Home | History | Annotate | Download | only in Utils
      1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass performs several transformations to transform natural loops into a
     11 // simpler form, which makes subsequent analyses and transformations simpler and
     12 // more effective.
     13 //
     14 // Loop pre-header insertion guarantees that there is a single, non-critical
     15 // entry edge from outside of the loop to the loop header.  This simplifies a
     16 // number of analyses and transformations, such as LICM.
     17 //
     18 // Loop exit-block insertion guarantees that all exit blocks from the loop
     19 // (blocks which are outside of the loop that have predecessors inside of the
     20 // loop) only have predecessors from inside of the loop (and are thus dominated
     21 // by the loop header).  This simplifies transformations such as store-sinking
     22 // that are built into LICM.
     23 //
     24 // This pass also guarantees that loops will have exactly one backedge.
     25 //
     26 // Indirectbr instructions introduce several complications. If the loop
     27 // contains or is entered by an indirectbr instruction, it may not be possible
     28 // to transform the loop and make these guarantees. Client code should check
     29 // that these conditions are true before relying on them.
     30 //
     31 // Note that the simplifycfg pass will clean up blocks which are split out but
     32 // end up being unnecessary, so usage of this pass should not pessimize
     33 // generated code.
     34 //
     35 // This pass obviously modifies the CFG, but updates loop information and
     36 // dominator information.
     37 //
     38 //===----------------------------------------------------------------------===//
     39 
     40 #define DEBUG_TYPE "loop-simplify"
     41 #include "llvm/Transforms/Scalar.h"
     42 #include "llvm/Constants.h"
     43 #include "llvm/Instructions.h"
     44 #include "llvm/IntrinsicInst.h"
     45 #include "llvm/Function.h"
     46 #include "llvm/LLVMContext.h"
     47 #include "llvm/Type.h"
     48 #include "llvm/Analysis/AliasAnalysis.h"
     49 #include "llvm/Analysis/Dominators.h"
     50 #include "llvm/Analysis/InstructionSimplify.h"
     51 #include "llvm/Analysis/LoopPass.h"
     52 #include "llvm/Analysis/ScalarEvolution.h"
     53 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     54 #include "llvm/Transforms/Utils/Local.h"
     55 #include "llvm/Support/CFG.h"
     56 #include "llvm/Support/Debug.h"
     57 #include "llvm/ADT/SetOperations.h"
     58 #include "llvm/ADT/SetVector.h"
     59 #include "llvm/ADT/Statistic.h"
     60 #include "llvm/ADT/DepthFirstIterator.h"
     61 using namespace llvm;
     62 
     63 STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted");
     64 STATISTIC(NumNested  , "Number of nested loops split out");
     65 
     66 namespace {
     67   struct LoopSimplify : public LoopPass {
     68     static char ID; // Pass identification, replacement for typeid
     69     LoopSimplify() : LoopPass(ID) {
     70       initializeLoopSimplifyPass(*PassRegistry::getPassRegistry());
     71     }
     72 
     73     // AA - If we have an alias analysis object to update, this is it, otherwise
     74     // this is null.
     75     AliasAnalysis *AA;
     76     LoopInfo *LI;
     77     DominatorTree *DT;
     78     ScalarEvolution *SE;
     79     Loop *L;
     80     virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
     81 
     82     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
     83       // We need loop information to identify the loops...
