1 /* trees.c -- output deflated data using Huffman coding 2 * Copyright (C) 1995-2010 Jean-loup Gailly 3 * detect_data_type() function provided freely by Cosmin Truta, 2006 4 * For conditions of distribution and use, see copyright notice in zlib.h 5 */ 6 7 /* 8 * ALGORITHM 9 * 10 * The "deflation" process uses several Huffman trees. The more 11 * common source values are represented by shorter bit sequences. 12 * 13 * Each code tree is stored in a compressed form which is itself 14 * a Huffman encoding of the lengths of all the code strings (in 15 * ascending order by source values). The actual code strings are 16 * reconstructed from the lengths in the inflate process, as described 17 * in the deflate specification. 18 * 19 * REFERENCES 20 * 21 * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification". 22 * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc 23 * 24 * Storer, James A. 25 * Data Compression: Methods and Theory, pp. 49-50. 26 * Computer Science Press, 1988. ISBN 0-7167-8156-5. 27 * 28 * Sedgewick, R. 29 * Algorithms, p290. 30 * Addison-Wesley, 1983. ISBN 0-201-06672-6. 31 */ 32 33 /* @(#) $Id$ */ 34 35 /* #define GEN_TREES_H */ 36 37 #include "deflate.h" 38 39 #ifdef DEBUG_ZLIB 40 # include <ctype.h> 41 #endif 42 43 /* =========================================================================== 44 * Constants 45 */ 46 47 #define MAX_BL_BITS 7 48 /* Bit length codes must not exceed MAX_BL_BITS bits */ 49 50 #define END_BLOCK 256 51 /* end of block literal code */ 52 53 #define REP_3_6 16 54 /* repeat previous bit length 3-6 times (2 bits of repeat count) */ 55 56 #define REPZ_3_10 17 57 /* repeat a zero length 3-10 times (3 bits of repeat count) */ 58 59 #define REPZ_11_138 18 60 /* repeat a zero length 11-138 times (7 bits of repeat count) */ 61 62 local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */ 63 = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0}; 64 65 local const int extra_dbits[D_CODES] /* extra bits for each distance code */ 66 = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13}; 67 68 local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */ 69 = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7}; 70 71 local const uch bl_order[BL_CODES] 72 = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15}; 73 /* The lengths of the bit length codes are sent in order of decreasing 74 * probability, to avoid transmitting the lengths for unused bit length codes. 75 */ 76 77 #define Buf_size (8 * 2*sizeof(char)) 78 /* Number of bits used within bi_buf. (bi_buf might be implemented on 79 * more than 16 bits on some systems.) 80 */ 81 82 /* =========================================================================== 83 * Local data. These are initialized only once. 84 */ 85 86 #define DIST_CODE_LEN 512 /* see definition of array dist_code below */ 87 88 #if defined(GEN_TREES_H) || !defined(STDC) 89 /* non ANSI compilers may not accept trees.h */ 90 91 local ct_data static_ltree[L_CODES+2]; 92 /* The static literal tree. Since the bit lengths are imposed, there is no 93 * need for the L_CODES extra codes used during heap construction. However 94 * The codes 286 and 287 are needed to build a canonical tree (see _tr_init 95 * below). 96 */ 97 98 local ct_data static_dtree[D_CODES]; 99 /* The static distance tree. (Actually a trivial tree since all codes use 100 * 5 bits.) 101 */ 102 103 uch _dist_code[DIST_CODE_LEN]; 104 /* Distance codes. The first 256 values correspond to the distances 105 * 3 .. 258, the last 256 values correspond to the top 8 bits of 106 * the 15 bit distances. 