Home | History | Annotate | Download | only in Utils
      1 //===- LowerInvoke.cpp - Eliminate Invoke & Unwind instructions -----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This transformation is designed for use by code generators which do not yet
     11 // support stack unwinding.  This pass supports two models of exception handling
     12 // lowering, the 'cheap' support and the 'expensive' support.
     13 //
     14 // 'Cheap' exception handling support gives the program the ability to execute
     15 // any program which does not "throw an exception", by turning 'invoke'
     16 // instructions into calls and by turning 'unwind' instructions into calls to
     17 // abort().  If the program does dynamically use the unwind instruction, the
     18 // program will print a message then abort.
     19 //
     20 // 'Expensive' exception handling support gives the full exception handling
     21 // support to the program at the cost of making the 'invoke' instruction
     22 // really expensive.  It basically inserts setjmp/longjmp calls to emulate the
     23 // exception handling as necessary.
     24 //
     25 // Because the 'expensive' support slows down programs a lot, and EH is only
     26 // used for a subset of the programs, it must be specifically enabled by an
     27 // option.
     28 //
     29 // Note that after this pass runs the CFG is not entirely accurate (exceptional
     30 // control flow edges are not correct anymore) so only very simple things should
     31 // be done after the lowerinvoke pass has run (like generation of native code).
     32 // This should not be used as a general purpose "my LLVM-to-LLVM pass doesn't
     33 // support the invoke instruction yet" lowering pass.
     34 //
     35 //===----------------------------------------------------------------------===//
     36 
     37 #define DEBUG_TYPE "lowerinvoke"
     38 #include "llvm/Transforms/Scalar.h"
     39 #include "llvm/Constants.h"
     40 #include "llvm/DerivedTypes.h"
     41 #include "llvm/Instructions.h"
     42 #include "llvm/Intrinsics.h"
     43 #include "llvm/LLVMContext.h"
     44 #include "llvm/Module.h"
     45 #include "llvm/Pass.h"
     46 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     47 #include "llvm/Transforms/Utils/Local.h"
     48 #include "llvm/ADT/SmallVector.h"
     49 #include "llvm/ADT/Statistic.h"
     50 #include "llvm/Support/CommandLine.h"
     51 #include "llvm/Target/TargetLowering.h"
     52 #include <csetjmp>
     53 #include <set>
     54 using namespace llvm;
     55 
     56 STATISTIC(NumInvokes, "Number of invokes replaced");
     57 STATISTIC(NumUnwinds, "Number of unwinds replaced");
     58 STATISTIC(NumSpilled, "Number of registers live across unwind edges");
     59 
     60 static cl::opt<bool> ExpensiveEHSupport("enable-correct-eh-support",
     61  cl::desc("Make the -lowerinvoke pass insert expensive, but correct, EH code"));
     62 
     63 namespace {
     64   class LowerInvoke : public FunctionPass {
     65     // Used for both models.
     66     Constant *AbortFn;
     67 
     68     // Used for expensive EH support.
     69     StructType *JBLinkTy;
     70     GlobalVariable *JBListHead;
     71     Constant *SetJmpFn, *LongJmpFn, *StackSaveFn, *StackRestoreFn;
     72     bool useExpensiveEHSupport;
     73 
     74     // We peek in TLI to grab the target's jmp_buf size and alignment
     75     const TargetLowering *TLI;
     76 
     77   public:
     78     static char ID; // Pass identification, replacement for typeid
     79     explicit LowerInvoke(const TargetLowering *tli = NULL,
     80                          bool useExpensiveEHSupport = ExpensiveEHSupport)
     81       : FunctionPass(ID), useExpensiveEHSupport(useExpensiveEHSupport),
     82         TLI(tli) {
     83       initializeLowerInvokePass(*PassRegistry::getPassRegistry());
     84     }
     85     bool doInitialization(Module &M);
     86     bool runOnFunction(Function &F);
     87 
     88     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
     89       // This is a cluster of orthogonal Transforms
     90       AU.addPreserved("mem2reg");
     91       AU.addPreservedID(LowerSwitchID);
     92     }
     93 
     94   private:
     95     bool insertCheapEHSupport(Function &F);
     96     void splitLiveRangesLiveAcrossInvokes(SmallVectorImpl<InvokeInst*>&Invokes);
     97     void rewriteExpensiveInvoke(InvokeInst *II, unsigned InvokeNo,
     98                                 AllocaInst *InvokeNum, AllocaInst *StackPtr,
     99                                 SwitchInst *CatchSwitch);
    100     bool insertExpensiveEHSupport(Function &F);
    101   };
    102 }
    103 
    104 char LowerInvoke::ID = 0;
    105 INITIALIZE_PASS(LowerInvoke, "lowerinvoke",
    106                 "Lower invoke and unwind, for unwindless code generators",
    107                 false, false)
    108 
    109 char &llvm::LowerInvokePassID = LowerInvoke::ID;
    110 
    111 // Public Interface To the LowerInvoke pass.