     84       AU.addRequired<DominatorTree>();
     85       AU.addPreserved<DominatorTree>();
     86 
     87       AU.addRequired<LoopInfo>();
     88       AU.addPreserved<LoopInfo>();
     89 
     90       AU.addPreserved<AliasAnalysis>();
     91       AU.addPreserved<ScalarEvolution>();
     92       AU.addPreservedID(BreakCriticalEdgesID);  // No critical edges added.
     93     }
     94 
     95     /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
     96     void verifyAnalysis() const;
     97 
     98   private:
     99     bool ProcessLoop(Loop *L, LPPassManager &LPM);
    100     BasicBlock *RewriteLoopExitBlock(Loop *L, BasicBlock *Exit);
    101     BasicBlock *InsertPreheaderForLoop(Loop *L);
    102     Loop *SeparateNestedLoop(Loop *L, LPPassManager &LPM);
    103     BasicBlock *InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader);
    104     void PlaceSplitBlockCarefully(BasicBlock *NewBB,
    105                                   SmallVectorImpl<BasicBlock*> &SplitPreds,
    106                                   Loop *L);
    107   };
    108 }
    109 
    110 char LoopSimplify::ID = 0;
    111 INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify",
    112                 "Canonicalize natural loops", true, false)
    113 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
    114 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
    115 INITIALIZE_PASS_END(LoopSimplify, "loop-simplify",
    116                 "Canonicalize natural loops", true, false)
    117 
    118 // Publicly exposed interface to pass...
    119 char &llvm::LoopSimplifyID = LoopSimplify::ID;
    120 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
    121 
    122 /// runOnLoop - Run down all loops in the CFG (recursively, but we could do
    123 /// it in any convenient order) inserting preheaders...
    124 ///
    125 bool LoopSimplify::runOnLoop(Loop *l, LPPassManager &LPM) {
    126   L = l;
    127   bool Changed = false;
    128   LI = &getAnalysis<LoopInfo>();
    129   AA = getAnalysisIfAvailable<AliasAnalysis>();
    130   DT = &getAnalysis<DominatorTree>();
    131   SE = getAnalysisIfAvailable<ScalarEvolution>();
    132 
    133   Changed |= ProcessLoop(L, LPM);
    134 
    135   return Changed;
    136 }
    137 
    138 /// ProcessLoop - Walk the loop structure in depth first order, ensuring that
    139 /// all loops have preheaders.
    140 ///
    141 bool LoopSimplify::ProcessLoop(Loop *L, LPPassManager &LPM) {
    142   bool Changed = false;
    143 ReprocessLoop:
    144 
    145   // Check to see that no blocks (other than the header) in this loop have
    146   // predecessors that are not in the loop.  This is not valid for natural
    147   // loops, but can occur if the blocks are unreachable.  Since they are
    148   // unreachable we can just shamelessly delete those CFG edges!
    149   for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
    150        BB != E; ++BB) {
    151     if (*BB == L->getHeader()) continue;
    152 
    153     SmallPtrSet<BasicBlock*, 4> BadPreds;
    154     for (pred_iterator PI = pred_begin(*BB),
    155          PE = pred_end(*BB); PI != PE; ++PI) {
    156       BasicBlock *P = *PI;
    157       if (!L->contains(P))
    158         BadPreds.insert(P);
    159     }
    160 
    161     // Delete each unique out-of-loop (and thus dead) predecessor.
    162     for (SmallPtrSet<BasicBlock*, 4>::iterator I = BadPreds.begin(),
    163          E = BadPreds.end(); I != E; ++I) {
    164 
    165       DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "
    166                    << (*I)->getName() << "\n");
    167 
    168       // Inform each successor of each dead pred.
    169       for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI)
    170         (*SI)->removePredecessor(*I);
    171       // Zap the dead pred's terminator and replace it with unreachable.
    172       TerminatorInst *TI = (*I)->getTerminator();
    173        TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
    174       (*I)->getTerminator()->eraseFromParent();
    175       new UnreachableInst((*I)->getContext(), *I);
    176       Changed = true;
    177     }
    178   }
    179 
    180   // If there are exiting blocks with branches on undef, resolve the undef in
    181   // the direction which will exit the loop. This will help simplify loop
    182   // trip count computations.
    183   SmallVector<BasicBlock*, 8> ExitingBlocks;
    184   L->getExitingBlocks(ExitingBlocks);
    185   for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(),
    186        E = ExitingBlocks.end(); I != E; ++I)
    187     if (BranchInst *BI = dyn_cast<BranchInst>((*I)->getTerminator()))
    188       if (BI->isConditional()) {
    189         if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) {
    190 
    191           DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in "
    192                        << (*I)->getName() << "\n");
    193 
    194           BI->setCondition(ConstantInt::get(Cond->getType(),
    195                                             !L->contains(BI->getSuccessor(0))));
    196           Changed = true;
    197         }
    198       }
    199 
    200   // Does the loop already have a preheader?  If so, don't insert one.