107 */ 108 109 uch _length_code[MAX_MATCH-MIN_MATCH+1]; 110 /* length code for each normalized match length (0 == MIN_MATCH) */ 111 112 local int base_length[LENGTH_CODES]; 113 /* First normalized length for each code (0 = MIN_MATCH) */ 114 115 local int base_dist[D_CODES]; 116 /* First normalized distance for each code (0 = distance of 1) */ 117 118 #else 119 # include "trees.h" 120 #endif /* GEN_TREES_H */ 121 122 struct static_tree_desc_s { 123 const ct_data *static_tree; /* static tree or NULL */ 124 const intf *extra_bits; /* extra bits for each code or NULL */ 125 int extra_base; /* base index for extra_bits */ 126 int elems; /* max number of elements in the tree */ 127 int max_length; /* max bit length for the codes */ 128 }; 129 130 local static_tree_desc static_l_desc = 131 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS}; 132 133 local static_tree_desc static_d_desc = 134 {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS}; 135 136 local static_tree_desc static_bl_desc = 137 {(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS}; 138 139 /* =========================================================================== 140 * Local (static) routines in this file. 141 */ 142 143 local void tr_static_init OF((void)); 144 local void init_block OF((deflate_state *s)); 145 local void pqdownheap OF((deflate_state *s, ct_data *tree, int k)); 146 local void gen_bitlen OF((deflate_state *s, tree_desc *desc)); 147 local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count)); 148 local void build_tree OF((deflate_state *s, tree_desc *desc)); 149 local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code)); 150 local void send_tree OF((deflate_state *s, ct_data *tree, int max_code)); 151 local int build_bl_tree OF((deflate_state *s)); 152 local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes, 153 int blcodes)); 154 local void compress_block OF((deflate_state *s, ct_data *ltree, 155 ct_data *dtree)); 156 local int detect_data_type OF((deflate_state *s)); 157 local unsigned bi_reverse OF((unsigned value, int length)); 158 local void bi_windup OF((deflate_state *s)); 159 local void bi_flush OF((deflate_state *s)); 160 local void copy_block OF((deflate_state *s, charf *buf, unsigned len, 161 int header)); 162 163 #ifdef GEN_TREES_H 164 local void gen_trees_header OF((void)); 165 #endif 166 167 #ifndef DEBUG_ZLIB 168 # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len) 169 /* Send a code of the given tree. c and tree must not have side effects */ 170 171 #else /* DEBUG_ZLIB */ 172 # define send_code(s, c, tree) \ 173 { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \ 174 send_bits(s, tree[c].Code, tree[c].Len); } 175 #endif 176 177 /* =========================================================================== 178 * Output a short LSB first on the stream. 179 * IN assertion: there is enough room in pendingBuf. 180 */ 181 #define put_short(s, w) { \ 182 put_byte(s, (uch)((w) & 0xff)); \ 183 put_byte(s, (uch)((ush)(w) >> 8)); \ 184 } 185 186 /* =========================================================================== 187 * Send a value on a given number of bits. 188 * IN assertion: length <= 16 and value fits in length bits. 189 */ 190 #ifdef DEBUG_ZLIB 191 local void send_bits OF((deflate_state *s, int value, int length)); 192 193 local void send_bits(s, value, length) 194 deflate_state *s; 195 int value; /* value to send */ 196 int length; /* number of bits */ 197 { 198 Tracevv((stderr," l %2d v %4x ", length, value)); 199 Assert(length > 0 && length <= 15, "invalid length"); 200 s->bits_sent += (ulg)length; 201 202 /* If not enough room in bi_buf, use (valid) bits from bi_buf and 203 * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid)) 204 * unused bits in value. 