    112 FunctionPass *llvm::createLowerInvokePass(const TargetLowering *TLI) {
    113   return new LowerInvoke(TLI, ExpensiveEHSupport);
    114 }
    115 FunctionPass *llvm::createLowerInvokePass(const TargetLowering *TLI,
    116                                           bool useExpensiveEHSupport) {
    117   return new LowerInvoke(TLI, useExpensiveEHSupport);
    118 }
    119 
    120 // doInitialization - Make sure that there is a prototype for abort in the
    121 // current module.
    122 bool LowerInvoke::doInitialization(Module &M) {
    123   Type *VoidPtrTy = Type::getInt8PtrTy(M.getContext());
    124   if (useExpensiveEHSupport) {
    125     // Insert a type for the linked list of jump buffers.
    126     unsigned JBSize = TLI ? TLI->getJumpBufSize() : 0;
    127     JBSize = JBSize ? JBSize : 200;
    128     Type *JmpBufTy = ArrayType::get(VoidPtrTy, JBSize);
    129 
    130     JBLinkTy = StructType::create(M.getContext(), "llvm.sjljeh.jmpbufty");
    131     Type *Elts[] = { JmpBufTy, PointerType::getUnqual(JBLinkTy) };
    132     JBLinkTy->setBody(Elts);
    133 
    134     Type *PtrJBList = PointerType::getUnqual(JBLinkTy);
    135 
    136     // Now that we've done that, insert the jmpbuf list head global, unless it
    137     // already exists.
    138     if (!(JBListHead = M.getGlobalVariable("llvm.sjljeh.jblist", PtrJBList))) {
    139       JBListHead = new GlobalVariable(M, PtrJBList, false,
    140                                       GlobalValue::LinkOnceAnyLinkage,
    141                                       Constant::getNullValue(PtrJBList),
    142                                       "llvm.sjljeh.jblist");
    143     }
    144 
    145 // VisualStudio defines setjmp as _setjmp
    146 #if defined(_MSC_VER) && defined(setjmp) && \
    147                          !defined(setjmp_undefined_for_msvc)
    148 #  pragma push_macro("setjmp")
    149 #  undef setjmp
    150 #  define setjmp_undefined_for_msvc
    151 #endif
    152 
    153     SetJmpFn = Intrinsic::getDeclaration(&M, Intrinsic::setjmp);
    154 
    155 #if defined(_MSC_VER) && defined(setjmp_undefined_for_msvc)
    156    // let's return it to _setjmp state
    157 #  pragma pop_macro("setjmp")
    158 #  undef setjmp_undefined_for_msvc
    159 #endif
    160 
    161     LongJmpFn = Intrinsic::getDeclaration(&M, Intrinsic::longjmp);
    162     StackSaveFn = Intrinsic::getDeclaration(&M, Intrinsic::stacksave);
    163     StackRestoreFn = Intrinsic::getDeclaration(&M, Intrinsic::stackrestore);
    164   }
    165 
    166   // We need the 'write' and 'abort' functions for both models.
    167   AbortFn = M.getOrInsertFunction("abort", Type::getVoidTy(M.getContext()),
    168                                   (Type *)0);
    169   return true;
    170 }
    171 
    172 bool LowerInvoke::insertCheapEHSupport(Function &F) {
    173   bool Changed = false;
    174   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
    175     if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
    176       SmallVector<Value*,16> CallArgs(II->op_begin(), II->op_end() - 3);
    177       // Insert a normal call instruction...
    178       CallInst *NewCall = CallInst::Create(II->getCalledValue(),
    179                                            CallArgs, "", II);
    180       NewCall->takeName(II);
    181       NewCall->setCallingConv(II->getCallingConv());
    182       NewCall->setAttributes(II->getAttributes());
    183       NewCall->setDebugLoc(II->getDebugLoc());
    184       II->replaceAllUsesWith(NewCall);
    185 
    186       // Insert an unconditional branch to the normal destination.