    201   BasicBlock *Preheader = L->getLoopPreheader();
    202   if (!Preheader) {
    203     Preheader = InsertPreheaderForLoop(L);
    204     if (Preheader) {
    205       ++NumInserted;
    206       Changed = true;
    207     }
    208   }
    209 
    210   // Next, check to make sure that all exit nodes of the loop only have
    211   // predecessors that are inside of the loop.  This check guarantees that the
    212   // loop preheader/header will dominate the exit blocks.  If the exit block has
    213   // predecessors from outside of the loop, split the edge now.
    214   SmallVector<BasicBlock*, 8> ExitBlocks;
    215   L->getExitBlocks(ExitBlocks);
    216 
    217   SmallSetVector<BasicBlock *, 8> ExitBlockSet(ExitBlocks.begin(),
    218                                                ExitBlocks.end());
    219   for (SmallSetVector<BasicBlock *, 8>::iterator I = ExitBlockSet.begin(),
    220          E = ExitBlockSet.end(); I != E; ++I) {
    221     BasicBlock *ExitBlock = *I;
    222     for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
    223          PI != PE; ++PI)
    224       // Must be exactly this loop: no subloops, parent loops, or non-loop preds
    225       // allowed.
    226       if (!L->contains(*PI)) {
    227         if (RewriteLoopExitBlock(L, ExitBlock)) {
    228           ++NumInserted;
    229           Changed = true;
    230         }
    231         break;
    232       }
    233   }
    234 
    235   // If the header has more than two predecessors at this point (from the
    236   // preheader and from multiple backedges), we must adjust the loop.
    237   BasicBlock *LoopLatch = L->getLoopLatch();
    238   if (!LoopLatch) {
    239     // If this is really a nested loop, rip it out into a child loop.  Don't do
    240     // this for loops with a giant number of backedges, just factor them into a
    241     // common backedge instead.
    242     if (L->getNumBackEdges() < 8) {
    243       if (SeparateNestedLoop(L, LPM)) {
    244         ++NumNested;
    245         // This is a big restructuring change, reprocess the whole loop.
    246         Changed = true;
    247         // GCC doesn't tail recursion eliminate this.
    248         goto ReprocessLoop;
    249       }
    250     }
    251 
    252     // If we either couldn't, or didn't want to, identify nesting of the loops,
    253     // insert a new block that all backedges target, then make it jump to the
    254     // loop header.
    255     LoopLatch = InsertUniqueBackedgeBlock(L, Preheader);
    256     if (LoopLatch) {
    257       ++NumInserted;
    258       Changed = true;
    259     }
    260   }
    261 
    262   // Scan over the PHI nodes in the loop header.  Since they now have only two
    263   // incoming values (the loop is canonicalized), we may have simplified the PHI
    264   // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
    265   PHINode *PN;
    266   for (BasicBlock::iterator I = L->getHeader()->begin();
    267        (PN = dyn_cast<PHINode>(I++)); )
    268     if (Value *V = SimplifyInstruction(PN, 0, DT)) {
    269       if (AA) AA->deleteValue(PN);
    270       if (SE) SE->forgetValue(PN);
    271       PN->replaceAllUsesWith(V);
    272       PN->eraseFromParent();
    273     }
    274 
    275   // If this loop has multiple exits and the exits all go to the same
    276   // block, attempt to merge the exits. This helps several passes, such
    277   // as LoopRotation, which do not support loops with multiple exits.
    278   // SimplifyCFG also does this (and this code uses the same utility
    279   // function), however this code is loop-aware, where SimplifyCFG is
    280   // not. That gives it the advantage of being able to hoist
    281   // loop-invariant instructions out of the way to open up more
    282   // opportunities, and the disadvantage of having the responsibility
    283   // to preserve dominator information.
