Home | History | Annotate | Download | only in IPO
      1 //===- MergeFunctions.cpp - Merge identical functions ---------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass looks for equivalent functions that are mergable and folds them.
     11 //
     12 // A hash is computed from the function, based on its type and number of
     13 // basic blocks.
     14 //
     15 // Once all hashes are computed, we perform an expensive equality comparison
     16 // on each function pair. This takes n^2/2 comparisons per bucket, so it's
     17 // important that the hash function be high quality. The equality comparison
     18 // iterates through each instruction in each basic block.
     19 //
     20 // When a match is found the functions are folded. If both functions are
     21 // overridable, we move the functionality into a new internal function and
     22 // leave two overridable thunks to it.
     23 //
     24 //===----------------------------------------------------------------------===//
     25 //
     26 // Future work:
     27 //
     28 // * virtual functions.
     29 //
     30 // Many functions have their address taken by the virtual function table for
     31 // the object they belong to. However, as long as it's only used for a lookup
     32 // and call, this is irrelevant, and we'd like to fold such functions.
     33 //
     34 // * switch from n^2 pair-wise comparisons to an n-way comparison for each
     35 // bucket.
     36 //
     37 // * be smarter about bitcasts.
     38 //
     39 // In order to fold functions, we will sometimes add either bitcast instructions
     40 // or bitcast constant expressions. Unfortunately, this can confound further
     41 // analysis since the two functions differ where one has a bitcast and the
     42 // other doesn't. We should learn to look through bitcasts.
     43 //
     44 //===----------------------------------------------------------------------===//
     45 
     46 #define DEBUG_TYPE "mergefunc"
     47 #include "llvm/Transforms/IPO.h"
     48 #include "llvm/ADT/DenseSet.h"
     49 #include "llvm/ADT/FoldingSet.h"
     50 #include "llvm/ADT/SmallSet.h"
     51 #include "llvm/ADT/Statistic.h"
     52 #include "llvm/ADT/STLExtras.h"
     53 #include "llvm/Constants.h"
     54 #include "llvm/InlineAsm.h"
     55 #include "llvm/Instructions.h"
     56 #include "llvm/LLVMContext.h"
     57 #include "llvm/Module.h"
     58 #include "llvm/Operator.h"
     59 #include "llvm/Pass.h"
     60 #include "llvm/Support/CallSite.h"
     61 #include "llvm/Support/Debug.h"
     62 #include "llvm/Support/ErrorHandling.h"
     63 #include "llvm/Support/IRBuilder.h"
     64 #include "llvm/Support/ValueHandle.h"
     65 #include "llvm/Support/raw_ostream.h"
     66 #include "llvm/Target/TargetData.h"
     67 #include <vector>
     68 using namespace llvm;
     69 
     70 STATISTIC(NumFunctionsMerged, "Number of functions merged");
     71 STATISTIC(NumThunksWritten, "Number of thunks generated");
     72 STATISTIC(NumAliasesWritten, "Number of aliases generated");
     73 STATISTIC(NumDoubleWeak, "Number of new functions created");
     74 
     75 /// Creates a hash-code for the function which is the same for any two
     76 /// functions that will compare equal, without looking at the instructions
     77 /// inside the function.
     78 static unsigned profileFunction(const Function *F) {
     79   FunctionType *FTy = F->getFunctionType();
     80 
     81   FoldingSetNodeID ID;
     82   ID.AddInteger(F->size());
     83   ID.AddInteger(F->getCallingConv());
     84   ID.AddBoolean(F->hasGC());
     85   ID.AddBoolean(FTy->isVarArg());
     86   ID.AddInteger(FTy->getReturnType()->getTypeID());
     87   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
     88     ID.AddInteger(FTy->getParamType(i)->getTypeID());
     89   return ID.ComputeHash();
     90 }
     91 
     92 namespace {
     93 
     94 /// ComparableFunction - A struct that pairs together functions with a
     95 /// TargetData so that we can keep them together as elements in the DenseSet.
     96 class ComparableFunction {
     97 public:
     98   static const ComparableFunction EmptyKey;
     99   static const ComparableFunction TombstoneKey;
    100   static TargetData * const LookupOnly;
    101 
    102   ComparableFunction(Function *Func, TargetData *TD)
    103     : Func(Func), Hash(profileFunction(Func)), TD(TD) {}
    104 
    105   Function *getFunc() const { return Func; }
    106   unsigned getHash() const { return Hash; }
    107   TargetData *getTD() const { return TD; }
    108 
    109   // Drops AssertingVH reference to the function. Outside of debug mode, this
    110   // does nothing.
