Home | History | Annotate | Download | only in ADT
      1 //===----- llvm/unittest/ADT/SCCIteratorTest.cpp - SCCIterator tests ------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #include <limits.h>
     11 #include "llvm/ADT/GraphTraits.h"
     12 #include "llvm/ADT/SCCIterator.h"
     13 #include "gtest/gtest.h"
     14 
     15 using namespace llvm;
     16 
     17 namespace llvm {
     18 
     19 /// Graph<N> - A graph with N nodes.  Note that N can be at most 8.
     20 template <unsigned N>
     21 class Graph {
     22 private:
     23   // Disable copying.
     24   Graph(const Graph&);
     25   Graph& operator=(const Graph&);
     26 
     27   static void ValidateIndex(unsigned Idx) {
     28     assert(Idx < N && "Invalid node index!");
     29   }
     30 public:
     31 
     32   /// NodeSubset - A subset of the graph's nodes.
     33   class NodeSubset {
     34     typedef unsigned char BitVector; // Where the limitation N <= 8 comes from.
     35     BitVector Elements;
     36     NodeSubset(BitVector e) : Elements(e) {}
     37   public:
     38     /// NodeSubset - Default constructor, creates an empty subset.
     39     NodeSubset() : Elements(0) {
     40       assert(N <= sizeof(BitVector)*CHAR_BIT && "Graph too big!");
     41     }
     42     /// NodeSubset - Copy constructor.
     43     NodeSubset(const NodeSubset &other) : Elements(other.Elements) {}
     44 
     45     /// Comparison operators.
     46     bool operator==(const NodeSubset &other) const {
     47       return other.Elements == this->Elements;
     48     }
     49     bool operator!=(const NodeSubset &other) const {
     50       return !(*this == other);
     51     }
     52 
     53     /// AddNode - Add the node with the given index to the subset.
     54     void AddNode(unsigned Idx) {
     55       ValidateIndex(Idx);
     56       Elements |= 1U << Idx;
     57     }
     58 
     59     /// DeleteNode - Remove the node with the given index from the subset.
     60     void DeleteNode(unsigned Idx) {
     61       ValidateIndex(Idx);
     62       Elements &= ~(1U << Idx);
     63     }
     64 
     65     /// count - Return true if the node with the given index is in the subset.
     66     bool count(unsigned Idx) {
     67       ValidateIndex(Idx);
     68       return (Elements & (1U << Idx)) != 0;
     69     }
     70 
     71     /// isEmpty - Return true if this is the empty set.
     72     bool isEmpty() const {
     73       return Elements == 0;
     74     }
     75 
     76     /// isSubsetOf - Return true if this set is a subset of the given one.
     77     bool isSubsetOf(const NodeSubset &other) const {
     78       return (this->Elements | other.Elements) == other.Elements;
     79     }
     80 
     81     /// Complement - Return the complement of this subset.
     82     NodeSubset Complement() const {
     83       return ~(unsigned)this->Elements & ((1U << N) - 1);
     84     }
     85 
     86     /// Join - Return the union of this subset and the given one.
     87     NodeSubset Join(const NodeSubset &other) const {
     88       return this->Elements | other.Elements;
     89     }
     90 
     91     /// Meet - Return the intersection of this subset and the given one.
     92     NodeSubset Meet(const NodeSubset &other) const {
     93       return this->Elements & other.Elements;
     94     }
     95   };
     96 
     97   /// NodeType - Node index and set of children of the node.
     98   typedef std::pair<unsigned, NodeSubset> NodeType;
     99 
    100 private:
    101   /// Nodes - The list of nodes for this graph.
    102   NodeType Nodes[N];
    103 public:
    104 
    105   /// Graph - Default constructor.  Creates an empty graph.
    106   Graph() {
    107     // Let each node know which node it is.  This allows us to find the start of
    108     // the Nodes array given a pointer to any element of it.
    109     for (unsigned i = 0; i != N; ++i)
    110       Nodes[i].first = i;
    111   }
    112 
    113   /// AddEdge - Add an edge from the node with index FromIdx to the node with
    114   /// index ToIdx.
    115   void AddEdge(unsigned FromIdx, unsigned ToIdx) {
    116     ValidateIndex(FromIdx);
    117     Nodes[FromIdx].second.AddNode(ToIdx);
    118   }
    119 
    120   /// DeleteEdge - Remove the edge (if any) from the node with index FromIdx to
    121   /// the node with index ToIdx.
    122   void DeleteEdge(unsigned FromIdx, unsigned ToIdx) {
    123     ValidateIndex(FromIdx);
    124     Nodes[FromIdx].second.DeleteNode(ToIdx);
    125   }
    126 
    127   /// AccessNode - Get a pointer to the node with the given index.