205 */ 206 if (s->bi_valid > (int)Buf_size - length) { 207 s->bi_buf |= (ush)value << s->bi_valid; 208 put_short(s, s->bi_buf); 209 s->bi_buf = (ush)value >> (Buf_size - s->bi_valid); 210 s->bi_valid += length - Buf_size; 211 } else { 212 s->bi_buf |= (ush)value << s->bi_valid; 213 s->bi_valid += length; 214 } 215 } 216 #else /* !DEBUG_ZLIB */ 217 218 #define send_bits(s, value, length) \ 219 { int len = length;\ 220 if (s->bi_valid > (int)Buf_size - len) {\ 221 int val = value;\ 222 s->bi_buf |= (ush)val << s->bi_valid;\ 223 put_short(s, s->bi_buf);\ 224 s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\ 225 s->bi_valid += len - Buf_size;\ 226 } else {\ 227 s->bi_buf |= (ush)(value) << s->bi_valid;\ 228 s->bi_valid += len;\ 229 }\ 230 } 231 #endif /* DEBUG_ZLIB */ 232 233 234 /* the arguments must not have side effects */ 235 236 /* =========================================================================== 237 * Initialize the various 'constant' tables. 238 */ 239 local void tr_static_init() 240 { 241 #if defined(GEN_TREES_H) || !defined(STDC) 242 static int static_init_done = 0; 243 int n; /* iterates over tree elements */ 244 int bits; /* bit counter */ 245 int length; /* length value */ 246 int code; /* code value */ 247 int dist; /* distance index */ 248 ush bl_count[MAX_BITS+1]; 249 /* number of codes at each bit length for an optimal tree */ 250 251 if (static_init_done) return; 252 253 /* For some embedded targets, global variables are not initialized: */ 254 #ifdef NO_INIT_GLOBAL_POINTERS 255 static_l_desc.static_tree = static_ltree; 256 static_l_desc.extra_bits = extra_lbits; 257 static_d_desc.static_tree = static_dtree; 258 static_d_desc.extra_bits = extra_dbits; 259 static_bl_desc.extra_bits = extra_blbits; 260 #endif 261 262 /* Initialize the mapping length (0..255) -> length code (0..28) */ 263 length = 0; 264 for (code = 0; code < LENGTH_CODES-1; code++) { 265 base_length[code] = length; 266 for (n = 0; n < (1<<extra_lbits[code]); n++) { 267 _length_code[length++] = (uch)code; 268 } 269 } 270 Assert (length == 256, "tr_static_init: length != 256"); 271 /* Note that the length 255 (match length 258) can be represented 272 * in two different ways: code 284 + 5 bits or code 285, so we 273 * overwrite length_code[255] to use the best encoding: 274 */ 275 _length_code[length-1] = (uch)code; 276 277 /* Initialize the mapping dist (0..32K) -> dist code (0..29) */ 278 dist = 0; 279 for (code = 0 ; code < 16; code++) { 280 base_dist[code] = dist; 281 for (n = 0; n < (1<<extra_dbits[code]); n++) { 282 _dist_code[dist++] = (uch)code; 283 } 284 } 285 Assert (dist == 256, "tr_static_init: dist != 256"); 286 dist >>= 7; /* from now on, all distances are divided by 128 */ 287 for ( ; code < D_CODES; code++) { 288 base_dist[code] = dist << 7; 289 for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) { 290 _dist_code[256 + dist++] = (uch)code; 291 } 292 } 293 Assert (dist == 256, "tr_static_init: 256+dist != 512"); 294 295 /* Construct the codes of the static literal tree */ 296 for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0; 297 n = 0; 298 while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++; 299 while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++; 300 while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++; 301 while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++; 302 /* Codes 286 and 287 do not exist, but we must include them in the 303 * tree construction to get a canonical Huffman tree (longest code 304 * all ones) 305 */ 306 gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count); 307 308 /* The static distance tree is trivial: */ 309 for (n = 0; n < D_CODES; n++) { 310 static_dtree[n].Len = 5; 311 static_dtree[n].Code = bi_reverse((unsigned)n, 5); 312 } 313 static_init_done = 1; 314 315 # ifdef GEN_TREES_H 316 gen_trees_header(); 317 # endif 318 #endif /* defined(GEN_TREES_H) || !defined(STDC) */ 319 } 320 321 /* =========================================================================== 322 * Genererate the file trees.h describing the static trees. 