Number of fully cached non-local ptr responses");
     43 STATISTIC(NumCacheDirtyNonLocalPtr,
     44           "Number of cached, but dirty, non-local ptr responses");
     45 STATISTIC(NumUncacheNonLocalPtr,
     46           "Number of uncached non-local ptr responses");
     47 STATISTIC(NumCacheCompleteNonLocalPtr,
     48           "Number of block queries that were completely cached");
     49 
     50 // Limit for the number of instructions to scan in a block.
     51 // FIXME: Figure out what a sane value is for this.
     52 //        (500 is relatively insane.)
     53 static const int BlockScanLimit = 500;
     54 
     55 char MemoryDependenceAnalysis::ID = 0;
     56 
     57 // Register this pass...
     58 INITIALIZE_PASS_BEGIN(MemoryDependenceAnalysis, "memdep",
     59                 "Memory Dependence Analysis", false, true)
     60 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
     61 INITIALIZE_PASS_END(MemoryDependenceAnalysis, "memdep",
     62                       "Memory Dependence Analysis", false, true)
     63 
     64 MemoryDependenceAnalysis::MemoryDependenceAnalysis()
     65 : FunctionPass(ID), PredCache(0) {
     66   initializeMemoryDependenceAnalysisPass(*PassRegistry::getPassRegistry());
     67 }
     68 MemoryDependenceAnalysis::~MemoryDependenceAnalysis() {
     69 }
     70 
     71 /// Clean up memory in between runs
     72 void MemoryDependenceAnalysis::releaseMemory() {
     73   LocalDeps.clear();
     74   NonLocalDeps.clear();
     75   NonLocalPointerDeps.clear();
     76   ReverseLocalDeps.clear();
     77   ReverseNonLocalDeps.clear();
     78   ReverseNonLocalPtrDeps.clear();
     79   PredCache->clear();
     80 }
     81 
     82 
     83 
     84 /// getAnalysisUsage - Does not modify anything.  It uses Alias Analysis.
     85 ///
     86 void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
     87   AU.setPreservesAll();
     88   AU.addRequiredTransitive<AliasAnalysis>();
     89 }
     90 
     91 bool MemoryDependenceAnalysis::runOnFunction(Function &) {
     92   AA = &getAnalysis<AliasAnalysis>();
     93   TD = getAnalysisIfAvailable<TargetData>();
     94   if (PredCache == 0)
     95     PredCache.reset(new PredIteratorCache());
     96   return false;
     97 }
     98 
     99 /// RemoveFromReverseMap - This is a helper function that removes Val from
    100 /// 'Inst's set in ReverseMap.  If the set becomes empty, remove Inst's entry.
    101 template <typename KeyTy>
    102 static void RemoveFromReverseMap(DenseMap<Instruction*,
    103                                  SmallPtrSet<KeyTy, 4> > &ReverseMap,
    104                                  Instruction *Inst, KeyTy Val) {
    105   typename DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> >::iterator
    106   InstIt = ReverseMap.find(Inst);
    107   assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
    108   bool Found = InstIt->second.erase(Val);
    109   assert(Found && "Invalid reverse map!"); (void)Found;
    110   if (InstIt->second.empty())
    111     ReverseMap.erase(InstIt);
    112 }
    113 
    114 /// GetLocation - If the given instruction references a specific memory
    115 /// location, fill in Loc with the details, otherwise set Loc.Ptr to null.
    116 /// Return a ModRefInfo value describing the general behavior of the
    117 /// instruction.
    118 static
    119 AliasAnalysis::ModRefResult GetLocation(const Instruction *Inst,
    120                                         AliasAnalysis::Location &Loc,
    121                                         AliasAnalysis *AA) {
    122   if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
    123     if (LI->isUnordered()) {
    124       Loc = AA->getLocation(LI);
    125       return AliasAnalysis::Ref;
    126     } else if (LI->getOrdering() == Monotonic) {
    127       Loc = AA->getLocation(LI);
    128       return AliasAnalysis::ModRef;
    129     }
    130     Loc = AliasAnalysis::Location();
    131     return AliasAnalysis::ModRef;
    132   }
    133 
    134   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
    135     if (SI->isUnordered()) {
    136       Loc = AA->getLocation(SI);
    137       return AliasAnalysis::Mod;
    138     } else if (SI->getOrdering() == Monotonic) {
    139       Loc = AA->getLocation(SI);
    140       return AliasAnalysis::ModRef;
    141     }
    142     Loc = AliasAnalysis::Location();
    143     return AliasAnalysis::ModRef;
    144   }
    145 
    146   if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
    147     Loc = AA->getLocation(V);
    148     return AliasAnalysis::ModRef;
    149   }
    150 
    151   if (const CallInst *CI = isFreeCall(Inst)) {
    152     // calls to free() deallocate the entire structure
    153     Loc = AliasAnalysis::Location(CI->getArgOperand(0));
    154     return AliasAnalysis::Mod;
    155   }
    156 
    157   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
    158     switch (II->getIntrinsicID()) {
    159     case Intrinsic::lifetime_start:
    160     case Intrinsic::lifetime_end:
    161     case Intrinsic::invariant_start:
    162       Loc = AliasAnalysis::Location(II->getArgOperand(1),
    163                                     cast<ConstantInt>(II->getArgOperand(0))
    164                                       ->getZExtValue(),
    165                                     II->getMetadata(LLVMContext::MD_tbaa));
    166       // These intrinsics don't really modify the memory, but returning Mod
    167       // will allow them to be handled conservatively.
    168       return AliasAnalysis::Mod;
    169     case Intrinsic::invariant_end:
    170       Loc = AliasAnalysis::Location(II->getArgOperand(2),
    171                                     cast<ConstantInt>(II->getArgOperand(1))
    172                                       ->getZExtValue(),
    173                                     II->getMetadata(LLVMContext::MD_tbaa));
    174       // These intrinsics don't really modify the memory, but returning Mod
    175       // will allow them to be handled conservatively.
    176       return AliasAnalysis::Mod;
    177     default:
    178       break;
    179     }
    180 
    181   // Otherwise, just do the coarse-grained thing that always works.
    182   if (Inst->mayWriteToMemory())
    183     return AliasAnalysis::ModRef;
    184   if (Inst->mayReadFromMemory())
    185     return AliasAnalysis::Ref;
    186   return AliasAnalysis::NoModRef;
    187 }
    188 
    189 /// getCallSiteDependencyFrom - Private helper for finding the local
    190 /// dependencies of a call site.
    191 MemDepResult MemoryDependenceAnalysis::
    192 getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall,
    193                           BasicBlock::iterator ScanIt, BasicBlock *BB) {
    194   unsigned Limit = BlockScanLimit;
    195 
    196   // Walk backwards through the block, looking for dependencies
    197   while (ScanIt != BB->begin()) {
    198     // Limit the amount of scanning we do so we don't end up with quadratic
    199     // running time on extreme testcases.
    200     --Limit;
    201     if (!Limit)
    202       return MemDepResult::getUnknown();
    203 
    204     Instruction *Inst = --ScanIt;
    205 
    206     // If this inst is a memory op, get the pointer it accessed
    207     AliasAnalysis::Location Loc;
    208     AliasAnalysis::ModRefResult MR = GetLocation(Inst, Loc, AA);
    209     if (Loc.Ptr) {
    210       // A simple instruction.
    211       if (AA->getModRefInfo(CS, Loc) != AliasAnalysis::NoModRef)
    212         return MemDepResult::getClobber(Inst);
    213       continue;
    214     }
    215 
    216     if (CallSite InstCS = cast<Value>(Inst)) {
    217       // Debug intrinsics don't cause dependences.
    218       if (isa<DbgInfoIntrinsic>(Inst)) continue;
    219       // If these two calls do not interfere, look past it.
    220       switch (AA->getModRefInfo(CS, InstCS)) {
    221       case AliasAnalysis::NoModRef:
    222         // If the two calls are the same, return InstCS as a Def, so that
    223         // CS can be found redundant and eliminated.