    128   NodeType *AccessNode(unsigned Idx) const {
    129     ValidateIndex(Idx);
    130     // The constant cast is needed when working with GraphTraits, which insists
    131     // on taking a constant Graph.
    132     return const_cast<NodeType *>(&Nodes[Idx]);
    133   }
    134 
    135   /// NodesReachableFrom - Return the set of all nodes reachable from the given
    136   /// node.
    137   NodeSubset NodesReachableFrom(unsigned Idx) const {
    138     // This algorithm doesn't scale, but that doesn't matter given the small
    139     // size of our graphs.
    140     NodeSubset Reachable;
    141 
    142     // The initial node is reachable.
    143     Reachable.AddNode(Idx);
    144     do {
    145       NodeSubset Previous(Reachable);
    146 
    147       // Add in all nodes which are children of a reachable node.
    148       for (unsigned i = 0; i != N; ++i)
    149         if (Previous.count(i))
    150           Reachable = Reachable.Join(Nodes[i].second);
    151 
    152       // If nothing changed then we have found all reachable nodes.
    153       if (Reachable == Previous)
    154         return Reachable;
    155 
    156       // Rinse and repeat.
    157     } while (1);
    158   }
    159 
    160   /// ChildIterator - Visit all children of a node.
    161   class ChildIterator {
    162     friend class Graph;
    163 
    164     /// FirstNode - Pointer to first node in the graph's Nodes array.
    165     NodeType *FirstNode;
    166     /// Children - Set of nodes which are children of this one and that haven't
    167     /// yet been visited.
    168     NodeSubset Children;
    169 
    170     ChildIterator(); // Disable default constructor.
    171   protected:
    172     ChildIterator(NodeType *F, NodeSubset C) : FirstNode(F), Children(C) {}
    173 
    174   public:
    175     /// ChildIterator - Copy constructor.
    176     ChildIterator(const ChildIterator& other) : FirstNode(other.FirstNode),
    177       Children(other.Children) {}
    178 
    179     /// Comparison operators.
    180     bool operator==(const ChildIterator &other) const {
    181       return other.FirstNode == this->FirstNode &&
    182         other.Children == this->Children;
    183     }
    184     bool operator!=(const ChildIterator &other) const {
    185       return !(*this == other);
    186     }
    187 
    188     /// Prefix increment operator.
    189     ChildIterator& operator++() {
    190       // Find the next unvisited child node.
    191       for (unsigned i = 0; i != N; ++i)
    192         if (Children.count(i)) {
    193           // Remove that child - it has been visited.  This is the increment!
    194           Children.DeleteNode(i);
    195           return *this;
    196         }
    197       assert(false && "Incrementing end iterator!");
    198       return *this; // Avoid compiler warnings.
    199     }
    200 
    201     /// Postfix increment operator.
    202     ChildIterator operator++(int) {
    203       ChildIterator Result(*this);
    204       ++(*this);
    205       return Result;
    206     }
    207 
    208     /// Dereference operator.
    209     NodeType *operator*() {
    210       // Find the next unvisited child node.
    211       for (unsigned i = 0; i != N; ++i)
    212         if (Children.count(i))
    213           // Return a pointer to it.
    214           return FirstNode + i;
    215       assert(false && "Dereferencing end iterator!");
    216       return 0; // Avoid compiler warning.
    217     }
    218   };
    219 
    220   /// child_begin - Return an iterator pointing to the first child of the given
    221   /// node.
    222   static ChildIterator child_begin(NodeType *Parent) {
    223     return ChildIterator(Parent - Parent->first, Parent->second);
    224   }
    225 
    226   /// child_end - Return the end iterator for children of the given node.
    227   static ChildIterator child_end(NodeType *Parent) {
    228     return ChildIterator(Parent - Parent->first, NodeSubset());
    229   }
    230 };
    231 
    232 template <unsigned N>
    233 struct GraphTraits<Graph<N> > {
    234   typedef typename Graph<N>::NodeType NodeType;
    235   typedef typename Graph<N>::ChildIterator ChildIteratorType;
    236 
    237  static inline NodeType *getEntryNode(const Graph<N> &G) { return G.AccessNode(0); }
    238  static inline ChildIteratorType child_begin(NodeType *Node) {
    239    return Graph<N>::child_begin(Node);
    240  }
    241  static inline ChildIteratorType child_end(NodeType *Node) {
    242    return Graph<N>::child_end(Node);
    243  }
    244 };
    245 
    246 TEST(SCCIteratorTest, AllSmallGraphs) {
    247   // Test SCC computation against every graph with NUM_NODES nodes or less.
    248   // Since SCC considers every node to have an implicit self-edge, we only
    249   // create graphs for which every node has a self-edge.