323 */ 324 #ifdef GEN_TREES_H 325 # ifndef DEBUG_ZLIB 326 # include <stdio.h> 327 # endif 328 329 # define SEPARATOR(i, last, width) \ 330 ((i) == (last)? "\n};\n\n" : \ 331 ((i) % (width) == (width)-1 ? ",\n" : ", ")) 332 333 void gen_trees_header() 334 { 335 FILE *header = fopen("trees.h", "w"); 336 int i; 337 338 Assert (header != NULL, "Can't open trees.h"); 339 fprintf(header, 340 "/* header created automatically with -DGEN_TREES_H */\n\n"); 341 342 fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n"); 343 for (i = 0; i < L_CODES+2; i++) { 344 fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code, 345 static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5)); 346 } 347 348 fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n"); 349 for (i = 0; i < D_CODES; i++) { 350 fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code, 351 static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5)); 352 } 353 354 fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n"); 355 for (i = 0; i < DIST_CODE_LEN; i++) { 356 fprintf(header, "%2u%s", _dist_code[i], 357 SEPARATOR(i, DIST_CODE_LEN-1, 20)); 358 } 359 360 fprintf(header, 361 "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n"); 362 for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) { 363 fprintf(header, "%2u%s", _length_code[i], 364 SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20)); 365 } 366 367 fprintf(header, "local const int base_length[LENGTH_CODES] = {\n"); 368 for (i = 0; i < LENGTH_CODES; i++) { 369 fprintf(header, "%1u%s", base_length[i], 370 SEPARATOR(i, LENGTH_CODES-1, 20)); 371 } 372 373 fprintf(header, "local const int base_dist[D_CODES] = {\n"); 374 for (i = 0; i < D_CODES; i++) { 375 fprintf(header, "%5u%s", base_dist[i], 376 SEPARATOR(i, D_CODES-1, 10)); 377 } 378 379 fclose(header); 380 } 381 #endif /* GEN_TREES_H */ 382 383 /* =========================================================================== 384 * Initialize the tree data structures for a new zlib stream. 385 */ 386 void ZLIB_INTERNAL _tr_init(s) 387 deflate_state *s; 388 { 389 tr_static_init(); 390 391 s->l_desc.dyn_tree = s->dyn_ltree; 392 s->l_desc.stat_desc = &static_l_desc; 393 394 s->d_desc.dyn_tree = s->dyn_dtree; 395 s->d_desc.stat_desc = &static_d_desc; 396 397 s->bl_desc.dyn_tree = s->bl_tree; 398 s->bl_desc.stat_desc = &static_bl_desc; 399 400 s->bi_buf = 0; 401 s->bi_valid = 0; 402 s->last_eob_len = 8; /* enough lookahead for inflate */ 403 #ifdef DEBUG_ZLIB 404 s->compressed_len = 0L; 405 s->bits_sent = 0L; 406 #endif 407 408 /* Initialize the first block of the first file: */ 409 init_block(s); 410 } 411 412 /* =========================================================================== 413 * Initialize a new block. 414 */ 415 local void init_block(s) 416 deflate_state *s; 417 { 418 int n; /* iterates over tree elements */ 419 420 /* Initialize the trees. */ 421 for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0; 422 for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0; 423 for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0; 424 425 s->dyn_ltree[END_BLOCK].Freq = 1; 426 s->opt_len = s->static_len = 0L; 427 s->last_lit = s->matches = 0; 428 } 429 430 #define SMALLEST 1 431 /* Index within the heap array of least frequent node in the Huffman tree */ 432 433 434 /* =========================================================================== 435 * Remove the smallest element from the heap and recreate the heap with 436 * one less element. Updates heap and heap_len. 437 */ 438 #define pqremove(s, tree, top) \ 439 {\ 440 top = s->heap[SMALLEST]; \ 441 s->heap[SMALLEST] = s->heap[s->heap_len--]; \ 442 pqdownheap(s, tree, SMALLEST); \ 443 } 444 445 /* =========================================================================== 446 * Compares to subtrees, using the tree depth as tie breaker when 447 * the subtrees have equal frequency. This minimizes the worst case length. 448 */ 449 #define smaller(tree, n, m, depth) \ 450 (tree[n].Freq < tree[m].Freq || \ 451 (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m])) 452 453 /* =========================================================================== 454 * Restore the heap property by moving down the tree starting at node k, 455 * exchanging a node with the smallest of its two sons if necessary, stopping 456 * when the heap property is re-established (each father smaller than its 457 * two sons). 