    111   void release() {
    112     assert(Func &&
    113            "Attempted to release function twice, or release empty/tombstone!");
    114     Func = NULL;
    115   }
    116 
    117 private:
    118   explicit ComparableFunction(unsigned Hash)
    119     : Func(NULL), Hash(Hash), TD(NULL) {}
    120 
    121   AssertingVH<Function> Func;
    122   unsigned Hash;
    123   TargetData *TD;
    124 };
    125 
    126 const ComparableFunction ComparableFunction::EmptyKey = ComparableFunction(0);
    127 const ComparableFunction ComparableFunction::TombstoneKey =
    128     ComparableFunction(1);
    129 TargetData *const ComparableFunction::LookupOnly = (TargetData*)(-1);
    130 
    131 }
    132 
    133 namespace llvm {
    134   template <>
    135   struct DenseMapInfo<ComparableFunction> {
    136     static ComparableFunction getEmptyKey() {
    137       return ComparableFunction::EmptyKey;
    138     }
    139     static ComparableFunction getTombstoneKey() {
    140       return ComparableFunction::TombstoneKey;
    141     }
    142     static unsigned getHashValue(const ComparableFunction &CF) {
    143       return CF.getHash();
    144     }
    145     static bool isEqual(const ComparableFunction &LHS,
    146                         const ComparableFunction &RHS);
    147   };
    148 }
    149 
    150 namespace {
    151 
    152 /// FunctionComparator - Compares two functions to determine whether or not
    153 /// they will generate machine code with the same behaviour. TargetData is
    154 /// used if available. The comparator always fails conservatively (erring on the
    155 /// side of claiming that two functions are different).
    156 class FunctionComparator {
    157 public:
    158   FunctionComparator(const TargetData *TD, const Function *F1,
    159                      const Function *F2)
    160     : F1(F1), F2(F2), TD(TD) {}
    161 
    162   /// Test whether the two functions have equivalent behaviour.
    163   bool compare();
    164 
    165 private:
    166   /// Test whether two basic blocks have equivalent behaviour.
    167   bool compare(const BasicBlock *BB1, const BasicBlock *BB2);
    168 
    169   /// Assign or look up previously assigned numbers for the two values, and
    170   /// return whether the numbers are equal. Numbers are assigned in the order
    171   /// visited.
    172   bool enumerate(const Value *V1, const Value *V2);
    173 
    174   /// Compare two Instructions for equivalence, similar to
    175   /// Instruction::isSameOperationAs but with modifications to the type
    176   /// comparison.
    177   bool isEquivalentOperation(const Instruction *I1,
    178                              const Instruction *I2) const;
    179 
    180   /// Compare two GEPs for equivalent pointer arithmetic.
    181   bool isEquivalentGEP(const GEPOperator *GEP1, const GEPOperator *GEP2);
    182   bool isEquivalentGEP(const GetElementPtrInst *GEP1,
    183                        const GetElementPtrInst *GEP2) {
    184     return isEquivalentGEP(cast<GEPOperator>(GEP1), cast<GEPOperator>(GEP2));
    185   }
    186 
    187   /// Compare two Types, treating all pointer types as equal.
    188   bool isEquivalentType(Type *Ty1, Type *Ty2) const;
    189 
    190   // The two functions undergoing comparison.
    191   const Function *F1, *F2;
    192 
    193   const TargetData *TD;
    194 
    195   DenseMap<const Value *, const Value *> id_map;
    196   DenseSet<const Value *> seen_values;
    197 };
    198 
    199 }
    200 
    201 // Any two pointers in the same address space are equivalent, intptr_t and
    202 // pointers are equivalent. Otherwise, standard type equivalence rules apply.
    203 bool FunctionComparator::isEquivalentType(Type *Ty1,
    204                                           Type *Ty2) const {
    205   if (Ty1 == Ty2)
    206     return true;
    207   if (Ty1->getTypeID() != Ty2->getTypeID()) {
    208     if (TD) {
    209       LLVMContext &Ctx = Ty1->getContext();
    210       if (isa<PointerType>(Ty1) && Ty2 == TD->getIntPtrType(Ctx)) return true;
    211       if (isa<PointerType>(Ty2) && Ty1 == TD->getIntPtrType(Ctx)) return true;
    212     }
    213     return false;
    214   }
    215 
    216   switch (Ty1->getTypeID()) {
    217   default:
    218     llvm_unreachable("Unknown type!");
    219     // Fall through in Release mode.
    220   case Type::IntegerTyID:
    221   case Type::VectorTyID:
    222     // Ty1 == Ty2 would have returned true earlier.