    224         if (isReadOnlyCall && !(MR & AliasAnalysis::Mod) &&
    225             CS.getInstruction()->isIdenticalToWhenDefined(Inst))
    226           return MemDepResult::getDef(Inst);
    227 
    228         // Otherwise if the two calls don't interact (e.g. InstCS is readnone)
    229         // keep scanning.
    230         break;
    231       default:
    232         return MemDepResult::getClobber(Inst);
    233       }
    234     }
    235   }
    236 
    237   // No dependence found.  If this is the entry block of the function, it is
    238   // unknown, otherwise it is non-local.
    239   if (BB != &BB->getParent()->getEntryBlock())
    240     return MemDepResult::getNonLocal();
    241   return MemDepResult::getNonFuncLocal();
    242 }
    243 
    244 /// isLoadLoadClobberIfExtendedToFullWidth - Return true if LI is a load that
    245 /// would fully overlap MemLoc if done as a wider legal integer load.
    246 ///
    247 /// MemLocBase, MemLocOffset are lazily computed here the first time the
    248 /// base/offs of memloc is needed.
    249 static bool
    250 isLoadLoadClobberIfExtendedToFullWidth(const AliasAnalysis::Location &MemLoc,
    251                                        const Value *&MemLocBase,
    252                                        int64_t &MemLocOffs,
    253                                        const LoadInst *LI,
    254                                        const TargetData *TD) {
    255   // If we have no target data, we can't do this.
    256   if (TD == 0) return false;
    257 
    258   // If we haven't already computed the base/offset of MemLoc, do so now.
    259   if (MemLocBase == 0)
    260     MemLocBase = GetPointerBaseWithConstantOffset(MemLoc.Ptr, MemLocOffs, *TD);
    261 
    262   unsigned Size = MemoryDependenceAnalysis::
    263     getLoadLoadClobberFullWidthSize(MemLocBase, MemLocOffs, MemLoc.Size,
    264                                     LI, *TD);
    265   return Size != 0;
    266 }
    267 
    268 /// getLoadLoadClobberFullWidthSize - This is a little bit of analysis that
    269 /// looks at a memory location for a load (specified by MemLocBase, Offs,
    270 /// and Size) and compares it against a load.  If the specified load could
    271 /// be safely widened to a larger integer load that is 1) still efficient,
    272 /// 2) safe for the target, and 3) would provide the specified memory
    273 /// location value, then this function returns the size in bytes of the
    274 /// load width to use.  If not, this returns zero.
    275 unsigned MemoryDependenceAnalysis::
    276 getLoadLoadClobberFullWidthSize(const Value *MemLocBase, int64_t MemLocOffs,
    277                                 unsigned MemLocSize, const LoadInst *LI,
    278                                 const TargetData &TD) {
    279   // We can only extend simple integer loads.
    280   if (!isa<IntegerType>(LI->getType()) || !LI->isSimple()) return 0;
    281 
    282   // Get the base of this load.
    283   int64_t LIOffs = 0;
    284   const Value *LIBase =
    285     GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, TD);
    286 
    287   // If the two pointers are not based on the same pointer, we can't tell that
    288   // they are related.
    289   if (LIBase != MemLocBase) return 0;
    290 
    291   // Okay, the two values are based on the same pointer, but returned as
    292   // no-alias.  This happens when we have things like two byte loads at "P+1"
    293   // and "P+3".  Check to see if increasing the size of the "LI" load up to its
    294   // alignment (or the largest native integer type) will allow us to load all
    295   // the bits required by MemLoc.
    296 
    297   // If MemLoc is before LI, then no widening of LI will help us out.
    298   if (MemLocOffs < LIOffs) return 0;
    299 
    300   // Get the alignment of the load in bytes.  We assume that it is safe to load
    301   // any legal integer up to this size without a problem.  For example, if we're
    302   // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can
    303   // widen it up to an i32 load.  If it is known 2-byte aligned, we can widen it
    304   // to i16.
    305   unsigned LoadAlign = LI->getAlignment();
    306 
    307   int64_t MemLocEnd = MemLocOffs+MemLocSize;
    308 
    309   // If no amount of rounding up will let MemLoc fit into LI, then bail out.
    310   if (LIOffs+LoadAlign < MemLocEnd) return 0;
    311 
    312   // This is the size of the load to try.  Start with the next larger power of
    313   // two.
    314   unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits()/8U;
    315   NewLoadByteSize = NextPowerOf2(NewLoadByteSize);
    316 
    317   while (1) {
    318     // If this load size is bigger than our known alignment or would not fit
    319     // into a native integer register, then we fail.
    320     if (NewLoadByteSize > LoadAlign ||
    321         !TD.fitsInLegalInteger(NewLoadByteSize*8))
    322       return 0;
    323 
    324     // If a load of this width would include all of MemLoc, then we succeed.
    325     if (LIOffs+NewLoadByteSize >= MemLocEnd)
    326       return NewLoadByteSize;
    327 
    328     NewLoadByteSize <<= 1;
    329   }
    330 
    331   return 0;
    332 }
    333 
    334 /// getPointerDependencyFrom - Return the instruction on which a memory
    335 /// location depends.  If isLoad is true, this routine ignores may-aliases with
    336 /// read-only operations.  If isLoad is false, this routine ignores may-aliases
    337 /// with reads from read-only locations.
    338 MemDepResult MemoryDependenceAnalysis::
    339 getPointerDependencyFrom(const AliasAnalysis::Location &MemLoc, bool isLoad,
    340                          BasicBlock::iterator ScanIt, BasicBlock *BB) {
    341 
    342   const Value *MemLocBase = 0;
    343   int64_t MemLocOffset = 0;
    344 
    345   unsigned Limit = BlockScanLimit;
    346 
    347   // Walk backwards through the basic block, looking for dependencies.
    348   while (ScanIt != BB->begin()) {
    349     // Limit the amount of scanning we do so we don't end up with quadratic
    350     // running time on extreme testcases.
    351     --Limit;
    352     if (!Limit)
    353       return MemDepResult::getUnknown();
    354 
    355     Instruction *Inst = --ScanIt;
    356 
    357     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
    358       // Debug intrinsics don't (and can't) cause dependences.
    359       if (isa<DbgInfoIntrinsic>(II)) continue;
    360 
    361       // If we reach a lifetime begin or end marker, then the query ends here
    362       // because the value is undefined.
    363       if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
    364         // FIXME: This only considers queries directly on the invariant-tagged
    365         // pointer, not on query pointers that are indexed off of them.  It'd
    366         // be nice to handle that at some point (the right approach is to use
    367         // GetPointerBaseWithConstantOffset).
    368         if (AA->isMustAlias(AliasAnalysis::Location(II->getArgOperand(1)),
    369                             MemLoc))
    370           return MemDepResult::getDef(II);
    371         continue;
    372       }
    373     }
    374 
    375     // Values depend on loads if the pointers are must aliased.  This means that
    376     // a load depends on another must aliased load from the same value.
    377     if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
    378       // Atomic loads have complications involved.
    379       // FIXME: This is overly conservative.
    380       if (!LI->isUnordered())
    381         return MemDepResult::getClobber(LI);
    382 
    383       AliasAnalysis::Location LoadLoc = AA->getLocation(LI);
    384 
    385       // If we found a pointer, check if it could be the same as our pointer.
    386       AliasAnalysis::AliasResult R = AA->alias(LoadLoc, MemLoc);
    387 
    388       if (isLoad) {
    389         if (R == AliasAnalysis::NoAlias) {
    390           // If this is an over-aligned integer load (for example,
    391           // "load i8* %P, align 4") see if it would obviously overlap with the
    392           // queried location if widened to a larger load (e.g. if the queried
    393           // location is 1 byte at P+1).  If so, return it as a load/load
    394           // clobber result, allowing the client to decide to widen the load if
    395           // it wants to.