458 */ 459 local void pqdownheap(s, tree, k) 460 deflate_state *s; 461 ct_data *tree; /* the tree to restore */ 462 int k; /* node to move down */ 463 { 464 int v = s->heap[k]; 465 int j = k << 1; /* left son of k */ 466 while (j <= s->heap_len) { 467 /* Set j to the smallest of the two sons: */ 468 if (j < s->heap_len && 469 smaller(tree, s->heap[j+1], s->heap[j], s->depth)) { 470 j++; 471 } 472 /* Exit if v is smaller than both sons */ 473 if (smaller(tree, v, s->heap[j], s->depth)) break; 474 475 /* Exchange v with the smallest son */ 476 s->heap[k] = s->heap[j]; k = j; 477 478 /* And continue down the tree, setting j to the left son of k */ 479 j <<= 1; 480 } 481 s->heap[k] = v; 482 } 483 484 /* =========================================================================== 485 * Compute the optimal bit lengths for a tree and update the total bit length 486 * for the current block. 487 * IN assertion: the fields freq and dad are set, heap[heap_max] and 488 * above are the tree nodes sorted by increasing frequency. 489 * OUT assertions: the field len is set to the optimal bit length, the 490 * array bl_count contains the frequencies for each bit length. 491 * The length opt_len is updated; static_len is also updated if stree is 492 * not null. 493 */ 494 local void gen_bitlen(s, desc) 495 deflate_state *s; 496 tree_desc *desc; /* the tree descriptor */ 497 { 498 ct_data *tree = desc->dyn_tree; 499 int max_code = desc->max_code; 500 const ct_data *stree = desc->stat_desc->static_tree; 501 const intf *extra = desc->stat_desc->extra_bits; 502 int base = desc->stat_desc->extra_base; 503 int max_length = desc->stat_desc->max_length; 504 int h; /* heap index */ 505 int n, m; /* iterate over the tree elements */ 506 int bits; /* bit length */ 507 int xbits; /* extra bits */ 508 ush f; /* frequency */ 509 int overflow = 0; /* number of elements with bit length too large */ 510 511 for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0; 512 513 /* In a first pass, compute the optimal bit lengths (which may 514 * overflow in the case of the bit length tree). 515 */ 516 tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */ 517 518 for (h = s->heap_max+1; h < HEAP_SIZE; h++) { 519 n = s->heap[h]; 520 bits = tree[tree[n].Dad].Len + 1; 521 if (bits > max_length) bits = max_length, overflow++; 522 tree[n].Len = (ush)bits; 523 /* We overwrite tree[n].Dad which is no longer needed */ 524 525 if (n > max_code) continue; /* not a leaf node */ 526 527 s->bl_count[bits]++; 528 xbits = 0; 529 if (n >= base) xbits = extra[n-base]; 530 f = tree[n].Freq; 531 s->opt_len += (ulg)f * (bits + xbits); 532 if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits); 533 } 534 if (overflow == 0) return; 535 536 Trace((stderr,"\nbit length overflow\n")); 537 /* This happens for example on obj2 and pic of the Calgary corpus */ 538 539 /* Find the first bit length which could increase: */ 540 do { 541 bits = max_length-1; 542 while (s->bl_count[bits] == 0) bits--; 543 s->bl_count[bits]--; /* move one leaf down the tree */ 544 s->bl_count[bits+1] += 2; /* move one overflow item as its brother */ 545 s->bl_count[max_length]--; 546 /* The brother of the overflow item also moves one step up, 547 * but this does not affect bl_count[max_length] 548 */ 549 overflow -= 2; 550 } while (overflow > 0); 551 552 /* Now recompute all bit lengths, scanning in increasing frequency. 553 * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all 554 * lengths instead of fixing only the wrong ones. This idea is taken 555 * from 'ar' written by Haruhiko Okumura.) 