    223     return false;
    224 
    225   case Type::VoidTyID:
    226   case Type::FloatTyID:
    227   case Type::DoubleTyID:
    228   case Type::X86_FP80TyID:
    229   case Type::FP128TyID:
    230   case Type::PPC_FP128TyID:
    231   case Type::LabelTyID:
    232   case Type::MetadataTyID:
    233     return true;
    234 
    235   case Type::PointerTyID: {
    236     PointerType *PTy1 = cast<PointerType>(Ty1);
    237     PointerType *PTy2 = cast<PointerType>(Ty2);
    238     return PTy1->getAddressSpace() == PTy2->getAddressSpace();
    239   }
    240 
    241   case Type::StructTyID: {
    242     StructType *STy1 = cast<StructType>(Ty1);
    243     StructType *STy2 = cast<StructType>(Ty2);
    244     if (STy1->getNumElements() != STy2->getNumElements())
    245       return false;
    246 
    247     if (STy1->isPacked() != STy2->isPacked())
    248       return false;
    249 
    250     for (unsigned i = 0, e = STy1->getNumElements(); i != e; ++i) {
    251       if (!isEquivalentType(STy1->getElementType(i), STy2->getElementType(i)))
    252         return false;
    253     }
    254     return true;
    255   }
    256 
    257   case Type::FunctionTyID: {
    258     FunctionType *FTy1 = cast<FunctionType>(Ty1);
    259     FunctionType *FTy2 = cast<FunctionType>(Ty2);
    260     if (FTy1->getNumParams() != FTy2->getNumParams() ||
    261         FTy1->isVarArg() != FTy2->isVarArg())
    262       return false;
    263 
    264     if (!isEquivalentType(FTy1->getReturnType(), FTy2->getReturnType()))
    265       return false;
    266 
    267     for (unsigned i = 0, e = FTy1->getNumParams(); i != e; ++i) {
    268       if (!isEquivalentType(FTy1->getParamType(i), FTy2->getParamType(i)))
    269         return false;
    270     }
    271     return true;
    272   }
    273 
    274   case Type::ArrayTyID: {
    275     ArrayType *ATy1 = cast<ArrayType>(Ty1);
    276     ArrayType *ATy2 = cast<ArrayType>(Ty2);
    277     return ATy1->getNumElements() == ATy2->getNumElements() &&
    278            isEquivalentType(ATy1->getElementType(), ATy2->getElementType());
    279   }
    280   }
    281 }
    282 
    283 // Determine whether the two operations are the same except that pointer-to-A
    284 // and pointer-to-B are equivalent. This should be kept in sync with
    285 // Instruction::isSameOperationAs.
    286 bool FunctionComparator::isEquivalentOperation(const Instruction *I1,
    287                                                const Instruction *I2) const {
    288   // Differences from Instruction::isSameOperationAs:
    289   //  * replace type comparison with calls to isEquivalentType.
    290   //  * we test for I->hasSameSubclassOptionalData (nuw/nsw/tail) at the top
    291   //  * because of the above, we don't test for the tail bit on calls later on
    292   if (I1->getOpcode() != I2->getOpcode() ||
    293       I1->getNumOperands() != I2->getNumOperands() ||
    294       !isEquivalentType(I1->getType(), I2->getType()) ||
    295       !I1->hasSameSubclassOptionalData(I2))
    296     return false;
    297 
    298   // We have two instructions of identical opcode and #operands.  Check to see
    299   // if all operands are the same type
    300   for (unsigned i = 0, e = I1->getNumOperands(); i != e; ++i)
    301     if (!isEquivalentType(I1->getOperand(i)->getType(),
    302                           I2->getOperand(i)->getType()))
    303       return false;
    304 
    305   // Check special state that is a part of some instructions.
    306   if (const LoadInst *LI = dyn_cast<LoadInst>(I1))
    307     return LI->isVolatile() == cast<LoadInst>(I2)->isVolatile() &&
    308            LI->getAlignment() == cast<LoadInst>(I2)->getAlignment() &&
    309            LI->getOrdering() == cast<LoadInst>(I2)->getOrdering() &&
    310            LI->getSynchScope() == cast<LoadInst>(I2)->getSynchScope();
    311   if (const StoreInst *SI = dyn_cast<StoreInst>(I1))
    312     return SI->isVolatile() == cast<StoreInst>(I2)->isVolatile() &&
    313            SI->getAlignment() == cast<StoreInst>(I2)->getAlignment() &&
    314            SI->getOrdering() == cast<StoreInst>(I2)->getOrdering() &&
    315            SI->getSynchScope() == cast<StoreInst>(I2)->getSynchScope();
    316   if (const CmpInst *CI = dyn_cast<CmpInst>(I1))
    317     return CI->getPredicate() == cast<CmpInst>(I2)->getPredicate();
    318   if (const CallInst *CI = dyn_cast<CallInst>(I1))
    319     return CI->getCallingConv() == cast<CallInst>(I2)->getCallingConv() &&
    320            CI->getAttributes() == cast<CallInst>(I2)->getAttributes();
    321   if (const InvokeInst *CI = dyn_cast<InvokeInst>(I1))