    396           if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType()))
    397             if (LI->getAlignment()*8 > ITy->getPrimitiveSizeInBits() &&
    398                 isLoadLoadClobberIfExtendedToFullWidth(MemLoc, MemLocBase,
    399                                                        MemLocOffset, LI, TD))
    400               return MemDepResult::getClobber(Inst);
    401 
    402           continue;
    403         }
    404 
    405         // Must aliased loads are defs of each other.
    406         if (R == AliasAnalysis::MustAlias)
    407           return MemDepResult::getDef(Inst);
    408 
    409 #if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads
    410       // in terms of clobbering loads, but since it does this by looking
    411       // at the clobbering load directly, it doesn't know about any
    412       // phi translation that may have happened along the way.
    413 
    414         // If we have a partial alias, then return this as a clobber for the
    415         // client to handle.
    416         if (R == AliasAnalysis::PartialAlias)
    417           return MemDepResult::getClobber(Inst);
    418 #endif
    419 
    420         // Random may-alias loads don't depend on each other without a
    421         // dependence.
    422         continue;
    423       }
    424 
    425       // Stores don't depend on other no-aliased accesses.
    426       if (R == AliasAnalysis::NoAlias)
    427         continue;
    428 
    429       // Stores don't alias loads from read-only memory.
    430       if (AA->pointsToConstantMemory(LoadLoc))
    431         continue;
    432 
    433       // Stores depend on may/must aliased loads.
    434       return MemDepResult::getDef(Inst);
    435     }
    436 
    437     if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
    438       // Atomic stores have complications involved.
    439       // FIXME: This is overly conservative.
    440       if (!SI->isUnordered())
    441         return MemDepResult::getClobber(SI);
    442 
    443       // If alias analysis can tell that this store is guaranteed to not modify
    444       // the query pointer, ignore it.  Use getModRefInfo to handle cases where
    445       // the query pointer points to constant memory etc.
    446       if (AA->getModRefInfo(SI, MemLoc) == AliasAnalysis::NoModRef)
    447         continue;
    448 
    449       // Ok, this store might clobber the query pointer.  Check to see if it is
    450       // a must alias: in this case, we want to return this as a def.
    451       AliasAnalysis::Location StoreLoc = AA->getLocation(SI);
    452 
    453       // If we found a pointer, check if it could be the same as our pointer.
    454       AliasAnalysis::AliasResult R = AA->alias(StoreLoc, MemLoc);
    455 
    456       if (R == AliasAnalysis::NoAlias)
    457         continue;
    458       if (R == AliasAnalysis::MustAlias)
    459         return MemDepResult::getDef(Inst);
    460       return MemDepResult::getClobber(Inst);
    461     }
    462 
    463     // If this is an allocation, and if we know that the accessed pointer is to
    464     // the allocation, return Def.  This means that there is no dependence and
    465     // the access can be optimized based on that.  For example, a load could
    466     // turn into undef.
    467     // Note: Only determine this to be a malloc if Inst is the malloc call, not
    468     // a subsequent bitcast of the malloc call result.  There can be stores to
    469     // the malloced memory between the malloc call and its bitcast uses, and we
    470     // need to continue scanning until the malloc call.
    471     if (isa<AllocaInst>(Inst) ||
    472         (isa<CallInst>(Inst) && extractMallocCall(Inst))) {
    473       const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, TD);
    474 
    475       if (AccessPtr == Inst || AA->isMustAlias(Inst, AccessPtr))
    476         return MemDepResult::getDef(Inst);
    477       continue;
    478     }
    479 
    480     // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
    481     switch (AA->getModRefInfo(Inst, MemLoc)) {
    482     case AliasAnalysis::NoModRef:
    483       // If the call has no effect on the queried pointer, just ignore it.
    484       continue;
    485     case AliasAnalysis::Mod:
    486       return MemDepResult::getClobber(Inst);
    487     case AliasAnalysis::Ref:
    488       // If the call is known to never store to the pointer, and if this is a
    489       // load query, we can safely ignore it (scan past it).
    490       if (isLoad)
    491         continue;
    492     default:
    493       // Otherwise, there is a potential dependence.  Return a clobber.
    494       return MemDepResult::getClobber(Inst);
    495     }
    496   }
    497 
    498   // No dependence found.  If this is the entry block of the function, it is
    499   // unknown, otherwise it is non-local.
    500   if (BB != &BB->getParent()->getEntryBlock())
    501     return MemDepResult::getNonLocal();
    502   return MemDepResult::getNonFuncLocal();
    503 }
    504 
    505 /// getDependency - Return the instruction on which a memory operation
    506 /// depends.
    507 MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) {
    508   Instruction *ScanPos = QueryInst;
    509 
    510   // Check for a cached result
    511   MemDepResult &LocalCache = LocalDeps[QueryInst];
    512 
    513   // If the cached entry is non-dirty, just return it.  Note that this depends
    514   // on MemDepResult's default constructing to 'dirty'.
    515   if (!LocalCache.isDirty())
    516     return LocalCache;
    517 
    518   // Otherwise, if we have a dirty entry, we know we can start the scan at that
    519   // instruction, which may save us some work.
    520   if (Instruction *Inst = LocalCache.getInst()) {
    521     ScanPos = Inst;
    522 
    523     RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
    524   }
    525 
    526   BasicBlock *QueryParent = QueryInst->getParent();
    527 
    528   // Do the scan.
    529   if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
    530     // No dependence found.  If this is the entry block of the function, it is
    531     // unknown, otherwise it is non-local.
    532     if (QueryParent != &QueryParent->getParent()->getEntryBlock())
    533       LocalCache = MemDepResult::getNonLocal();
    534     else
    535       LocalCache = MemDepResult::getNonFuncLocal();
    536   } else {
    537     AliasAnalysis::Location MemLoc;
    538     AliasAnalysis::ModRefResult MR = GetLocation(QueryInst, MemLoc, AA);
    539     if (MemLoc.Ptr) {
    540       // If we can do a pointer scan, make it happen.
    541       bool isLoad = !(MR & AliasAnalysis::Mod);
    542       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(QueryInst))
    543         isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start;
    544 
    545       LocalCache = getPointerDependencyFrom(MemLoc, isLoad, ScanPos,
    546                                             QueryParent);
    547     } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) {
    548       CallSite QueryCS(QueryInst);
    549       bool isReadOnly = AA->onlyReadsMemory(QueryCS);
    550       LocalCache = getCallSiteDependencyFrom(QueryCS, isReadOnly, ScanPos,
    551                                              QueryParent);
    552     } else
    553       // Non-memory instruction.
    554       LocalCache = MemDepResult::getUnknown();
    555   }
    556 
    557   // Remember the result!
    558   if (Instruction *I = LocalCache.getInst())
    559     ReverseLocalDeps[I].insert(QueryInst);
    560 
    561   return LocalCache;
    562 }
    563 
    564 #ifndef NDEBUG
    565 /// AssertSorted - This method is used when -debug is specified to verify that
    566 /// cache arrays are properly kept sorted.
    567 static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
    568                          int Count = -1) {
    569   if (Count == -1) Count = Cache.size();
    570   if (Count == 0) return;
    571 
    572   for (unsigned i = 1; i != unsigned(Count); ++i)
    573     assert(!(Cache[i] < Cache[i-1]) && "Cache isn't sorted!");
    574 }
    575 #endif
    576 
    577 /// getNonLocalCallDependency - Perform a full dependency query for the
    578 /// specified call, returning the set of blocks that the value is
    579 /// potentially live across.  The returned set of results will include a
    580 /// "NonLocal" result for all blocks where the value is live across.
    581 ///
    582 /// This method assumes the instruction returns a "NonLocal" dependency
    583 /// within its own block.
    584 ///
    585 /// This returns a reference to an internal data structure that may be
    586 /// invalidated on the next non-local query or when an instruction is
    587 /// removed.  Clients must copy this data if they want it around longer than
    588 /// that.