    250 #define NUM_NODES 4
    251 #define NUM_GRAPHS (NUM_NODES * (NUM_NODES - 1))
    252   typedef Graph<NUM_NODES> GT;
    253 
    254   /// Enumerate all graphs using NUM_GRAPHS bits.
    255   assert(NUM_GRAPHS < sizeof(unsigned) * CHAR_BIT && "Too many graphs!");
    256   for (unsigned GraphDescriptor = 0; GraphDescriptor < (1U << NUM_GRAPHS);
    257        ++GraphDescriptor) {
    258     GT G;
    259 
    260     // Add edges as specified by the descriptor.
    261     unsigned DescriptorCopy = GraphDescriptor;
    262     for (unsigned i = 0; i != NUM_NODES; ++i)
    263       for (unsigned j = 0; j != NUM_NODES; ++j) {
    264         // Always add a self-edge.
    265         if (i == j) {
    266           G.AddEdge(i, j);
    267           continue;
    268         }
    269         if (DescriptorCopy & 1)
    270           G.AddEdge(i, j);
    271         DescriptorCopy >>= 1;
    272       }
    273 
    274     // Test the SCC logic on this graph.
    275 
    276     /// NodesInSomeSCC - Those nodes which are in some SCC.
    277     GT::NodeSubset NodesInSomeSCC;
    278 
    279     for (scc_iterator<GT> I = scc_begin(G), E = scc_end(G); I != E; ++I) {
    280       std::vector<GT::NodeType*> &SCC = *I;
    281 
    282       // Get the nodes in this SCC as a NodeSubset rather than a vector.
    283       GT::NodeSubset NodesInThisSCC;
    284       for (unsigned i = 0, e = SCC.size(); i != e; ++i)
    285         NodesInThisSCC.AddNode(SCC[i]->first);
    286 
    287       // There should be at least one node in every SCC.
    288       EXPECT_FALSE(NodesInThisSCC.isEmpty());
    289 
    290       // Check that every node in the SCC is reachable from every other node in
    291       // the SCC.
    292       for (unsigned i = 0; i != NUM_NODES; ++i)
    293         if (NodesInThisSCC.count(i))
    294           EXPECT_TRUE(NodesInThisSCC.isSubsetOf(G.NodesReachableFrom(i)));
    295 
    296       // OK, now that we now that every node in the SCC is reachable from every
    297       // other, this means that the set of nodes reachable from any node in the
    298       // SCC is the same as the set of nodes reachable from every node in the
    299       // SCC.  Check that for every node N not in the SCC but reachable from the
    300       // SCC, no element of the SCC is reachable from N.
    301       for (unsigned i = 0; i != NUM_NODES; ++i)
    302         if (NodesInThisSCC.count(i)) {
    303           GT::NodeSubset NodesReachableFromSCC = G.NodesReachableFrom(i);
    304           GT::NodeSubset ReachableButNotInSCC =
    305             NodesReachableFromSCC.Meet(NodesInThisSCC.Complement());
    306 
    307           for (unsigned j = 0; j != NUM_NODES; ++j)
    308             if (ReachableButNotInSCC.count(j))
    309               EXPECT_TRUE(G.NodesReachableFrom(j).Meet(NodesInThisSCC).isEmpty());
    310 
    311           // The result must be the same for all other nodes in this SCC, so
    312           // there is no point in checking them.
    313           break;
    314         }
    315 
    316       // This is indeed a SCC: a maximal set of nodes for which each node is
    317       // reachable from every other.
    318 
    319       // Check that we didn't already see this SCC.
    320       EXPECT_TRUE(NodesInSomeSCC.Meet(NodesInThisSCC).isEmpty());
    321 
    322       NodesInSomeSCC = NodesInSomeSCC.Join(NodesInThisSCC);
    323 
    324       // Check a property that is specific to the LLVM SCC iterator and
    325       // guaranteed by it: if a node in SCC S1 has an edge to a node in
    326       // SCC S2, then S1 is visited *after* S2.  This means that the set
    327       // of nodes reachable from this SCC must be contained either in the
    328       // union of this SCC and all previously visited SCC's.
    329 
    330       for (unsigned i = 0; i != NUM_NODES; ++i)
    331         if (NodesInThisSCC.count(i)) {
    332           GT::NodeSubset NodesReachableFromSCC = G.NodesReachableFrom(i);
    333           EXPECT_TRUE(NodesReachableFromSCC.isSubsetOf(NodesInSomeSCC));
    334           // The result must be the same for all other nodes in this SCC, so
    335           // there is no point in checking them.
    336           break;
    337         }
    338     }
    339 
    340     // Finally, check that the nodes in some SCC are exactly those that are
    341     // reachable from the initial node.
    342     EXPECT_EQ(NodesInSomeSCC, G.NodesReachableFrom(0));
    343   }
    344 }
    345 
    346 }
    347