    322     return CI->getCallingConv() == cast<InvokeInst>(I2)->getCallingConv() &&
    323            CI->getAttributes() == cast<InvokeInst>(I2)->getAttributes();
    324   if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(I1))
    325     return IVI->getIndices() == cast<InsertValueInst>(I2)->getIndices();
    326   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I1))
    327     return EVI->getIndices() == cast<ExtractValueInst>(I2)->getIndices();
    328   if (const FenceInst *FI = dyn_cast<FenceInst>(I1))
    329     return FI->getOrdering() == cast<FenceInst>(I2)->getOrdering() &&
    330            FI->getSynchScope() == cast<FenceInst>(I2)->getSynchScope();
    331   if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I1))
    332     return CXI->isVolatile() == cast<AtomicCmpXchgInst>(I2)->isVolatile() &&
    333            CXI->getOrdering() == cast<AtomicCmpXchgInst>(I2)->getOrdering() &&
    334            CXI->getSynchScope() == cast<AtomicCmpXchgInst>(I2)->getSynchScope();
    335   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I1))
    336     return RMWI->getOperation() == cast<AtomicRMWInst>(I2)->getOperation() &&
    337            RMWI->isVolatile() == cast<AtomicRMWInst>(I2)->isVolatile() &&
    338            RMWI->getOrdering() == cast<AtomicRMWInst>(I2)->getOrdering() &&
    339            RMWI->getSynchScope() == cast<AtomicRMWInst>(I2)->getSynchScope();
    340 
    341   return true;
    342 }
    343 
    344 // Determine whether two GEP operations perform the same underlying arithmetic.
    345 bool FunctionComparator::isEquivalentGEP(const GEPOperator *GEP1,
    346                                          const GEPOperator *GEP2) {
    347   // When we have target data, we can reduce the GEP down to the value in bytes
    348   // added to the address.
    349   if (TD && GEP1->hasAllConstantIndices() && GEP2->hasAllConstantIndices()) {
    350     SmallVector<Value *, 8> Indices1(GEP1->idx_begin(), GEP1->idx_end());
    351     SmallVector<Value *, 8> Indices2(GEP2->idx_begin(), GEP2->idx_end());
    352     uint64_t Offset1 = TD->getIndexedOffset(GEP1->getPointerOperandType(),
    353                                             Indices1);
    354     uint64_t Offset2 = TD->getIndexedOffset(GEP2->getPointerOperandType(),
    355                                             Indices2);
    356     return Offset1 == Offset2;
    357   }
    358 
    359   if (GEP1->getPointerOperand()->getType() !=
    360       GEP2->getPointerOperand()->getType())
    361     return false;
    362 
    363   if (GEP1->getNumOperands() != GEP2->getNumOperands())
    364     return false;
    365 
    366   for (unsigned i = 0, e = GEP1->getNumOperands(); i != e; ++i) {
    367     if (!enumerate(GEP1->getOperand(i), GEP2->getOperand(i)))
    368       return false;
    369   }
    370 
    371   return true;
    372 }
    373 
    374 // Compare two values used by the two functions under pair-wise comparison. If
    375 // this is the first time the values are seen, they're added to the mapping so
    376 // that we will detect mismatches on next use.
    377 bool FunctionComparator::enumerate(const Value *V1, const Value *V2) {
    378   // Check for function @f1 referring to itself and function @f2 referring to
    379   // itself, or referring to each other, or both referring to either of them.
    380   // They're all equivalent if the two functions are otherwise equivalent.
    381   if (V1 == F1 && V2 == F2)
    382     return true;
    383   if (V1 == F2 && V2 == F1)
    384     return true;
    385 
    386   if (const Constant *C1 = dyn_cast<Constant>(V1)) {
    387     if (V1 == V2) return true;
    388     const Constant *C2 = dyn_cast<Constant>(V2);
    389     if (!C2) return false;
    390     // TODO: constant expressions with GEP or references to F1 or F2.
    391     if (C1->isNullValue() && C2->isNullValue() &&
    392 	isEquivalentType(C1->getType(), C2->getType()))
    393       return true;
    394     // Try bitcasting C2 to C1's type. If the bitcast is legal and returns C1
    395     // then they must have equal bit patterns.
    396     return C1->getType()->canLosslesslyBitCastTo(C2->getType()) &&
    397       C1 == ConstantExpr::getBitCast(const_cast<Constant*>(C2), C1->getType());
    398   }
    399 
    400   if (isa<InlineAsm>(V1) || isa<InlineAsm>(V2))
    401     return V1 == V2;
    402 
    403   // Check that V1 maps to V2. If we find a value that V1 maps to then we simply
    404   // check whether it's equal to V2. When there is no mapping then we need to
    405   // ensure that V2 isn't already equivalent to something else. For this
    406   // purpose, we track the V2 values in a set.