    187       BranchInst::Create(II->getNormalDest(), II);
    188 
    189       // Remove any PHI node entries from the exception destination.
    190       II->getUnwindDest()->removePredecessor(BB);
    191 
    192       // Remove the invoke instruction now.
    193       BB->getInstList().erase(II);
    194 
    195       ++NumInvokes; Changed = true;
    196     } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
    197       // Insert a call to abort()
    198       CallInst::Create(AbortFn, "", UI)->setTailCall();
    199 
    200       // Insert a return instruction.  This really should be a "barrier", as it
    201       // is unreachable.
    202       ReturnInst::Create(F.getContext(),
    203                          F.getReturnType()->isVoidTy() ?
    204                           0 : Constant::getNullValue(F.getReturnType()), UI);
    205 
    206       // Remove the unwind instruction now.
    207       BB->getInstList().erase(UI);
    208 
    209       ++NumUnwinds; Changed = true;
    210     }
    211   return Changed;
    212 }
    213 
    214 /// rewriteExpensiveInvoke - Insert code and hack the function to replace the
    215 /// specified invoke instruction with a call.
    216 void LowerInvoke::rewriteExpensiveInvoke(InvokeInst *II, unsigned InvokeNo,
    217                                          AllocaInst *InvokeNum,
    218                                          AllocaInst *StackPtr,
    219                                          SwitchInst *CatchSwitch) {
    220   ConstantInt *InvokeNoC = ConstantInt::get(Type::getInt32Ty(II->getContext()),
    221                                             InvokeNo);
    222 
    223   // If the unwind edge has phi nodes, split the edge.
    224   if (isa<PHINode>(II->getUnwindDest()->begin())) {
    225     SplitCriticalEdge(II, 1, this);
    226 
    227     // If there are any phi nodes left, they must have a single predecessor.
    228     while (PHINode *PN = dyn_cast<PHINode>(II->getUnwindDest()->begin())) {
    229       PN->replaceAllUsesWith(PN->getIncomingValue(0));
    230       PN->eraseFromParent();
    231     }
    232   }
    233 
    234   // Insert a store of the invoke num before the invoke and store zero into the
    235   // location afterward.
    236   new StoreInst(InvokeNoC, InvokeNum, true, II);  // volatile
    237 
    238   // Insert a store of the stack ptr before the invoke, so we can restore it
    239   // later in the exception case.
    240   CallInst* StackSaveRet = CallInst::Create(StackSaveFn, "ssret", II);
    241   new StoreInst(StackSaveRet, StackPtr, true, II); // volatile
    242 
    243   BasicBlock::iterator NI = II->getNormalDest()->getFirstInsertionPt();
    244   // nonvolatile.
    245   new StoreInst(Constant::getNullValue(Type::getInt32Ty(II->getContext())),
    246                 InvokeNum, false, NI);
    247 
    248   Instruction* StackPtrLoad =
    249     new LoadInst(StackPtr, "stackptr.restore", true,
    250                  II->getUnwindDest()->getFirstInsertionPt());
    251   CallInst::Create(StackRestoreFn, StackPtrLoad, "")->insertAfter(StackPtrLoad);
    252 
    253   // Add a switch case to our unwind block.
    254   CatchSwitch->addCase(InvokeNoC, II->getUnwindDest());
    255 
    256   // Insert a normal call instruction.
    257   SmallVector<Value*,16> CallArgs(II->op_begin(), II->op_end() - 3);
    258   CallInst *NewCall = CallInst::Create(II->getCalledValue(),
    259                                        CallArgs, "", II);
    260   NewCall->takeName(II);
    261   NewCall->setCallingConv(II->getCallingConv());
    262   NewCall->setAttributes(II->getAttributes());
    263   NewCall->setDebugLoc(II->getDebugLoc());
    264   II->replaceAllUsesWith(NewCall);
    265 
    266   // Replace the invoke with an uncond branch.
    267   BranchInst::Create(II->getNormalDest(), NewCall->getParent());
    268   II->eraseFromParent();
    269 }
    270 
    271 /// MarkBlocksLiveIn - Insert BB and all of its predescessors into LiveBBs until
    272 /// we reach blocks we've already seen.