    284   bool UniqueExit = true;
    285   if (!ExitBlocks.empty())
    286     for (unsigned i = 1, e = ExitBlocks.size(); i != e; ++i)
    287       if (ExitBlocks[i] != ExitBlocks[0]) {
    288         UniqueExit = false;
    289         break;
    290       }
    291   if (UniqueExit) {
    292     for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
    293       BasicBlock *ExitingBlock = ExitingBlocks[i];
    294       if (!ExitingBlock->getSinglePredecessor()) continue;
    295       BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
    296       if (!BI || !BI->isConditional()) continue;
    297       CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
    298       if (!CI || CI->getParent() != ExitingBlock) continue;
    299 
    300       // Attempt to hoist out all instructions except for the
    301       // comparison and the branch.
    302       bool AllInvariant = true;
    303       for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) {
    304         Instruction *Inst = I++;
    305         // Skip debug info intrinsics.
    306         if (isa<DbgInfoIntrinsic>(Inst))
    307           continue;
    308         if (Inst == CI)
    309           continue;
    310         if (!L->makeLoopInvariant(Inst, Changed,
    311                                   Preheader ? Preheader->getTerminator() : 0)) {
    312           AllInvariant = false;
    313           break;
    314         }
    315       }
    316       if (!AllInvariant) continue;
    317 
    318       // The block has now been cleared of all instructions except for
    319       // a comparison and a conditional branch. SimplifyCFG may be able
    320       // to fold it now.
    321       if (!FoldBranchToCommonDest(BI)) continue;
    322 
    323       // Success. The block is now dead, so remove it from the loop,
    324       // update the dominator tree and delete it.
    325       DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block "
    326                    << ExitingBlock->getName() << "\n");
    327 
    328       // If any reachable control flow within this loop has changed, notify
    329       // ScalarEvolution. Currently assume the parent loop doesn't change
    330       // (spliting edges doesn't count). If blocks, CFG edges, or other values
    331       // in the parent loop change, then we need call to forgetLoop() for the
    332       // parent instead.
    333       if (SE)
    334         SE->forgetLoop(L);
    335 
    336       assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock));
    337       Changed = true;
    338       LI->removeBlock(ExitingBlock);
    339 
    340       DomTreeNode *Node = DT->getNode(ExitingBlock);
    341       const std::vector<DomTreeNodeBase<BasicBlock> *> &Children =
    342         Node->getChildren();
    343       while (!Children.empty()) {
    344         DomTreeNode *Child = Children.front();
    345         DT->changeImmediateDominator(Child, Node->getIDom());
    346       }
    347       DT->eraseNode(ExitingBlock);
    348 
    349       BI->getSuccessor(0)->removePredecessor(ExitingBlock);
    350       BI->getSuccessor(1)->removePredecessor(ExitingBlock);
    351       ExitingBlock->eraseFromParent();
    352     }
    353   }
    354 
    355   return Changed;
    356 }
    357 
    358 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
    359 /// preheader, this method is called to insert one.  This method has two phases:
    360 /// preheader insertion and analysis updating.
    361 ///
    362 BasicBlock *LoopSimplify::InsertPreheaderForLoop(Loop *L) {
    363   BasicBlock *Header = L->getHeader();
    364 
    365   // Compute the set of predecessors of the loop that are not in the loop.
    366   SmallVector<BasicBlock*, 8> OutsideBlocks;
    367   for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
    368        PI != PE; ++PI) {
    369     BasicBlock *P = *PI;
    370     if (!L->contains(P)) {         // Coming in from outside the loop?
    371       // If the loop is branched to from an indirect branch, we won't
    372       // be able to fully transform the loop, because it prohibits
    373       // edge splitting.
    374       if (isa<IndirectBrInst>(P->getTerminator())) return 0;
    375 
    376       // Keep track of it.
    377       OutsideBlocks.push_back(P);
    378     }
    379   }
    380 
    381   // Split out the loop pre-header.