    407 
    408   const Value *&map_elem = id_map[V1];
    409   if (map_elem)
    410     return map_elem == V2;
    411   if (!seen_values.insert(V2).second)
    412     return false;
    413   map_elem = V2;
    414   return true;
    415 }
    416 
    417 // Test whether two basic blocks have equivalent behaviour.
    418 bool FunctionComparator::compare(const BasicBlock *BB1, const BasicBlock *BB2) {
    419   BasicBlock::const_iterator F1I = BB1->begin(), F1E = BB1->end();
    420   BasicBlock::const_iterator F2I = BB2->begin(), F2E = BB2->end();
    421 
    422   do {
    423     if (!enumerate(F1I, F2I))
    424       return false;
    425 
    426     if (const GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(F1I)) {
    427       const GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(F2I);
    428       if (!GEP2)
    429         return false;
    430 
    431       if (!enumerate(GEP1->getPointerOperand(), GEP2->getPointerOperand()))
    432         return false;
    433 
    434       if (!isEquivalentGEP(GEP1, GEP2))
    435         return false;
    436     } else {
    437       if (!isEquivalentOperation(F1I, F2I))
    438         return false;
    439 
    440       assert(F1I->getNumOperands() == F2I->getNumOperands());
    441       for (unsigned i = 0, e = F1I->getNumOperands(); i != e; ++i) {
    442         Value *OpF1 = F1I->getOperand(i);
    443         Value *OpF2 = F2I->getOperand(i);
    444 
    445         if (!enumerate(OpF1, OpF2))
    446           return false;
    447 
    448         if (OpF1->getValueID() != OpF2->getValueID() ||
    449             !isEquivalentType(OpF1->getType(), OpF2->getType()))
    450           return false;
    451       }
    452     }
    453 
    454     ++F1I, ++F2I;
    455   } while (F1I != F1E && F2I != F2E);
    456 
    457   return F1I == F1E && F2I == F2E;
    458 }
    459 
    460 // Test whether the two functions have equivalent behaviour.
    461 bool FunctionComparator::compare() {
    462   // We need to recheck everything, but check the things that weren't included
    463   // in the hash first.
    464 
    465   if (F1->getAttributes() != F2->getAttributes())
    466     return false;
    467 
    468   if (F1->hasGC() != F2->hasGC())
    469     return false;
    470 
    471   if (F1->hasGC() && F1->getGC() != F2->getGC())
    472     return false;
    473 
    474   if (F1->hasSection() != F2->hasSection())
    475     return false;
    476 
    477   if (F1->hasSection() && F1->getSection() != F2->getSection())
    478     return false;
    479 
    480   if (F1->isVarArg() != F2->isVarArg())
    481     return false;
    482 
    483   // TODO: if it's internal and only used in direct calls, we could handle this
    484   // case too.
    485   if (F1->getCallingConv() != F2->getCallingConv())
    486     return false;
    487 
    488   if (!isEquivalentType(F1->getFunctionType(), F2->getFunctionType()))
    489     return false;
    490 
    491   assert(F1->arg_size() == F2->arg_size() &&
    492          "Identically typed functions have different numbers of args!");
    493 
    494   // Visit the arguments so that they get enumerated in the order they're
    495   // passed in.
    496   for (Function::const_arg_iterator f1i = F1->arg_begin(),
    497          f2i = F2->arg_begin(), f1e = F1->arg_end(); f1i != f1e; ++f1i, ++f2i) {
    498     if (!enumerate(f1i, f2i))
    499       llvm_unreachable("Arguments repeat!");
    500   }
    501 
    502   // We do a CFG-ordered walk since the actual ordering of the blocks in the
    503   // linked list is immaterial. Our walk starts at the entry block for both
    504   // functions, then takes each block from each terminator in order. As an
    505   // artifact, this also means that unreachable blocks are ignored.
    506   SmallVector<const BasicBlock *, 8> F1BBs, F2BBs;
    507   SmallSet<const BasicBlock *, 128> VisitedBBs; // in terms of F1.
    508 
    509   F1BBs.push_back(&F1->getEntryBlock());
    510   F2BBs.push_back(&F2->getEntryBlock());
    511 
    512   VisitedBBs.insert(F1BBs[0]);
    513   while (!F1BBs.empty()) {
    514     const BasicBlock *F1BB = F1BBs.pop_back_val();
    515     const BasicBlock *F2BB = F2BBs.pop_back_val();
    516 
    517     if (!enumerate(F1BB, F2BB) || !compare(F1BB, F2BB))
    518       return false;
    519 
    520     const TerminatorInst *F1TI = F1BB->getTerminator();
    521     const TerminatorInst *F2TI = F2BB->getTerminator();
    522 
    523     assert(F1TI->getNumSuccessors() == F2TI->getNumSuccessors());
    524     for (unsigned i = 0, e = F1TI->getNumSuccessors(); i != e; ++i) {
    525       if (!VisitedBBs.insert(F1TI->getSuccessor(i)))
    526         continue;
    527 
    528       F1BBs.push_back(F1TI->getSuccessor(i));
    529       F2BBs.push_back(F2TI->getSuccessor(i));
    530     }
    531   }
    532   return true;
    533 }
    534 
    535 namespace {
    536 
    537 /// MergeFunctions finds functions which will generate identical machine code,
    538 /// by considering all pointer types to be equivalent. Once identified,
    539 /// MergeFunctions will fold them by replacing a call to one to a call to a
    540 /// bitcast of the other.