    589 const MemoryDependenceAnalysis::NonLocalDepInfo &
    590 MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) {
    591   assert(getDependency(QueryCS.getInstruction()).isNonLocal() &&
    592  "getNonLocalCallDependency should only be used on calls with non-local deps!");
    593   PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()];
    594   NonLocalDepInfo &Cache = CacheP.first;
    595 
    596   /// DirtyBlocks - This is the set of blocks that need to be recomputed.  In
    597   /// the cached case, this can happen due to instructions being deleted etc. In
    598   /// the uncached case, this starts out as the set of predecessors we care
    599   /// about.
    600   SmallVector<BasicBlock*, 32> DirtyBlocks;
    601 
    602   if (!Cache.empty()) {
    603     // Okay, we have a cache entry.  If we know it is not dirty, just return it
    604     // with no computation.
    605     if (!CacheP.second) {
    606       ++NumCacheNonLocal;
    607       return Cache;
    608     }
    609 
    610     // If we already have a partially computed set of results, scan them to
    611     // determine what is dirty, seeding our initial DirtyBlocks worklist.
    612     for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end();
    613        I != E; ++I)
    614       if (I->getResult().isDirty())
    615         DirtyBlocks.push_back(I->getBB());
    616 
    617     // Sort the cache so that we can do fast binary search lookups below.
    618     std::sort(Cache.begin(), Cache.end());
    619 
    620     ++NumCacheDirtyNonLocal;
    621     //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
    622     //     << Cache.size() << " cached: " << *QueryInst;
    623   } else {
    624     // Seed DirtyBlocks with each of the preds of QueryInst's block.
    625     BasicBlock *QueryBB = QueryCS.getInstruction()->getParent();
    626     for (BasicBlock **PI = PredCache->GetPreds(QueryBB); *PI; ++PI)
    627       DirtyBlocks.push_back(*PI);
    628     ++NumUncacheNonLocal;
    629   }
    630 
    631   // isReadonlyCall - If this is a read-only call, we can be more aggressive.
    632   bool isReadonlyCall = AA->onlyReadsMemory(QueryCS);
    633 
    634   SmallPtrSet<BasicBlock*, 64> Visited;
    635 
    636   unsigned NumSortedEntries = Cache.size();
    637   DEBUG(AssertSorted(Cache));
    638 
    639   // Iterate while we still have blocks to update.
    640   while (!DirtyBlocks.empty()) {
    641     BasicBlock *DirtyBB = DirtyBlocks.back();
    642     DirtyBlocks.pop_back();
    643 
    644     // Already processed this block?
    645     if (!Visited.insert(DirtyBB))
    646       continue;
    647 
    648     // Do a binary search to see if we already have an entry for this block in
    649     // the cache set.  If so, find it.
    650     DEBUG(AssertSorted(Cache, NumSortedEntries));
    651     NonLocalDepInfo::iterator Entry =
    652       std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries,
    653                        NonLocalDepEntry(DirtyBB));
    654     if (Entry != Cache.begin() && prior(Entry)->getBB() == DirtyBB)
    655       --Entry;
    656 
    657     NonLocalDepEntry *ExistingResult = 0;
    658     if (Entry != Cache.begin()+NumSortedEntries &&
    659         Entry->getBB() == DirtyBB) {
    660       // If we already have an entry, and if it isn't already dirty, the block
    661       // is done.
    662       if (!Entry->getResult().isDirty())
    663         continue;
    664 
    665       // Otherwise, remember this slot so we can update the value.
    666       ExistingResult = &*Entry;
    667     }
    668 
    669     // If the dirty entry has a pointer, start scanning from it so we don't have
    670     // to rescan the entire block.
    671     BasicBlock::iterator ScanPos = DirtyBB->end();
    672     if (ExistingResult) {
    673       if (Instruction *Inst = ExistingResult->getResult().getInst()) {
    674         ScanPos = Inst;
    675         // We're removing QueryInst's use of Inst.
    676         RemoveFromReverseMap(ReverseNonLocalDeps, Inst,
    677                              QueryCS.getInstruction());
    678       }
    679     }
    680 
    681     // Find out if this block has a local dependency for QueryInst.
    682     MemDepResult Dep;
    683 
    684     if (ScanPos != DirtyBB->begin()) {
    685       Dep = getCallSiteDependencyFrom(QueryCS, isReadonlyCall,ScanPos, DirtyBB);
    686     } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
    687       // No dependence found.  If this is the entry block of the function, it is
    688       // a clobber, otherwise it is unknown.
    689       Dep = MemDepResult::getNonLocal();
    690     } else {
    691       Dep = MemDepResult::getNonFuncLocal();
    692     }
    693 
    694     // If we had a dirty entry for the block, update it.  Otherwise, just add
    695     // a new entry.
    696     if (ExistingResult)
    697       ExistingResult->setResult(Dep);
    698     else
    699       Cache.push_back(NonLocalDepEntry(DirtyBB, Dep));
    700 
    701     // If the block has a dependency (i.e. it isn't completely transparent to
    702     // the value), remember the association!
    703     if (!Dep.isNonLocal()) {
    704       // Keep the ReverseNonLocalDeps map up to date so we can efficiently
    705       // update this when we remove instructions.
    706       if (Instruction *Inst = Dep.getInst())
    707         ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction());
    708     } else {
    709 
    710       // If the block *is* completely transparent to the load, we need to check
    711       // the predecessors of this block.  Add them to our worklist.
    712       for (BasicBlock **PI = PredCache->GetPreds(DirtyBB); *PI; ++PI)
    713         DirtyBlocks.push_back(*PI);
    714     }
    715   }
    716 
    717   return Cache;
    718 }
    719 
    720 /// getNonLocalPointerDependency - Perform a full dependency query for an
    721 /// access to the specified (non-volatile) memory location, returning the
    722 /// set of instructions that either define or clobber the value.
    723 ///
    724 /// This method assumes the pointer has a "NonLocal" dependency within its
    725 /// own block.
    726 ///
    727 void MemoryDependenceAnalysis::
    728 getNonLocalPointerDependency(const AliasAnalysis::Location &Loc, bool isLoad,
    729                              BasicBlock *FromBB,
    730                              SmallVectorImpl<NonLocalDepResult> &Result) {
    731   assert(Loc.Ptr->getType()->isPointerTy() &&
    732          "Can't get pointer deps of a non-pointer!");
    733   Result.clear();
    734 
    735   PHITransAddr Address(const_cast<Value *>(Loc.Ptr), TD);
    736 
    737   // This is the set of blocks we've inspected, and the pointer we consider in
    738   // each block.  Because of critical edges, we currently bail out if querying
    739   // a block with multiple different pointers.  This can happen during PHI
    740   // translation.
    741   DenseMap<BasicBlock*, Value*> Visited;
    742   if (!getNonLocalPointerDepFromBB(Address, Loc, isLoad, FromBB,
    743                                    Result, Visited, true))
    744     return;
    745   Result.clear();
    746   Result.push_back(NonLocalDepResult(FromBB,
    747                                      MemDepResult::getUnknown(),
    748                                      const_cast<Value *>(Loc.Ptr)));
    749 }
    750 
    751 /// GetNonLocalInfoForBlock - Compute the memdep value for BB with
    752 /// Pointer/PointeeSize using either cached information in Cache or by doing a
    753 /// lookup (which may use dirty cache info if available).  If we do a lookup,
    754 /// add the result to the cache.
    755 MemDepResult MemoryDependenceAnalysis::
    756 GetNonLocalInfoForBlock(const AliasAnalysis::Location &Loc,
    757                         bool isLoad, BasicBlock *BB,
    758                         NonLocalDepInfo *Cache, unsigned NumSortedEntries) {
    759 
    760   // Do a binary search to see if we already have an entry for this block in
    761   // the cache set.  If so, find it.