    273 static void MarkBlocksLiveIn(BasicBlock *BB, std::set<BasicBlock*> &LiveBBs) {
    274   if (!LiveBBs.insert(BB).second) return; // already been here.
    275 
    276   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
    277     MarkBlocksLiveIn(*PI, LiveBBs);
    278 }
    279 
    280 // First thing we need to do is scan the whole function for values that are
    281 // live across unwind edges.  Each value that is live across an unwind edge
    282 // we spill into a stack location, guaranteeing that there is nothing live
    283 // across the unwind edge.  This process also splits all critical edges
    284 // coming out of invoke's.
    285 void LowerInvoke::
    286 splitLiveRangesLiveAcrossInvokes(SmallVectorImpl<InvokeInst*> &Invokes) {
    287   // First step, split all critical edges from invoke instructions.
    288   for (unsigned i = 0, e = Invokes.size(); i != e; ++i) {
    289     InvokeInst *II = Invokes[i];
    290     SplitCriticalEdge(II, 0, this);
    291     SplitCriticalEdge(II, 1, this);
    292     assert(!isa<PHINode>(II->getNormalDest()) &&
    293            !isa<PHINode>(II->getUnwindDest()) &&
    294            "critical edge splitting left single entry phi nodes?");
    295   }
    296 
    297   Function *F = Invokes.back()->getParent()->getParent();
    298 
    299   // To avoid having to handle incoming arguments specially, we lower each arg
    300   // to a copy instruction in the entry block.  This ensures that the argument
    301   // value itself cannot be live across the entry block.
    302   BasicBlock::iterator AfterAllocaInsertPt = F->begin()->begin();
    303   while (isa<AllocaInst>(AfterAllocaInsertPt) &&
    304         isa<ConstantInt>(cast<AllocaInst>(AfterAllocaInsertPt)->getArraySize()))
    305     ++AfterAllocaInsertPt;
    306   for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
    307        AI != E; ++AI) {
    308     Type *Ty = AI->getType();
    309     // Aggregate types can't be cast, but are legal argument types, so we have
    310     // to handle them differently. We use an extract/insert pair as a
    311     // lightweight method to achieve the same goal.
    312     if (isa<StructType>(Ty) || isa<ArrayType>(Ty) || isa<VectorType>(Ty)) {
    313       Instruction *EI = ExtractValueInst::Create(AI, 0, "",AfterAllocaInsertPt);
    314       Instruction *NI = InsertValueInst::Create(AI, EI, 0);
    315       NI->insertAfter(EI);
    316       AI->replaceAllUsesWith(NI);
    317       // Set the operand of the instructions back to the AllocaInst.
    318       EI->setOperand(0, AI);
    319       NI->setOperand(0, AI);
    320     } else {
    321       // This is always a no-op cast because we're casting AI to AI->getType()
    322       // so src and destination types are identical. BitCast is the only
    323       // possibility.
    324       CastInst *NC = new BitCastInst(
    325         AI, AI->getType(), AI->getName()+".tmp", AfterAllocaInsertPt);
    326       AI->replaceAllUsesWith(NC);
    327       // Set the operand of the cast instruction back to the AllocaInst.
    328       // Normally it's forbidden to replace a CastInst's operand because it
    329       // could cause the opcode to reflect an illegal conversion. However,
    330       // we're replacing it here with the same value it was constructed with.
    331       // We do this because the above replaceAllUsesWith() clobbered the
    332       // operand, but we want this one to remain.
    333       NC->setOperand(0, AI);
    334     }
    335   }
    336 
    337   // Finally, scan the code looking for instructions with bad live ranges.
    338   for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
    339     for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) {
    340       // Ignore obvious cases we don't have to handle.  In particular, most
    341       // instructions either have no uses or only have a single use inside the
    342       // current block.  Ignore them quickly.
    343       Instruction *Inst = II;
    344       if (Inst->use_empty()) continue;
    345       if (Inst->hasOneUse() &&
    346           cast<Instruction>(Inst->use_back())->getParent() == BB &&
    347           !isa<PHINode>(Inst->use_back())) continue;
    348 
    349       // If this is an alloca in the entry block, it's not a real register
    350       // value.
    351       if (AllocaInst *AI = dyn_cast<AllocaInst>(Inst))
    352         if (isa<ConstantInt>(AI->getArraySize()) && BB == F->begin())
    353           continue;
    354 
    355       // Avoid iterator invalidation by copying users to a temporary vector.