    541 ///
    542 class MergeFunctions : public ModulePass {
    543 public:
    544   static char ID;
    545   MergeFunctions()
    546     : ModulePass(ID), HasGlobalAliases(false) {
    547     initializeMergeFunctionsPass(*PassRegistry::getPassRegistry());
    548   }
    549 
    550   bool runOnModule(Module &M);
    551 
    552 private:
    553   typedef DenseSet<ComparableFunction> FnSetType;
    554 
    555   /// A work queue of functions that may have been modified and should be
    556   /// analyzed again.
    557   std::vector<WeakVH> Deferred;
    558 
    559   /// Insert a ComparableFunction into the FnSet, or merge it away if it's
    560   /// equal to one that's already present.
    561   bool insert(ComparableFunction &NewF);
    562 
    563   /// Remove a Function from the FnSet and queue it up for a second sweep of
    564   /// analysis.
    565   void remove(Function *F);
    566 
    567   /// Find the functions that use this Value and remove them from FnSet and
    568   /// queue the functions.
    569   void removeUsers(Value *V);
    570 
    571   /// Replace all direct calls of Old with calls of New. Will bitcast New if
    572   /// necessary to make types match.
    573   void replaceDirectCallers(Function *Old, Function *New);
    574 
    575   /// Merge two equivalent functions. Upon completion, G may be deleted, or may
    576   /// be converted into a thunk. In either case, it should never be visited
    577   /// again.
    578   void mergeTwoFunctions(Function *F, Function *G);
    579 
    580   /// Replace G with a thunk or an alias to F. Deletes G.
    581   void writeThunkOrAlias(Function *F, Function *G);
    582 
    583   /// Replace G with a simple tail call to bitcast(F). Also replace direct uses
    584   /// of G with bitcast(F). Deletes G.
    585   void writeThunk(Function *F, Function *G);
    586 
    587   /// Replace G with an alias to F. Deletes G.
    588   void writeAlias(Function *F, Function *G);
    589 
    590   /// The set of all distinct functions. Use the insert() and remove() methods
    591   /// to modify it.
    592   FnSetType FnSet;
    593 
    594   /// TargetData for more accurate GEP comparisons. May be NULL.
    595   TargetData *TD;
    596 
    597   /// Whether or not the target supports global aliases.
    598   bool HasGlobalAliases;
    599 };
    600 
    601 }  // end anonymous namespace
    602 
    603 char MergeFunctions::ID = 0;
    604 INITIALIZE_PASS(MergeFunctions, "mergefunc", "Merge Functions", false, false)
    605 
    606 ModulePass *llvm::createMergeFunctionsPass() {
    607   return new MergeFunctions();
    608 }
    609 
    610 bool MergeFunctions::runOnModule(Module &M) {
    611   bool Changed = false;
    612   TD = getAnalysisIfAvailable<TargetData>();
    613 
    614   for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
    615     if (!I->isDeclaration() && !I->hasAvailableExternallyLinkage())
    616       Deferred.push_back(WeakVH(I));
    617   }
    618   FnSet.resize(Deferred.size());
    619 
    620   do {
    621     std::vector<WeakVH> Worklist;
    622     Deferred.swap(Worklist);
    623 
    624     DEBUG(dbgs() << "size of module: " << M.size() << '\n');
    625     DEBUG(dbgs() << "size of worklist: " << Worklist.size() << '\n');
    626 
    627     // Insert only strong functions and merge them. Strong function merging
    628     // always deletes one of them.
    629     for (std::vector<WeakVH>::iterator I = Worklist.begin(),
    630            E = Worklist.end(); I != E; ++I) {
    631       if (!*I) continue;
    632       Function *F = cast<Function>(*I);
    633       if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
    634           !F->mayBeOverridden()) {
    635         ComparableFunction CF = ComparableFunction(F, TD);
    636         Changed |= insert(CF);
    637       }
    638     }
    639 
    640     // Insert only weak functions and merge them. By doing these second we
    641     // create thunks to the strong function when possible. When two weak
    642     // functions are identical, we create a new strong function with two weak
    643     // weak thunks to it which are identical but not mergable.