    382   BasicBlock *NewBB =
    383     SplitBlockPredecessors(Header, &OutsideBlocks[0], OutsideBlocks.size(),
    384                            ".preheader", this);
    385 
    386   NewBB->getTerminator()->setDebugLoc(Header->getFirstNonPHI()->getDebugLoc());
    387   DEBUG(dbgs() << "LoopSimplify: Creating pre-header " << NewBB->getName()
    388                << "\n");
    389 
    390   // Make sure that NewBB is put someplace intelligent, which doesn't mess up
    391   // code layout too horribly.
    392   PlaceSplitBlockCarefully(NewBB, OutsideBlocks, L);
    393 
    394   return NewBB;
    395 }
    396 
    397 /// RewriteLoopExitBlock - Ensure that the loop preheader dominates all exit
    398 /// blocks.  This method is used to split exit blocks that have predecessors
    399 /// outside of the loop.
    400 BasicBlock *LoopSimplify::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) {
    401   SmallVector<BasicBlock*, 8> LoopBlocks;
    402   for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) {
    403     BasicBlock *P = *I;
    404     if (L->contains(P)) {
    405       // Don't do this if the loop is exited via an indirect branch.
    406       if (isa<IndirectBrInst>(P->getTerminator())) return 0;
    407 
    408       LoopBlocks.push_back(P);
    409     }
    410   }
    411 
    412   assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?");
    413   BasicBlock *NewExitBB = 0;
    414 
    415   if (Exit->isLandingPad()) {
    416     SmallVector<BasicBlock*, 2> NewBBs;
    417     SplitLandingPadPredecessors(Exit, ArrayRef<BasicBlock*>(&LoopBlocks[0],
    418                                                             LoopBlocks.size()),
    419                                 ".loopexit", ".nonloopexit",
    420                                 this, NewBBs);
    421     NewExitBB = NewBBs[0];
    422   } else {
    423     NewExitBB = SplitBlockPredecessors(Exit, &LoopBlocks[0],
    424                                        LoopBlocks.size(), ".loopexit",
    425                                        this);
    426   }
    427 
    428   DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
    429                << NewExitBB->getName() << "\n");
    430   return NewExitBB;
    431 }
    432 
    433 /// AddBlockAndPredsToSet - Add the specified block, and all of its
    434 /// predecessors, to the specified set, if it's not already in there.  Stop
    435 /// predecessor traversal when we reach StopBlock.
    436 static void AddBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
    437                                   std::set<BasicBlock*> &Blocks) {
    438   std::vector<BasicBlock *> WorkList;
    439   WorkList.push_back(InputBB);
    440   do {
    441     BasicBlock *BB = WorkList.back(); WorkList.pop_back();
    442     if (Blocks.insert(BB).second && BB != StopBlock)
    443       // If BB is not already processed and it is not a stop block then
    444       // insert its predecessor in the work list
    445       for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
    446         BasicBlock *WBB = *I;
    447         WorkList.push_back(WBB);
    448       }
    449   } while(!WorkList.empty());
    450 }
    451 
    452 /// FindPHIToPartitionLoops - The first part of loop-nestification is to find a
    453 /// PHI node that tells us how to partition the loops.
    454 static PHINode *FindPHIToPartitionLoops(Loop *L, DominatorTree *DT,
    455                                         AliasAnalysis *AA, LoopInfo *LI) {
    456   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
    457     PHINode *PN = cast<PHINode>(I);
    458     ++I;
    459     if (Value *V = SimplifyInstruction(PN, 0, DT)) {
    460       // This is a degenerate PHI already, don't modify it!
    461       PN->replaceAllUsesWith(V);
    462       if (AA) AA->deleteValue(PN);
    463       PN->eraseFromParent();
    464       continue;
    465     }
    466 
    467     // Scan this PHI node looking for a use of the PHI node by itself.
    468     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    469       if (PN->getIncomingValue(i) == PN &&
    470           L->contains(PN->getIncomingBlock(i)))
    471         // We found something tasty to remove.