556 */ 557 for (bits = max_length; bits != 0; bits--) { 558 n = s->bl_count[bits]; 559 while (n != 0) { 560 m = s->heap[--h]; 561 if (m > max_code) continue; 562 if ((unsigned) tree[m].Len != (unsigned) bits) { 563 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits)); 564 s->opt_len += ((long)bits - (long)tree[m].Len) 565 *(long)tree[m].Freq; 566 tree[m].Len = (ush)bits; 567 } 568 n--; 569 } 570 } 571 } 572 573 /* =========================================================================== 574 * Generate the codes for a given tree and bit counts (which need not be 575 * optimal). 576 * IN assertion: the array bl_count contains the bit length statistics for 577 * the given tree and the field len is set for all tree elements. 578 * OUT assertion: the field code is set for all tree elements of non 579 * zero code length. 580 */ 581 local void gen_codes (tree, max_code, bl_count) 582 ct_data *tree; /* the tree to decorate */ 583 int max_code; /* largest code with non zero frequency */ 584 ushf *bl_count; /* number of codes at each bit length */ 585 { 586 ush next_code[MAX_BITS+1]; /* next code value for each bit length */ 587 ush code = 0; /* running code value */ 588 int bits; /* bit index */ 589 int n; /* code index */ 590 591 /* The distribution counts are first used to generate the code values 592 * without bit reversal. 593 */ 594 for (bits = 1; bits <= MAX_BITS; bits++) { 595 next_code[bits] = code = (code + bl_count[bits-1]) << 1; 596 } 597 /* Check that the bit counts in bl_count are consistent. The last code 598 * must be all ones. 599 */ 600 Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1, 601 "inconsistent bit counts"); 602 Tracev((stderr,"\ngen_codes: max_code %d ", max_code)); 603 604 for (n = 0; n <= max_code; n++) { 605 int len = tree[n].Len; 606 if (len == 0) continue; 607 /* Now reverse the bits */ 608 tree[n].Code = bi_reverse(next_code[len]++, len); 609 610 Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ", 611 n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1)); 612 } 613 } 614 615 /* =========================================================================== 616 * Construct one Huffman tree and assigns the code bit strings and lengths. 617 * Update the total bit length for the current block. 618 * IN assertion: the field freq is set for all tree elements. 619 * OUT assertions: the fields len and code are set to the optimal bit length 620 * and corresponding code. The length opt_len is updated; static_len is 621 * also updated if stree is not null. The field max_code is set. 622 */ 623 local void build_tree(s, desc) 624 deflate_state *s; 625 tree_desc *desc; /* the tree descriptor */ 626 { 627 ct_data *tree = desc->dyn_tree; 628 const ct_data *stree = desc->stat_desc->static_tree; 629 int elems = desc->stat_desc->elems; 630 int n, m; /* iterate over heap elements */ 631 int max_code = -1; /* largest code with non zero frequency */ 632 int node; /* new node being created */ 633 634 /* Construct the initial heap, with least frequent element in 635 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1]. 636 * heap[0] is not used. 637 */ 638 s->heap_len = 0, s->heap_max = HEAP_SIZE; 639 640 for (n = 0; n < elems; n++) { 641 if (tree[n].Freq != 0) { 642 s->heap[++(s->heap_len)] = max_code = n; 643 s->depth[n] = 0; 644 } else { 645 tree[n].Len = 0; 646 } 647 } 648 649 /* The pkzip format requires that at least one distance code exists, 650 * and that at least one bit should be sent even if there is only one 651 * possible code. So to avoid special checks later on we force at least 652 * two codes of non zero frequency. 653 */ 654 while (s->heap_len < 2) { 655 node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0); 656 tree[node].Freq = 1; 657 s->depth[node] = 0; 658 s->opt_len--; if (stree) s->static_len -= stree[node].Len; 659 /* node is 0 or 1 so it does not have extra bits */ 660 } 661 desc->max_code = max_code; 662 663 /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree, 664 * establish sub-heaps of increasing lengths: 665 */ 666 for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n); 667 668 /* Construct the Huffman tree by repeatedly combining the least two 669 * frequent nodes. 