    762   NonLocalDepInfo::iterator Entry =
    763     std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries,
    764                      NonLocalDepEntry(BB));
    765   if (Entry != Cache->begin() && (Entry-1)->getBB() == BB)
    766     --Entry;
    767 
    768   NonLocalDepEntry *ExistingResult = 0;
    769   if (Entry != Cache->begin()+NumSortedEntries && Entry->getBB() == BB)
    770     ExistingResult = &*Entry;
    771 
    772   // If we have a cached entry, and it is non-dirty, use it as the value for
    773   // this dependency.
    774   if (ExistingResult && !ExistingResult->getResult().isDirty()) {
    775     ++NumCacheNonLocalPtr;
    776     return ExistingResult->getResult();
    777   }
    778 
    779   // Otherwise, we have to scan for the value.  If we have a dirty cache
    780   // entry, start scanning from its position, otherwise we scan from the end
    781   // of the block.
    782   BasicBlock::iterator ScanPos = BB->end();
    783   if (ExistingResult && ExistingResult->getResult().getInst()) {
    784     assert(ExistingResult->getResult().getInst()->getParent() == BB &&
    785            "Instruction invalidated?");
    786     ++NumCacheDirtyNonLocalPtr;
    787     ScanPos = ExistingResult->getResult().getInst();
    788 
    789     // Eliminating the dirty entry from 'Cache', so update the reverse info.
    790     ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
    791     RemoveFromReverseMap(ReverseNonLocalPtrDeps, ScanPos, CacheKey);
    792   } else {
    793     ++NumUncacheNonLocalPtr;
    794   }
    795 
    796   // Scan the block for the dependency.
    797   MemDepResult Dep = getPointerDependencyFrom(Loc, isLoad, ScanPos, BB);
    798 
    799   // If we had a dirty entry for the block, update it.  Otherwise, just add
    800   // a new entry.
    801   if (ExistingResult)
    802     ExistingResult->setResult(Dep);
    803   else
    804     Cache->push_back(NonLocalDepEntry(BB, Dep));
    805 
    806   // If the block has a dependency (i.e. it isn't completely transparent to
    807   // the value), remember the reverse association because we just added it
    808   // to Cache!
    809   if (!Dep.isDef() && !Dep.isClobber())
    810     return Dep;
    811 
    812   // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
    813   // update MemDep when we remove instructions.
    814   Instruction *Inst = Dep.getInst();
    815   assert(Inst && "Didn't depend on anything?");
    816   ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
    817   ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
    818   return Dep;
    819 }
    820 
    821 /// SortNonLocalDepInfoCache - Sort the a NonLocalDepInfo cache, given a certain
    822 /// number of elements in the array that are already properly ordered.  This is
    823 /// optimized for the case when only a few entries are added.
    824 static void
    825 SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
    826                          unsigned NumSortedEntries) {
    827   switch (Cache.size() - NumSortedEntries) {
    828   case 0:
    829     // done, no new entries.
    830     break;
    831   case 2: {
    832     // Two new entries, insert the last one into place.
    833     NonLocalDepEntry Val = Cache.back();
    834     Cache.pop_back();
    835     MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
    836       std::upper_bound(Cache.begin(), Cache.end()-1, Val);
    837     Cache.insert(Entry, Val);
    838     // FALL THROUGH.
    839   }
    840   case 1:
    841     // One new entry, Just insert the new value at the appropriate position.
    842     if (Cache.size() != 1) {
    843       NonLocalDepEntry Val = Cache.back();
    844       Cache.pop_back();
    845       MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
    846         std::upper_bound(Cache.begin(), Cache.end(), Val);
    847       Cache.insert(Entry, Val);
    848     }
    849     break;
    850   default:
    851     // Added many values, do a full scale sort.
    852     std::sort(Cache.begin(), Cache.end());
    853     break;
    854   }
    855 }
    856 
    857 /// getNonLocalPointerDepFromBB - Perform a dependency query based on
    858 /// pointer/pointeesize starting at the end of StartBB.  Add any clobber/def
    859 /// results to the results vector and keep track of which blocks are visited in
    860 /// 'Visited'.
    861 ///
    862 /// This has special behavior for the first block queries (when SkipFirstBlock
    863 /// is true).  In this special case, it ignores the contents of the specified
    864 /// block and starts returning dependence info for its predecessors.
    865 ///
    866 /// This function returns false on success, or true to indicate that it could
    867 /// not compute dependence information for some reason.  This should be treated
    868 /// as a clobber dependence on the first instruction in the predecessor block.
    869 bool MemoryDependenceAnalysis::
    870 getNonLocalPointerDepFromBB(const PHITransAddr &Pointer,
    871                             const AliasAnalysis::Location &Loc,
    872                             bool isLoad, BasicBlock *StartBB,
    873                             SmallVectorImpl<NonLocalDepResult> &Result,
    874                             DenseMap<BasicBlock*, Value*> &Visited,
    875                             bool SkipFirstBlock) {
    876 
    877   // Look up the cached info for Pointer.
    878   ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad);
    879 
    880   // Set up a temporary NLPI value. If the map doesn't yet have an entry for
    881   // CacheKey, this value will be inserted as the associated value. Otherwise,
    882   // it'll be ignored, and we'll have to check to see if the cached size and
    883   // tbaa tag are consistent with the current query.
    884   NonLocalPointerInfo InitialNLPI;
    885   InitialNLPI.Size = Loc.Size;
    886   InitialNLPI.TBAATag = Loc.TBAATag;
    887 
    888   // Get the NLPI for CacheKey, inserting one into the map if it doesn't
    889   // already have one.
    890   std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair =
    891     NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI));
    892   NonLocalPointerInfo *CacheInfo = &Pair.first->second;
    893 
    894   // If we already have a cache entry for this CacheKey, we may need to do some
    895   // work to reconcile the cache entry and the current query.
    896   if (!Pair.second) {
    897     if (CacheInfo->Size < Loc.Size) {
    898       // The query's Size is greater than the cached one. Throw out the
    899       // cached data and procede with the query at the greater size.
    900       CacheInfo->Pair = BBSkipFirstBlockPair();
    901       CacheInfo->Size = Loc.Size;
    902       for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(),
    903            DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI)
    904         if (Instruction *Inst = DI->getResult().getInst())
    905           RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
    906       CacheInfo->NonLocalDeps.clear();
    907     } else if (CacheInfo->Size > Loc.Size) {
    908       // This query's Size is less than the cached one. Conservatively restart
    909       // the query using the greater size.
    910       return getNonLocalPointerDepFromBB(Pointer,
    911                                          Loc.getWithNewSize(CacheInfo->Size),
    912                                          isLoad, StartBB, Result, Visited,
    913                                          SkipFirstBlock);
    914     }
    915 
    916     // If the query's TBAATag is inconsistent with the cached one,
    917     // conservatively throw out the cached data and restart the query with
    918     // no tag if needed.
    919     if (CacheInfo->TBAATag != Loc.TBAATag) {
    920       if (CacheInfo->TBAATag) {
    921         CacheInfo->Pair = BBSkipFirstBlockPair();
    922         CacheInfo->TBAATag = 0;
    923         for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(),
    924              DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI)
    925           if (Instruction *Inst = DI->getResult().getInst())
    926             RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
    927         CacheInfo->NonLocalDeps.clear();
    928       }
    929       if (Loc.TBAATag)
    930         return getNonLocalPointerDepFromBB(Pointer, Loc.getWithoutTBAATag(),
    931                                            isLoad, StartBB, Result, Visited,
    932                                            SkipFirstBlock);
    933     }
    934   }
    935 
    936   NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps;
    937 
    938   // If we have valid cached information for exactly the block we are
    939   // investigating, just return it with no recomputation.
    940   if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
    941     // We have a fully cached result for this query then we can just return the
    942     // cached results and populate the visited set.  However, we have to verify
    943     // that we don't already have conflicting results for these blocks.  Check
    944     // to ensure that if a block in the results set is in the visited set that
    945     // it was for the same pointer query.