    356       SmallVector<Instruction*,16> Users;
    357       for (Value::use_iterator UI = Inst->use_begin(), E = Inst->use_end();
    358            UI != E; ++UI) {
    359         Instruction *User = cast<Instruction>(*UI);
    360         if (User->getParent() != BB || isa<PHINode>(User))
    361           Users.push_back(User);
    362       }
    363 
    364       // Scan all of the uses and see if the live range is live across an unwind
    365       // edge.  If we find a use live across an invoke edge, create an alloca
    366       // and spill the value.
    367       std::set<InvokeInst*> InvokesWithStoreInserted;
    368 
    369       // Find all of the blocks that this value is live in.
    370       std::set<BasicBlock*> LiveBBs;
    371       LiveBBs.insert(Inst->getParent());
    372       while (!Users.empty()) {
    373         Instruction *U = Users.back();
    374         Users.pop_back();
    375 
    376         if (!isa<PHINode>(U)) {
    377           MarkBlocksLiveIn(U->getParent(), LiveBBs);
    378         } else {
    379           // Uses for a PHI node occur in their predecessor block.
    380           PHINode *PN = cast<PHINode>(U);
    381           for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    382             if (PN->getIncomingValue(i) == Inst)
    383               MarkBlocksLiveIn(PN->getIncomingBlock(i), LiveBBs);
    384         }
    385       }
    386 
    387       // Now that we know all of the blocks that this thing is live in, see if
    388       // it includes any of the unwind locations.
    389       bool NeedsSpill = false;
    390       for (unsigned i = 0, e = Invokes.size(); i != e; ++i) {
    391         BasicBlock *UnwindBlock = Invokes[i]->getUnwindDest();
    392         if (UnwindBlock != BB && LiveBBs.count(UnwindBlock)) {
    393           NeedsSpill = true;
    394         }
    395       }
    396 
    397       // If we decided we need a spill, do it.
    398       if (NeedsSpill) {
    399         ++NumSpilled;
    400         DemoteRegToStack(*Inst, true);
    401       }
    402     }
    403 }
    404 
    405 bool LowerInvoke::insertExpensiveEHSupport(Function &F) {
    406   SmallVector<ReturnInst*,16> Returns;
    407   SmallVector<UnwindInst*,16> Unwinds;
    408   SmallVector<InvokeInst*,16> Invokes;
    409   UnreachableInst* UnreachablePlaceholder = 0;
    410 
    411   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
    412     if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
    413       // Remember all return instructions in case we insert an invoke into this
    414       // function.
    415       Returns.push_back(RI);
    416     } else if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
    417       Invokes.push_back(II);
    418     } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
    419       Unwinds.push_back(UI);
    420     }
    421 
    422   if (Unwinds.empty() && Invokes.empty()) return false;
    423 
    424   NumInvokes += Invokes.size();
    425   NumUnwinds += Unwinds.size();
    426 
    427   // TODO: This is not an optimal way to do this.  In particular, this always
    428   // inserts setjmp calls into the entries of functions with invoke instructions
    429   // even though there are possibly paths through the function that do not
    430   // execute any invokes.  In particular, for functions with early exits, e.g.
    431   // the 'addMove' method in hexxagon, it would be nice to not have to do the
    432   // setjmp stuff on the early exit path.  This requires a bit of dataflow, but
    433   // would not be too hard to do.
    434 
    435   // If we have an invoke instruction, insert a setjmp that dominates all
    436   // invokes.  After the setjmp, use a cond branch that goes to the original
    437   // code path on zero, and to a designated 'catch' block of nonzero.
    438   Value *OldJmpBufPtr = 0;
    439   if (!Invokes.empty()) {
    440     // First thing we need to do is scan the whole function for values that are
    441     // live across unwind edges.  Each value that is live across an unwind edge
    442     // we spill into a stack location, guaranteeing that there is nothing live
    443     // across the unwind edge.  This process also splits all critical edges
    444     // coming out of invoke's.
    445     splitLiveRangesLiveAcrossInvokes(Invokes);
    446 
    447     BasicBlock *EntryBB = F.begin();
    448 
    449     // Create an alloca for the incoming jump buffer ptr and the new jump buffer
    450     // that needs to be restored on all exits from the function.  This is an
    451     // alloca because the value needs to be live across invokes.