    472         return PN;
    473   }
    474   return 0;
    475 }
    476 
    477 // PlaceSplitBlockCarefully - If the block isn't already, move the new block to
    478 // right after some 'outside block' block.  This prevents the preheader from
    479 // being placed inside the loop body, e.g. when the loop hasn't been rotated.
    480 void LoopSimplify::PlaceSplitBlockCarefully(BasicBlock *NewBB,
    481                                        SmallVectorImpl<BasicBlock*> &SplitPreds,
    482                                             Loop *L) {
    483   // Check to see if NewBB is already well placed.
    484   Function::iterator BBI = NewBB; --BBI;
    485   for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
    486     if (&*BBI == SplitPreds[i])
    487       return;
    488   }
    489 
    490   // If it isn't already after an outside block, move it after one.  This is
    491   // always good as it makes the uncond branch from the outside block into a
    492   // fall-through.
    493 
    494   // Figure out *which* outside block to put this after.  Prefer an outside
    495   // block that neighbors a BB actually in the loop.
    496   BasicBlock *FoundBB = 0;
    497   for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
    498     Function::iterator BBI = SplitPreds[i];
    499     if (++BBI != NewBB->getParent()->end() &&
    500         L->contains(BBI)) {
    501       FoundBB = SplitPreds[i];
    502       break;
    503     }
    504   }
    505 
    506   // If our heuristic for a *good* bb to place this after doesn't find
    507   // anything, just pick something.  It's likely better than leaving it within
    508   // the loop.
    509   if (!FoundBB)
    510     FoundBB = SplitPreds[0];
    511   NewBB->moveAfter(FoundBB);
    512 }
    513 
    514 
    515 /// SeparateNestedLoop - If this loop has multiple backedges, try to pull one of
    516 /// them out into a nested loop.  This is important for code that looks like
    517 /// this:
    518 ///
    519 ///  Loop:
    520 ///     ...
    521 ///     br cond, Loop, Next
    522 ///     ...
    523 ///     br cond2, Loop, Out
    524 ///
    525 /// To identify this common case, we look at the PHI nodes in the header of the
    526 /// loop.  PHI nodes with unchanging values on one backedge correspond to values
    527 /// that change in the "outer" loop, but not in the "inner" loop.
    528 ///
    529 /// If we are able to separate out a loop, return the new outer loop that was
    530 /// created.
    531 ///
    532 Loop *LoopSimplify::SeparateNestedLoop(Loop *L, LPPassManager &LPM) {
    533   PHINode *PN = FindPHIToPartitionLoops(L, DT, AA, LI);
    534   if (PN == 0) return 0;  // No known way to partition.
    535 
    536   // Pull out all predecessors that have varying values in the loop.  This
    537   // handles the case when a PHI node has multiple instances of itself as
    538   // arguments.
    539   SmallVector<BasicBlock*, 8> OuterLoopPreds;
    540   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    541     if (PN->getIncomingValue(i) != PN ||
    542         !L->contains(PN->getIncomingBlock(i))) {
    543       // We can't split indirectbr edges.
    544       if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator()))
    545         return 0;
    546 
    547       OuterLoopPreds.push_back(PN->getIncomingBlock(i));
    548     }
    549 
    550   DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n");
    551 
    552   // If ScalarEvolution is around and knows anything about values in
    553   // this loop, tell it to forget them, because we're about to
    554   // substantially change it.
    555   if (SE)
    556     SE->forgetLoop(L);
    557 
    558   BasicBlock *Header = L->getHeader();
    559   BasicBlock *NewBB = SplitBlockPredecessors(Header, &OuterLoopPreds[0],
    560                                              OuterLoopPreds.size(),
    561                                              ".outer", this);
    562 
    563   // Make sure that NewBB is put someplace intelligent, which doesn't mess up
    564   // code layout too horribly.
    565   PlaceSplitBlockCarefully(NewBB, OuterLoopPreds, L);
    566 
    567   // Create the new outer loop.
    568   Loop *NewOuter = new Loop();
    569 
    570   // Change the parent loop to use the outer loop as its child now.