    946     if (!Visited.empty()) {
    947       for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
    948            I != E; ++I) {
    949         DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->getBB());
    950         if (VI == Visited.end() || VI->second == Pointer.getAddr())
    951           continue;
    952 
    953         // We have a pointer mismatch in a block.  Just return clobber, saying
    954         // that something was clobbered in this result.  We could also do a
    955         // non-fully cached query, but there is little point in doing this.
    956         return true;
    957       }
    958     }
    959 
    960     Value *Addr = Pointer.getAddr();
    961     for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
    962          I != E; ++I) {
    963       Visited.insert(std::make_pair(I->getBB(), Addr));
    964       if (!I->getResult().isNonLocal())
    965         Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), Addr));
    966     }
    967     ++NumCacheCompleteNonLocalPtr;
    968     return false;
    969   }
    970 
    971   // Otherwise, either this is a new block, a block with an invalid cache
    972   // pointer or one that we're about to invalidate by putting more info into it
    973   // than its valid cache info.  If empty, the result will be valid cache info,
    974   // otherwise it isn't.
    975   if (Cache->empty())
    976     CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
    977   else
    978     CacheInfo->Pair = BBSkipFirstBlockPair();
    979 
    980   SmallVector<BasicBlock*, 32> Worklist;
    981   Worklist.push_back(StartBB);
    982 
    983   // PredList used inside loop.
    984   SmallVector<std::pair<BasicBlock*, PHITransAddr>, 16> PredList;
    985 
    986   // Keep track of the entries that we know are sorted.  Previously cached
    987   // entries will all be sorted.  The entries we add we only sort on demand (we
    988   // don't insert every element into its sorted position).  We know that we
    989   // won't get any reuse from currently inserted values, because we don't
    990   // revisit blocks after we insert info for them.
    991   unsigned NumSortedEntries = Cache->size();
    992   DEBUG(AssertSorted(*Cache));
    993 
    994   while (!Worklist.empty()) {
    995     BasicBlock *BB = Worklist.pop_back_val();
    996 
    997     // Skip the first block if we have it.
    998     if (!SkipFirstBlock) {
    999       // Analyze the dependency of *Pointer in FromBB.  See if we already have
   1000       // been here.
   1001       assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
   1002 
   1003       // Get the dependency info for Pointer in BB.  If we have cached
   1004       // information, we will use it, otherwise we compute it.
   1005       DEBUG(AssertSorted(*Cache, NumSortedEntries));
   1006       MemDepResult Dep = GetNonLocalInfoForBlock(Loc, isLoad, BB, Cache,
   1007                                                  NumSortedEntries);
   1008 
   1009       // If we got a Def or Clobber, add this to the list of results.
   1010       if (!Dep.isNonLocal()) {
   1011         Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr()));
   1012         continue;
   1013       }
   1014     }
   1015 
   1016     // If 'Pointer' is an instruction defined in this block, then we need to do
   1017     // phi translation to change it into a value live in the predecessor block.
   1018     // If not, we just add the predecessors to the worklist and scan them with
   1019     // the same Pointer.
   1020     if (!Pointer.NeedsPHITranslationFromBlock(BB)) {
   1021       SkipFirstBlock = false;
   1022       SmallVector<BasicBlock*, 16> NewBlocks;
   1023       for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
   1024         // Verify that we haven't looked at this block yet.
   1025         std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
   1026           InsertRes = Visited.insert(std::make_pair(*PI, Pointer.getAddr()));
   1027         if (InsertRes.second) {
   1028           // First time we've looked at *PI.
   1029           NewBlocks.push_back(*PI);
   1030           continue;
   1031         }
   1032 
   1033         // If we have seen this block before, but it was with a different
   1034         // pointer then we have a phi translation failure and we have to treat
   1035         // this as a clobber.
   1036         if (InsertRes.first->second != Pointer.getAddr()) {
   1037           // Make sure to clean up the Visited map before continuing on to
   1038           // PredTranslationFailure.
   1039           for (unsigned i = 0; i < NewBlocks.size(); i++)
   1040             Visited.erase(NewBlocks[i]);
   1041           goto PredTranslationFailure;
   1042         }
   1043       }
   1044       Worklist.append(NewBlocks.begin(), NewBlocks.end());
   1045       continue;
   1046     }
   1047 
   1048     // We do need to do phi translation, if we know ahead of time we can't phi
   1049     // translate this value, don't even try.
   1050     if (!Pointer.IsPotentiallyPHITranslatable())
   1051       goto PredTranslationFailure;
   1052 
   1053     // We may have added values to the cache list before this PHI translation.
   1054     // If so, we haven't done anything to ensure that the cache remains sorted.
   1055     // Sort it now (if needed) so that recursive invocations of
   1056     // getNonLocalPointerDepFromBB and other routines that could reuse the cache
   1057     // value will only see properly sorted cache arrays.
   1058     if (Cache && NumSortedEntries != Cache->size()) {
   1059       SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
   1060       NumSortedEntries = Cache->size();
   1061     }
   1062     Cache = 0;
   1063 
   1064     PredList.clear();
   1065     for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
   1066       BasicBlock *Pred = *PI;
   1067       PredList.push_back(std::make_pair(Pred, Pointer));
   1068 
   1069       // Get the PHI translated pointer in this predecessor.  This can fail if
   1070       // not translatable, in which case the getAddr() returns null.
   1071       PHITransAddr &PredPointer = PredList.back().second;
   1072       PredPointer.PHITranslateValue(BB, Pred, 0);
   1073 
   1074       Value *PredPtrVal = PredPointer.getAddr();
   1075 
   1076       // Check to see if we have already visited this pred block with another
   1077       // pointer.  If so, we can't do this lookup.  This failure can occur
   1078       // with PHI translation when a critical edge exists and the PHI node in
   1079       // the successor translates to a pointer value different than the
   1080       // pointer the block was first analyzed with.
   1081       std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
   1082         InsertRes = Visited.insert(std::make_pair(Pred, PredPtrVal));
   1083 
   1084       if (!InsertRes.second) {
   1085         // We found the pred; take it off the list of preds to visit.
   1086         PredList.pop_back();
   1087 
   1088         // If the predecessor was visited with PredPtr, then we already did
   1089         // the analysis and can ignore it.
   1090         if (InsertRes.first->second == PredPtrVal)
   1091           continue;
   1092 
   1093         // Otherwise, the block was previously analyzed with a different
   1094         // pointer.  We can't represent the result of this case, so we just
   1095         // treat this as a phi translation failure.
   1096 
   1097         // Make sure to clean up the Visited map before continuing on to
   1098         // PredTranslationFailure.
   1099         for (unsigned i = 0; i < PredList.size(); i++)
   1100           Visited.erase(PredList[i].first);
   1101 
   1102         goto PredTranslationFailure;
   1103       }
   1104     }
   1105 
   1106     // Actually process results here; this need to be a separate loop to avoid
   1107     // calling getNonLocalPointerDepFromBB for blocks we don't want to return
   1108     // any results for.  (getNonLocalPointerDepFromBB will modify our
   1109     // datastructures in ways the code after the PredTranslationFailure label
   1110     // doesn't expect.)
   1111     for (unsigned i = 0; i < PredList.size(); i++) {
   1112       BasicBlock *Pred = PredList[i].first;
   1113       PHITransAddr &PredPointer = PredList[i].second;
   1114       Value *PredPtrVal = PredPointer.getAddr();
   1115 
   1116       bool CanTranslate = true;
   1117       // If PHI translation was unable to find an available pointer in this
   1118       // predecessor, then we have to assume that the pointer is clobbered in
   1119       // that predecessor.  We can still do PRE of the load, which would insert
   1120       // a computation of the pointer in this predecessor.
   1121       if (PredPtrVal == 0)
   1122         CanTranslate = false;
   1123 
   1124       // FIXME: it is entirely possible that PHI translating will end up with
   1125       // the same value.  Consider PHI translating something like:
   1126       // X = phi [x, bb1], [y, bb2].  PHI translating for bb1 doesn't *need*
   1127       // to recurse here, pedantically speaking.