    452     unsigned Align = TLI ? TLI->getJumpBufAlignment() : 0;
    453     AllocaInst *JmpBuf =
    454       new AllocaInst(JBLinkTy, 0, Align,
    455                      "jblink", F.begin()->begin());
    456 
    457     Value *Idx[] = { Constant::getNullValue(Type::getInt32Ty(F.getContext())),
    458                      ConstantInt::get(Type::getInt32Ty(F.getContext()), 1) };
    459     OldJmpBufPtr = GetElementPtrInst::Create(JmpBuf, Idx, "OldBuf",
    460                                              EntryBB->getTerminator());
    461 
    462     // Copy the JBListHead to the alloca.
    463     Value *OldBuf = new LoadInst(JBListHead, "oldjmpbufptr", true,
    464                                  EntryBB->getTerminator());
    465     new StoreInst(OldBuf, OldJmpBufPtr, true, EntryBB->getTerminator());
    466 
    467     // Add the new jumpbuf to the list.
    468     new StoreInst(JmpBuf, JBListHead, true, EntryBB->getTerminator());
    469 
    470     // Create the catch block.  The catch block is basically a big switch
    471     // statement that goes to all of the invoke catch blocks.
    472     BasicBlock *CatchBB =
    473             BasicBlock::Create(F.getContext(), "setjmp.catch", &F);
    474 
    475     // Create an alloca which keeps track of the stack pointer before every
    476     // invoke, this allows us to properly restore the stack pointer after
    477     // long jumping.
    478     AllocaInst *StackPtr = new AllocaInst(Type::getInt8PtrTy(F.getContext()), 0,
    479                                           "stackptr", EntryBB->begin());
    480 
    481     // Create an alloca which keeps track of which invoke is currently
    482     // executing.  For normal calls it contains zero.
    483     AllocaInst *InvokeNum = new AllocaInst(Type::getInt32Ty(F.getContext()), 0,
    484                                            "invokenum",EntryBB->begin());
    485     new StoreInst(ConstantInt::get(Type::getInt32Ty(F.getContext()), 0),
    486                   InvokeNum, true, EntryBB->getTerminator());
    487 
    488     // Insert a load in the Catch block, and a switch on its value.  By default,
    489     // we go to a block that just does an unwind (which is the correct action
    490     // for a standard call). We insert an unreachable instruction here and
    491     // modify the block to jump to the correct unwinding pad later.
    492     BasicBlock *UnwindBB = BasicBlock::Create(F.getContext(), "unwindbb", &F);
    493     UnreachablePlaceholder = new UnreachableInst(F.getContext(), UnwindBB);
    494 
    495     Value *CatchLoad = new LoadInst(InvokeNum, "invoke.num", true, CatchBB);
    496     SwitchInst *CatchSwitch =
    497       SwitchInst::Create(CatchLoad, UnwindBB, Invokes.size(), CatchBB);
    498 
    499     // Now that things are set up, insert the setjmp call itself.
    500 
    501     // Split the entry block to insert the conditional branch for the setjmp.
    502     BasicBlock *ContBlock = EntryBB->splitBasicBlock(EntryBB->getTerminator(),
    503                                                      "setjmp.cont");
    504 
    505     Idx[1] = ConstantInt::get(Type::getInt32Ty(F.getContext()), 0);
    506     Value *JmpBufPtr = GetElementPtrInst::Create(JmpBuf, Idx, "TheJmpBuf",
    507                                                  EntryBB->getTerminator());
    508     JmpBufPtr = new BitCastInst(JmpBufPtr,
    509                         Type::getInt8PtrTy(F.getContext()),
    510                                 "tmp", EntryBB->getTerminator());
    511     Value *SJRet = CallInst::Create(SetJmpFn, JmpBufPtr, "sjret",
    512                                     EntryBB->getTerminator());
    513 
    514     // Compare the return value to zero.
    515     Value *IsNormal = new ICmpInst(EntryBB->getTerminator(),
    516                                    ICmpInst::ICMP_EQ, SJRet,
    517                                    Constant::getNullValue(SJRet->getType()),
    518                                    "notunwind");
    519     // Nuke the uncond branch.
    520     EntryBB->getTerminator()->eraseFromParent();
    521 
    522     // Put in a new condbranch in its place.
    523     BranchInst::Create(ContBlock, CatchBB, IsNormal, EntryBB);
    524 
    525     // At this point, we are all set up, rewrite each invoke instruction.