    644     for (std::vector<WeakVH>::iterator I = Worklist.begin(),
    645            E = Worklist.end(); I != E; ++I) {
    646       if (!*I) continue;
    647       Function *F = cast<Function>(*I);
    648       if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
    649           F->mayBeOverridden()) {
    650         ComparableFunction CF = ComparableFunction(F, TD);
    651         Changed |= insert(CF);
    652       }
    653     }
    654     DEBUG(dbgs() << "size of FnSet: " << FnSet.size() << '\n');
    655   } while (!Deferred.empty());
    656 
    657   FnSet.clear();
    658 
    659   return Changed;
    660 }
    661 
    662 bool DenseMapInfo<ComparableFunction>::isEqual(const ComparableFunction &LHS,
    663                                                const ComparableFunction &RHS) {
    664   if (LHS.getFunc() == RHS.getFunc() &&
    665       LHS.getHash() == RHS.getHash())
    666     return true;
    667   if (!LHS.getFunc() || !RHS.getFunc())
    668     return false;
    669 
    670   // One of these is a special "underlying pointer comparison only" object.
    671   if (LHS.getTD() == ComparableFunction::LookupOnly ||
    672       RHS.getTD() == ComparableFunction::LookupOnly)
    673     return false;
    674 
    675   assert(LHS.getTD() == RHS.getTD() &&
    676          "Comparing functions for different targets");
    677 
    678   return FunctionComparator(LHS.getTD(), LHS.getFunc(),
    679                             RHS.getFunc()).compare();
    680 }
    681 
    682 // Replace direct callers of Old with New.
    683 void MergeFunctions::replaceDirectCallers(Function *Old, Function *New) {
    684   Constant *BitcastNew = ConstantExpr::getBitCast(New, Old->getType());
    685   for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
    686        UI != UE;) {
    687     Value::use_iterator TheIter = UI;
    688     ++UI;
    689     CallSite CS(*TheIter);
    690     if (CS && CS.isCallee(TheIter)) {
    691       remove(CS.getInstruction()->getParent()->getParent());
    692       TheIter.getUse().set(BitcastNew);
    693     }
    694   }
    695 }
    696 
    697 // Replace G with an alias to F if possible, or else a thunk to F. Deletes G.
    698 void MergeFunctions::writeThunkOrAlias(Function *F, Function *G) {
    699   if (HasGlobalAliases && G->hasUnnamedAddr()) {
    700     if (G->hasExternalLinkage() || G->hasLocalLinkage() ||
    701         G->hasWeakLinkage()) {
    702       writeAlias(F, G);
    703       return;
    704     }
    705   }
    706 
    707   writeThunk(F, G);
    708 }
    709 
    710 // Replace G with a simple tail call to bitcast(F). Also replace direct uses
    711 // of G with bitcast(F). Deletes G.
    712 void MergeFunctions::writeThunk(Function *F, Function *G) {
    713   if (!G->mayBeOverridden()) {
    714     // Redirect direct callers of G to F.
    715     replaceDirectCallers(G, F);
    716   }
    717 
    718   // If G was internal then we may have replaced all uses of G with F. If so,
    719   // stop here and delete G. There's no need for a thunk.
    720   if (G->hasLocalLinkage() && G->use_empty()) {
    721     G->eraseFromParent();
    722     return;
    723   }
    724 
    725   Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "",
    726                                     G->getParent());
    727   BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG);
    728   IRBuilder<false> Builder(BB);
    729 
    730   SmallVector<Value *, 16> Args;
    731   unsigned i = 0;
    732   FunctionType *FFTy = F->getFunctionType();
    733   for (Function::arg_iterator AI = NewG->arg_begin(), AE = NewG->arg_end();
    734        AI != AE; ++AI) {
    735     Args.push_back(Builder.CreateBitCast(AI, FFTy->getParamType(i)));
    736     ++i;
    737   }
    738 
    739   CallInst *CI = Builder.CreateCall(F, Args);
    740   CI->setTailCall();
    741   CI->setCallingConv(F->getCallingConv());
    742   if (NewG->getReturnType()->isVoidTy()) {
    743     Builder.CreateRetVoid();
    744   } else {
    745     Builder.CreateRet(Builder.CreateBitCast(CI, NewG->getReturnType()));
    746   }
    747 
    748   NewG->copyAttributesFrom(G);
    749   NewG->takeName(G);
    750   removeUsers(G);
    751   G->replaceAllUsesWith(NewG);
    752   G->eraseFromParent();
    753 
    754   DEBUG(dbgs() << "writeThunk: " << NewG->getName() << '\n');
    755   ++NumThunksWritten;
    756 }
    757 
    758 // Replace G with an alias to F and delete G.