   1128 
   1129       // If getNonLocalPointerDepFromBB fails here, that means the cached
   1130       // result conflicted with the Visited list; we have to conservatively
   1131       // assume it is unknown, but this also does not block PRE of the load.
   1132       if (!CanTranslate ||
   1133           getNonLocalPointerDepFromBB(PredPointer,
   1134                                       Loc.getWithNewPtr(PredPtrVal),
   1135                                       isLoad, Pred,
   1136                                       Result, Visited)) {
   1137         // Add the entry to the Result list.
   1138         NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal);
   1139         Result.push_back(Entry);
   1140 
   1141         // Since we had a phi translation failure, the cache for CacheKey won't
   1142         // include all of the entries that we need to immediately satisfy future
   1143         // queries.  Mark this in NonLocalPointerDeps by setting the
   1144         // BBSkipFirstBlockPair pointer to null.  This requires reuse of the
   1145         // cached value to do more work but not miss the phi trans failure.
   1146         NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey];
   1147         NLPI.Pair = BBSkipFirstBlockPair();
   1148         continue;
   1149       }
   1150     }
   1151 
   1152     // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
   1153     CacheInfo = &NonLocalPointerDeps[CacheKey];
   1154     Cache = &CacheInfo->NonLocalDeps;
   1155     NumSortedEntries = Cache->size();
   1156 
   1157     // Since we did phi translation, the "Cache" set won't contain all of the
   1158     // results for the query.  This is ok (we can still use it to accelerate
   1159     // specific block queries) but we can't do the fastpath "return all
   1160     // results from the set"  Clear out the indicator for this.
   1161     CacheInfo->Pair = BBSkipFirstBlockPair();
   1162     SkipFirstBlock = false;
   1163     continue;
   1164 
   1165   PredTranslationFailure:
   1166     // The following code is "failure"; we can't produce a sane translation
   1167     // for the given block.  It assumes that we haven't modified any of
   1168     // our datastructures while processing the current block.
   1169 
   1170     if (Cache == 0) {
   1171       // Refresh the CacheInfo/Cache pointer if it got invalidated.
   1172       CacheInfo = &NonLocalPointerDeps[CacheKey];
   1173       Cache = &CacheInfo->NonLocalDeps;
   1174       NumSortedEntries = Cache->size();
   1175     }
   1176 
   1177     // Since we failed phi translation, the "Cache" set won't contain all of the
   1178     // results for the query.  This is ok (we can still use it to accelerate
   1179     // specific block queries) but we can't do the fastpath "return all
   1180     // results from the set".  Clear out the indicator for this.
   1181     CacheInfo->Pair = BBSkipFirstBlockPair();
   1182 
   1183     // If *nothing* works, mark the pointer as unknown.
   1184     //
   1185     // If this is the magic first block, return this as a clobber of the whole
   1186     // incoming value.  Since we can't phi translate to one of the predecessors,
   1187     // we have to bail out.
   1188     if (SkipFirstBlock)
   1189       return true;
   1190 
   1191     for (NonLocalDepInfo::reverse_iterator I = Cache->rbegin(); ; ++I) {
   1192       assert(I != Cache->rend() && "Didn't find current block??");
   1193       if (I->getBB() != BB)
   1194         continue;
   1195 
   1196       assert(I->getResult().isNonLocal() &&
   1197              "Should only be here with transparent block");
   1198       I->setResult(MemDepResult::getUnknown());
   1199       Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(),
   1200                                          Pointer.getAddr()));
   1201       break;
   1202     }
   1203   }
   1204 
   1205   // Okay, we're done now.  If we added new values to the cache, re-sort it.
   1206   SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
   1207   DEBUG(AssertSorted(*Cache));
   1208   return false;
   1209 }
   1210 
   1211 /// RemoveCachedNonLocalPointerDependencies - If P exists in
   1212 /// CachedNonLocalPointerInfo, remove it.
   1213 void MemoryDependenceAnalysis::
   1214 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) {
   1215   CachedNonLocalPointerInfo::iterator It =
   1216     NonLocalPointerDeps.find(P);
   1217   if (It == NonLocalPointerDeps.end()) return;
   1218 
   1219   // Remove all of the entries in the BB->val map.  This involves removing
   1220   // instructions from the reverse map.
   1221   NonLocalDepInfo &PInfo = It->second.NonLocalDeps;
   1222 
   1223   for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
   1224     Instruction *Target = PInfo[i].getResult().getInst();
   1225     if (Target == 0) continue;  // Ignore non-local dep results.
   1226     assert(Target->getParent() == PInfo[i].getBB());
   1227 
   1228     // Eliminating the dirty entry from 'Cache', so update the reverse info.
   1229     RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
   1230   }
   1231 
   1232   // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
   1233   NonLocalPointerDeps.erase(It);
   1234 }
   1235 
   1236 
   1237 /// invalidateCachedPointerInfo - This method is used to invalidate cached
   1238 /// information about the specified pointer, because it may be too
   1239 /// conservative in memdep.  This is an optional call that can be used when
   1240 /// the client detects an equivalence between the pointer and some other
   1241 /// value and replaces the other value with ptr. This can make Ptr available
   1242 /// in more places that cached info does not necessarily keep.
   1243 void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value *Ptr) {
   1244   // If Ptr isn't really a pointer, just ignore it.
   1245   if (!Ptr->getType()->isPointerTy()) return;
   1246   // Flush store info for the pointer.
   1247   RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
   1248   // Flush load info for the pointer.
   1249   RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
   1250 }
   1251 
   1252 /// invalidateCachedPredecessors - Clear the PredIteratorCache info.
   1253 /// This needs to be done when the CFG changes, e.g., due to splitting
   1254 /// critical edges.
   1255 void MemoryDependenceAnalysis::invalidateCachedPredecessors() {
   1256   PredCache->clear();
   1257 }
   1258 
   1259 /// removeInstruction - Remove an instruction from the dependence analysis,
   1260 /// updating the dependence of instructions that previously depended on it.
   1261 /// This method attempts to keep the cache coherent using the reverse map.
   1262 void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
   1263   // Walk through the Non-local dependencies, removing this one as the value
   1264   // for any cached queries.
   1265   NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
   1266   if (NLDI != NonLocalDeps.end()) {
   1267     NonLocalDepInfo &BlockMap = NLDI->second.first;
   1268     for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end();
   1269          DI != DE; ++DI)
   1270       if (Instruction *Inst = DI->getResult().getInst())
   1271         RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
   1272     NonLocalDeps.erase(NLDI);
   1273   }
   1274 
   1275   // If we have a cached local dependence query for this instruction, remove it.
   1276   //
   1277   LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
   1278   if (LocalDepEntry != LocalDeps.end()) {
   1279     // Remove us from DepInst's reverse set now that the local dep info is gone.
   1280     if (Instruction *Inst = LocalDepEntry->second.getInst())
   1281       RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
   1282 
   1283     // Remove this local dependency info.
   1284     LocalDeps.erase(LocalDepEntry);
   1285   }
   1286 
   1287   // If we have any cached pointer dependencies on this instruction, remove
   1288   // them.  If the instruction has non-pointer type, then it can't be a pointer
   1289   // base.
   1290 
   1291   // Remove it from both the load info and the store info.  The instruction
   1292   // can't be in either of these maps if it is non-pointer.
   1293   if (RemInst->getType()->isPointerTy()) {
   1294     RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
   1295     RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
   1296   }
   1297 
   1298   // Loop over all of the things that depend on the instruction we're removing.
   1299   //
   1300   SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd;
   1301 
   1302   // If we find RemInst as a clobber or Def in any of the maps for other values,
   1303   // we need to replace its entry with a dirty version of the instruction after
   1304   // it.  If RemInst is a terminator, we use a null dirty value.
   1305   //
   1306   // Using a dirty version of the instruction after RemInst saves having to scan
   1307   // the entire block to get to this point.