    526     for (unsigned i = 0, e = Invokes.size(); i != e; ++i)
    527       rewriteExpensiveInvoke(Invokes[i], i+1, InvokeNum, StackPtr, CatchSwitch);
    528   }
    529 
    530   // We know that there is at least one unwind.
    531 
    532   // Create three new blocks, the block to load the jmpbuf ptr and compare
    533   // against null, the block to do the longjmp, and the error block for if it
    534   // is null.  Add them at the end of the function because they are not hot.
    535   BasicBlock *UnwindHandler = BasicBlock::Create(F.getContext(),
    536                                                 "dounwind", &F);
    537   BasicBlock *UnwindBlock = BasicBlock::Create(F.getContext(), "unwind", &F);
    538   BasicBlock *TermBlock = BasicBlock::Create(F.getContext(), "unwinderror", &F);
    539 
    540   // If this function contains an invoke, restore the old jumpbuf ptr.
    541   Value *BufPtr;
    542   if (OldJmpBufPtr) {
    543     // Before the return, insert a copy from the saved value to the new value.
    544     BufPtr = new LoadInst(OldJmpBufPtr, "oldjmpbufptr", UnwindHandler);
    545     new StoreInst(BufPtr, JBListHead, UnwindHandler);
    546   } else {
    547     BufPtr = new LoadInst(JBListHead, "ehlist", UnwindHandler);
    548   }
    549 
    550   // Load the JBList, if it's null, then there was no catch!
    551   Value *NotNull = new ICmpInst(*UnwindHandler, ICmpInst::ICMP_NE, BufPtr,
    552                                 Constant::getNullValue(BufPtr->getType()),
    553                                 "notnull");
    554   BranchInst::Create(UnwindBlock, TermBlock, NotNull, UnwindHandler);
    555 
    556   // Create the block to do the longjmp.
    557   // Get a pointer to the jmpbuf and longjmp.
    558   Value *Idx[] = { Constant::getNullValue(Type::getInt32Ty(F.getContext())),
    559                    ConstantInt::get(Type::getInt32Ty(F.getContext()), 0) };
    560   Idx[0] = GetElementPtrInst::Create(BufPtr, Idx, "JmpBuf", UnwindBlock);
    561   Idx[0] = new BitCastInst(Idx[0],
    562              Type::getInt8PtrTy(F.getContext()),
    563                            "tmp", UnwindBlock);
    564   Idx[1] = ConstantInt::get(Type::getInt32Ty(F.getContext()), 1);
    565   CallInst::Create(LongJmpFn, Idx, "", UnwindBlock);
    566   new UnreachableInst(F.getContext(), UnwindBlock);
    567 
    568   // Set up the term block ("throw without a catch").
    569   new UnreachableInst(F.getContext(), TermBlock);
    570 
    571   // Insert a call to abort()
    572   CallInst::Create(AbortFn, "",
    573                    TermBlock->getTerminator())->setTailCall();
    574 
    575 
    576   // Replace all unwinds with a branch to the unwind handler.
    577   for (unsigned i = 0, e = Unwinds.size(); i != e; ++i) {
    578     BranchInst::Create(UnwindHandler, Unwinds[i]);
    579     Unwinds[i]->eraseFromParent();
    580   }
    581 
    582   // Replace the inserted unreachable with a branch to the unwind handler.
    583   if (UnreachablePlaceholder) {
    584     BranchInst::Create(UnwindHandler, UnreachablePlaceholder);
    585     UnreachablePlaceholder->eraseFromParent();
    586   }
    587 
    588   // Finally, for any returns from this function, if this function contains an
    589   // invoke, restore the old jmpbuf pointer to its input value.
    590   if (OldJmpBufPtr) {
    591     for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
    592       ReturnInst *R = Returns[i];
    593 
    594       // Before the return, insert a copy from the saved value to the new value.
    595       Value *OldBuf = new LoadInst(OldJmpBufPtr, "oldjmpbufptr", true, R);
    596       new StoreInst(OldBuf, JBListHead, true, R);
    597     }
    598   }
    599 
    600   return true;
    601 }
    602 
    603 bool LowerInvoke::runOnFunction(Function &F) {
    604   if (useExpensiveEHSupport)
    605     return insertExpensiveEHSupport(F);
    606   else
    607     return insertCheapEHSupport(F);
    608 }
    609