    571   if (Loop *Parent = L->getParentLoop())
    572     Parent->replaceChildLoopWith(L, NewOuter);
    573   else
    574     LI->changeTopLevelLoop(L, NewOuter);
    575 
    576   // L is now a subloop of our outer loop.
    577   NewOuter->addChildLoop(L);
    578 
    579   // Add the new loop to the pass manager queue.
    580   LPM.insertLoopIntoQueue(NewOuter);
    581 
    582   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
    583        I != E; ++I)
    584     NewOuter->addBlockEntry(*I);
    585 
    586   // Now reset the header in L, which had been moved by
    587   // SplitBlockPredecessors for the outer loop.
    588   L->moveToHeader(Header);
    589 
    590   // Determine which blocks should stay in L and which should be moved out to
    591   // the Outer loop now.
    592   std::set<BasicBlock*> BlocksInL;
    593   for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) {
    594     BasicBlock *P = *PI;
    595     if (DT->dominates(Header, P))
    596       AddBlockAndPredsToSet(P, Header, BlocksInL);
    597   }
    598 
    599   // Scan all of the loop children of L, moving them to OuterLoop if they are
    600   // not part of the inner loop.
    601   const std::vector<Loop*> &SubLoops = L->getSubLoops();
    602   for (size_t I = 0; I != SubLoops.size(); )
    603     if (BlocksInL.count(SubLoops[I]->getHeader()))
    604       ++I;   // Loop remains in L
    605     else
    606       NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I));
    607 
    608   // Now that we know which blocks are in L and which need to be moved to
    609   // OuterLoop, move any blocks that need it.
    610   for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
    611     BasicBlock *BB = L->getBlocks()[i];
    612     if (!BlocksInL.count(BB)) {
    613       // Move this block to the parent, updating the exit blocks sets
    614       L->removeBlockFromLoop(BB);
    615       if ((*LI)[BB] == L)
    616         LI->changeLoopFor(BB, NewOuter);
    617       --i;
    618     }
    619   }
    620 
    621   return NewOuter;
    622 }
    623 
    624 
    625 
    626 /// InsertUniqueBackedgeBlock - This method is called when the specified loop
    627 /// has more than one backedge in it.  If this occurs, revector all of these
    628 /// backedges to target a new basic block and have that block branch to the loop
    629 /// header.  This ensures that loops have exactly one backedge.
    630 ///
    631 BasicBlock *
    632 LoopSimplify::InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader) {
    633   assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
    634 
    635   // Get information about the loop
    636   BasicBlock *Header = L->getHeader();
    637   Function *F = Header->getParent();
    638 
    639   // Unique backedge insertion currently depends on having a preheader.
    640   if (!Preheader)
    641     return 0;
    642 
    643   // Figure out which basic blocks contain back-edges to the loop header.
    644   std::vector<BasicBlock*> BackedgeBlocks;
    645   for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){
    646     BasicBlock *P = *I;
    647 
    648     // Indirectbr edges cannot be split, so we must fail if we find one.
    649     if (isa<IndirectBrInst>(P->getTerminator()))
    650       return 0;
    651 
    652     if (P != Preheader) BackedgeBlocks.push_back(P);
    653   }
    654 
    655   // Create and insert the new backedge block...
    656   BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(),
    657                                            Header->getName()+".backedge", F);
    658   BranchInst *BETerminator = BranchInst::Create(Header, BEBlock);
    659 
    660   DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block "
    661                << BEBlock->getName() << "\n");
    662 
    663   // Move the new backedge block to right after the last backedge block.
    664   Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos;
    665   F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
    666 
    667   // Now that the block has been inserted into the function, create PHI nodes in
    668   // the backedge block which correspond to any PHI nodes in the header block.
    669   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
    670     PHINode *PN = cast<PHINode>(I);
    671     PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(),
    672                                      PN->getName()+".be", BETerminator);
    673     if (AA) AA->copyValue(PN, NewPN);
    674 
    675     // Loop over the PHI node, moving all entries except the one for the
    676     // preheader over to the new PHI node.