    759 void MergeFunctions::writeAlias(Function *F, Function *G) {
    760   Constant *BitcastF = ConstantExpr::getBitCast(F, G->getType());
    761   GlobalAlias *GA = new GlobalAlias(G->getType(), G->getLinkage(), "",
    762                                     BitcastF, G->getParent());
    763   F->setAlignment(std::max(F->getAlignment(), G->getAlignment()));
    764   GA->takeName(G);
    765   GA->setVisibility(G->getVisibility());
    766   removeUsers(G);
    767   G->replaceAllUsesWith(GA);
    768   G->eraseFromParent();
    769 
    770   DEBUG(dbgs() << "writeAlias: " << GA->getName() << '\n');
    771   ++NumAliasesWritten;
    772 }
    773 
    774 // Merge two equivalent functions. Upon completion, Function G is deleted.
    775 void MergeFunctions::mergeTwoFunctions(Function *F, Function *G) {
    776   if (F->mayBeOverridden()) {
    777     assert(G->mayBeOverridden());
    778 
    779     if (HasGlobalAliases) {
    780       // Make them both thunks to the same internal function.
    781       Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "",
    782                                      F->getParent());
    783       H->copyAttributesFrom(F);
    784       H->takeName(F);
    785       removeUsers(F);
    786       F->replaceAllUsesWith(H);
    787 
    788       unsigned MaxAlignment = std::max(G->getAlignment(), H->getAlignment());
    789 
    790       writeAlias(F, G);
    791       writeAlias(F, H);
    792 
    793       F->setAlignment(MaxAlignment);
    794       F->setLinkage(GlobalValue::PrivateLinkage);
    795     } else {
    796       // We can't merge them. Instead, pick one and update all direct callers
    797       // to call it and hope that we improve the instruction cache hit rate.
    798       replaceDirectCallers(G, F);
    799     }
    800 
    801     ++NumDoubleWeak;
    802   } else {
    803     writeThunkOrAlias(F, G);
    804   }
    805 
    806   ++NumFunctionsMerged;
    807 }
    808 
    809 // Insert a ComparableFunction into the FnSet, or merge it away if equal to one
    810 // that was already inserted.
    811 bool MergeFunctions::insert(ComparableFunction &NewF) {
    812   std::pair<FnSetType::iterator, bool> Result = FnSet.insert(NewF);
    813   if (Result.second) {
    814     DEBUG(dbgs() << "Inserting as unique: " << NewF.getFunc()->getName() << '\n');
    815     return false;
    816   }
    817 
    818   const ComparableFunction &OldF = *Result.first;
    819 
    820   // Never thunk a strong function to a weak function.
    821   assert(!OldF.getFunc()->mayBeOverridden() ||
    822          NewF.getFunc()->mayBeOverridden());
    823 
    824   DEBUG(dbgs() << "  " << OldF.getFunc()->getName() << " == "
    825                << NewF.getFunc()->getName() << '\n');
    826 
    827   Function *DeleteF = NewF.getFunc();
    828   NewF.release();
    829   mergeTwoFunctions(OldF.getFunc(), DeleteF);
    830   return true;
    831 }
    832 
    833 // Remove a function from FnSet. If it was already in FnSet, add it to Deferred
    834 // so that we'll look at it in the next round.
    835 void MergeFunctions::remove(Function *F) {
    836   // We need to make sure we remove F, not a function "equal" to F per the
    837   // function equality comparator.
    838   //
    839   // The special "lookup only" ComparableFunction bypasses the expensive
    840   // function comparison in favour of a pointer comparison on the underlying
    841   // Function*'s.
    842   ComparableFunction CF = ComparableFunction(F, ComparableFunction::LookupOnly);
    843   if (FnSet.erase(CF)) {
    844     DEBUG(dbgs() << "Removed " << F->getName() << " from set and deferred it.\n");
    845     Deferred.push_back(F);
    846   }
    847 }
    848 
    849 // For each instruction used by the value, remove() the function that contains
    850 // the instruction. This should happen right before a call to RAUW.
    851 void MergeFunctions::removeUsers(Value *V) {
    852   std::vector<Value *> Worklist;
    853   Worklist.push_back(V);
    854   while (!Worklist.empty()) {
    855     Value *V = Worklist.back();
    856     Worklist.pop_back();
    857 
    858     for (Value::use_iterator UI = V->use_begin(), UE = V->use_end();
    859          UI != UE; ++UI) {
    860       Use &U = UI.getUse();
    861       if (Instruction *I = dyn_cast<Instruction>(U.getUser())) {
    862         remove(I->getParent()->getParent());
    863       } else if (isa<GlobalValue>(U.getUser())) {
    864         // do nothing
    865       } else if (Constant *C = dyn_cast<Constant>(U.getUser())) {
    866         for (Value::use_iterator CUI = C->use_begin(), CUE = C->use_end();
    867              CUI != CUE; ++CUI)
    868           Worklist.push_back(*CUI);
    869       }
    870     }
    871   }
    872 }
    873