   1308   MemDepResult NewDirtyVal;
   1309   if (!RemInst->isTerminator())
   1310     NewDirtyVal = MemDepResult::getDirty(++BasicBlock::iterator(RemInst));
   1311 
   1312   ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
   1313   if (ReverseDepIt != ReverseLocalDeps.end()) {
   1314     SmallPtrSet<Instruction*, 4> &ReverseDeps = ReverseDepIt->second;
   1315     // RemInst can't be the terminator if it has local stuff depending on it.
   1316     assert(!ReverseDeps.empty() && !isa<TerminatorInst>(RemInst) &&
   1317            "Nothing can locally depend on a terminator");
   1318 
   1319     for (SmallPtrSet<Instruction*, 4>::iterator I = ReverseDeps.begin(),
   1320          E = ReverseDeps.end(); I != E; ++I) {
   1321       Instruction *InstDependingOnRemInst = *I;
   1322       assert(InstDependingOnRemInst != RemInst &&
   1323              "Already removed our local dep info");
   1324 
   1325       LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
   1326 
   1327       // Make sure to remember that new things depend on NewDepInst.
   1328       assert(NewDirtyVal.getInst() && "There is no way something else can have "
   1329              "a local dep on this if it is a terminator!");
   1330       ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(),
   1331                                                 InstDependingOnRemInst));
   1332     }
   1333 
   1334     ReverseLocalDeps.erase(ReverseDepIt);
   1335 
   1336     // Add new reverse deps after scanning the set, to avoid invalidating the
   1337     // 'ReverseDeps' reference.
   1338     while (!ReverseDepsToAdd.empty()) {
   1339       ReverseLocalDeps[ReverseDepsToAdd.back().first]
   1340         .insert(ReverseDepsToAdd.back().second);
   1341       ReverseDepsToAdd.pop_back();
   1342     }
   1343   }
   1344 
   1345   ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
   1346   if (ReverseDepIt != ReverseNonLocalDeps.end()) {
   1347     SmallPtrSet<Instruction*, 4> &Set = ReverseDepIt->second;
   1348     for (SmallPtrSet<Instruction*, 4>::iterator I = Set.begin(), E = Set.end();
   1349          I != E; ++I) {
   1350       assert(*I != RemInst && "Already removed NonLocalDep info for RemInst");
   1351 
   1352       PerInstNLInfo &INLD = NonLocalDeps[*I];
   1353       // The information is now dirty!
   1354       INLD.second = true;
   1355 
   1356       for (NonLocalDepInfo::iterator DI = INLD.first.begin(),
   1357            DE = INLD.first.end(); DI != DE; ++DI) {
   1358         if (DI->getResult().getInst() != RemInst) continue;
   1359 
   1360         // Convert to a dirty entry for the subsequent instruction.
   1361         DI->setResult(NewDirtyVal);
   1362 
   1363         if (Instruction *NextI = NewDirtyVal.getInst())
   1364           ReverseDepsToAdd.push_back(std::make_pair(NextI, *I));
   1365       }
   1366     }
   1367 
   1368     ReverseNonLocalDeps.erase(ReverseDepIt);
   1369 
   1370     // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
   1371     while (!ReverseDepsToAdd.empty()) {
   1372       ReverseNonLocalDeps[ReverseDepsToAdd.back().first]
   1373         .insert(ReverseDepsToAdd.back().second);
   1374       ReverseDepsToAdd.pop_back();
   1375     }
   1376   }
   1377 
   1378   // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
   1379   // value in the NonLocalPointerDeps info.
   1380   ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
   1381     ReverseNonLocalPtrDeps.find(RemInst);
   1382   if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
   1383     SmallPtrSet<ValueIsLoadPair, 4> &Set = ReversePtrDepIt->second;
   1384     SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd;
   1385 
   1386     for (SmallPtrSet<ValueIsLoadPair, 4>::iterator I = Set.begin(),
   1387          E = Set.end(); I != E; ++I) {
   1388       ValueIsLoadPair P = *I;
   1389       assert(P.getPointer() != RemInst &&
   1390              "Already removed NonLocalPointerDeps info for RemInst");
   1391 
   1392       NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps;
   1393 
   1394       // The cache is not valid for any specific block anymore.
   1395       NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair();
   1396 
   1397       // Update any entries for RemInst to use the instruction after it.
   1398       for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end();
   1399            DI != DE; ++DI) {
   1400         if (DI->getResult().getInst() != RemInst) continue;
   1401 
   1402         // Convert to a dirty entry for the subsequent instruction.
   1403         DI->setResult(NewDirtyVal);
   1404 
   1405         if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
   1406           ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
   1407       }
   1408 
   1409       // Re-sort the NonLocalDepInfo.  Changing the dirty entry to its
   1410       // subsequent value may invalidate the sortedness.
   1411       std::sort(NLPDI.begin(), NLPDI.end());
   1412     }
   1413 
   1414     ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
   1415 
   1416     while (!ReversePtrDepsToAdd.empty()) {
   1417       ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first]
   1418         .insert(ReversePtrDepsToAdd.back().second);
   1419       ReversePtrDepsToAdd.pop_back();
   1420     }
   1421   }
   1422 
   1423 
   1424   assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
   1425   AA->deleteValue(RemInst);
   1426   DEBUG(verifyRemoved(RemInst));
   1427 }
   1428 /// verifyRemoved - Verify that the specified instruction does not occur
   1429 /// in our internal data structures.
   1430 void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
   1431   for (LocalDepMapType::const_iterator I = LocalDeps.begin(),
   1432        E = LocalDeps.end(); I != E; ++I) {
   1433     assert(I->first != D && "Inst occurs in data structures");
   1434     assert(I->second.getInst() != D &&
   1435            "Inst occurs in data structures");
   1436   }
   1437 
   1438   for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(),
   1439        E = NonLocalPointerDeps.end(); I != E; ++I) {
   1440     assert(I->first.getPointer() != D && "Inst occurs in NLPD map key");
   1441     const NonLocalDepInfo &Val = I->second.NonLocalDeps;
   1442     for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end();
   1443          II != E; ++II)
   1444       assert(II->getResult().getInst() != D && "Inst occurs as NLPD value");
   1445   }
   1446 
   1447   for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(),
   1448        E = NonLocalDeps.end(); I != E; ++I) {
   1449     assert(I->first != D && "Inst occurs in data structures");
   1450     const PerInstNLInfo &INLD = I->second;
   1451     for (NonLocalDepInfo::const_iterator II = INLD.first.begin(),
   1452          EE = INLD.first.end(); II  != EE; ++II)
   1453       assert(II->getResult().getInst() != D && "Inst occurs in data structures");
   1454   }
   1455 
   1456   for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(),
   1457        E = ReverseLocalDeps.end(); I != E; ++I) {
   1458     assert(I->first != D && "Inst occurs in data structures");
   1459     for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
   1460          EE = I->second.end(); II != EE; ++II)
   1461       assert(*II != D && "Inst occurs in data structures");
   1462   }
   1463 
   1464   for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(),
   1465        E = ReverseNonLocalDeps.end();
   1466        I != E; ++I) {
   1467     assert(I->first != D && "Inst occurs in data structures");
   1468     for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
   1469          EE = I->second.end(); II != EE; ++II)
   1470       assert(*II != D && "Inst occurs in data structures");
   1471   }
   1472 
   1473   for (ReverseNonLocalPtrDepTy::const_iterator
   1474        I = ReverseNonLocalPtrDeps.begin(),
   1475        E = ReverseNonLocalPtrDeps.end(); I != E; ++I) {
   1476     assert(I->first != D && "Inst occurs in rev NLPD map");
   1477 
   1478     for (SmallPtrSet<ValueIsLoadPair, 4>::const_iterator II = I->second.begin(),
   1479          E = I->second.end(); II != E; ++II)
   1480       assert(*II != ValueIsLoadPair(D, false) &&
   1481              *II != ValueIsLoadPair(D, true) &&
   1482              "Inst occurs in ReverseNonLocalPtrDeps map");
   1483   }
   1484 
   1485 }
   1486