    677     unsigned PreheaderIdx = ~0U;
    678     bool HasUniqueIncomingValue = true;
    679     Value *UniqueValue = 0;
    680     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    681       BasicBlock *IBB = PN->getIncomingBlock(i);
    682       Value *IV = PN->getIncomingValue(i);
    683       if (IBB == Preheader) {
    684         PreheaderIdx = i;
    685       } else {
    686         NewPN->addIncoming(IV, IBB);
    687         if (HasUniqueIncomingValue) {
    688           if (UniqueValue == 0)
    689             UniqueValue = IV;
    690           else if (UniqueValue != IV)
    691             HasUniqueIncomingValue = false;
    692         }
    693       }
    694     }
    695 
    696     // Delete all of the incoming values from the old PN except the preheader's
    697     assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
    698     if (PreheaderIdx != 0) {
    699       PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
    700       PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
    701     }
    702     // Nuke all entries except the zero'th.
    703     for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
    704       PN->removeIncomingValue(e-i, false);
    705 
    706     // Finally, add the newly constructed PHI node as the entry for the BEBlock.
    707     PN->addIncoming(NewPN, BEBlock);
    708 
    709     // As an optimization, if all incoming values in the new PhiNode (which is a
    710     // subset of the incoming values of the old PHI node) have the same value,
    711     // eliminate the PHI Node.
    712     if (HasUniqueIncomingValue) {
    713       NewPN->replaceAllUsesWith(UniqueValue);
    714       if (AA) AA->deleteValue(NewPN);
    715       BEBlock->getInstList().erase(NewPN);
    716     }
    717   }
    718 
    719   // Now that all of the PHI nodes have been inserted and adjusted, modify the
    720   // backedge blocks to just to the BEBlock instead of the header.
    721   for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
    722     TerminatorInst *TI = BackedgeBlocks[i]->getTerminator();
    723     for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op)
    724       if (TI->getSuccessor(Op) == Header)
    725         TI->setSuccessor(Op, BEBlock);
    726   }
    727 
    728   //===--- Update all analyses which we must preserve now -----------------===//
    729 
    730   // Update Loop Information - we know that this block is now in the current
    731   // loop and all parent loops.
    732   L->addBasicBlockToLoop(BEBlock, LI->getBase());
    733 
    734   // Update dominator information
    735   DT->splitBlock(BEBlock);
    736 
    737   return BEBlock;
    738 }
    739 
    740 void LoopSimplify::verifyAnalysis() const {
    741   // It used to be possible to just assert L->isLoopSimplifyForm(), however
    742   // with the introduction of indirectbr, there are now cases where it's
    743   // not possible to transform a loop as necessary. We can at least check
    744   // that there is an indirectbr near any time there's trouble.
    745 
    746   // Indirectbr can interfere with preheader and unique backedge insertion.
    747   if (!L->getLoopPreheader() || !L->getLoopLatch()) {
    748     bool HasIndBrPred = false;
    749     for (pred_iterator PI = pred_begin(L->getHeader()),
    750          PE = pred_end(L->getHeader()); PI != PE; ++PI)
    751       if (isa<IndirectBrInst>((*PI)->getTerminator())) {
    752         HasIndBrPred = true;
    753         break;
    754       }
    755     assert(HasIndBrPred &&
    756            "LoopSimplify has no excuse for missing loop header info!");
    757     (void)HasIndBrPred;
    758   }
    759 
    760   // Indirectbr can interfere with exit block canonicalization.
    761   if (!L->hasDedicatedExits()) {
    762     bool HasIndBrExiting = false;
    763     SmallVector<BasicBlock*, 8> ExitingBlocks;
    764     L->getExitingBlocks(ExitingBlocks);
    765     for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
    766       if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) {
    767         HasIndBrExiting = true;
    768         break;
    769       }
    770     }
    771 
    772     assert(HasIndBrExiting &&
    773            "LoopSimplify has no excuse for missing exit block info!");
    774     (void)HasIndBrExiting;
    775   }
    776 }
    777