670 */ 671 node = elems; /* next internal node of the tree */ 672 do { 673 pqremove(s, tree, n); /* n = node of least frequency */ 674 m = s->heap[SMALLEST]; /* m = node of next least frequency */ 675 676 s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */ 677 s->heap[--(s->heap_max)] = m; 678 679 /* Create a new node father of n and m */ 680 tree[node].Freq = tree[n].Freq + tree[m].Freq; 681 s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ? 682 s->depth[n] : s->depth[m]) + 1); 683 tree[n].Dad = tree[m].Dad = (ush)node; 684 #ifdef DUMP_BL_TREE 685 if (tree == s->bl_tree) { 686 fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)", 687 node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq); 688 } 689 #endif 690 /* and insert the new node in the heap */ 691 s->heap[SMALLEST] = node++; 692 pqdownheap(s, tree, SMALLEST); 693 694 } while (s->heap_len >= 2); 695 696 s->heap[--(s->heap_max)] = s->heap[SMALLEST]; 697 698 /* At this point, the fields freq and dad are set. We can now 699 * generate the bit lengths. 700 */ 701 gen_bitlen(s, (tree_desc *)desc); 702 703 /* The field len is now set, we can generate the bit codes */ 704 gen_codes ((ct_data *)tree, max_code, s->bl_count); 705 } 706 707 /* =========================================================================== 708 * Scan a literal or distance tree to determine the frequencies of the codes 709 * in the bit length tree. 710 */ 711 local void scan_tree (s, tree, max_code) 712 deflate_state *s; 713 ct_data *tree; /* the tree to be scanned */ 714 int max_code; /* and its largest code of non zero frequency */ 715 { 716 int n; /* iterates over all tree elements */ 717 int prevlen = -1; /* last emitted length */ 718 int curlen; /* length of current code */ 719 int nextlen = tree[0].Len; /* length of next code */ 720 int count = 0; /* repeat count of the current code */ 721 int max_count = 7; /* max repeat count */ 722 int min_count = 4; /* min repeat count */ 723 724 if (nextlen == 0) max_count = 138, min_count = 3; 725 tree[max_code+1].Len = (ush)0xffff; /* guard */ 726 727 for (n = 0; n <= max_code; n++) { 728 curlen = nextlen; nextlen = tree[n+1].Len; 729 if (++count < max_count && curlen == nextlen) { 730 continue; 731 } else if (count < min_count) { 732 s->bl_tree[curlen].Freq += count; 733 } else if (curlen != 0) { 734 if (curlen != prevlen) s->bl_tree[curlen].Freq++; 735 s->bl_tree[REP_3_6].Freq++; 736 } else if (count <= 10) { 737 s->bl_tree[REPZ_3_10].Freq++; 738 } else { 739 s->bl_tree[REPZ_11_138].Freq++; 740 } 741 count = 0; prevlen = curlen; 742 if (nextlen == 0) { 743 max_count = 138, min_count = 3; 744 } else if (curlen == nextlen) { 745 max_count = 6, min_count = 3; 746 } else { 747 max_count = 7, min_count = 4; 748 } 749 } 750 } 751 752 /* =========================================================================== 753 * Send a literal or distance tree in compressed form, using the codes in 754 * bl_tree. 755 */ 756 local void send_tree (s, tree, max_code) 757 deflate_state *s; 758 ct_data *tree; /* the tree to be scanned */ 759 int max_code; /* and its largest code of non zero frequency */ 760 { 761 int n; /* iterates over all tree elements */ 762 int prevlen = -1; /* last emitted length */ 763 int curlen; /* length of current code */ 764 int nextlen = tree[0].Len; /* length of next code */ 765 int count = 0; /* repeat count of the current code */ 766 int max_count = 7; /* max repeat count */ 767 int min_count = 4; /* min repeat count */ 768 769 /* tree[max_code+1].Len = -1; */ /* guard already set */ 770 if (nextlen == 0) max_count = 138, min_count = 3; 771 772 for (n = 0; n <= max_code; n++) { 773 curlen = nextlen; nextlen = tree[n+1].Len; 774 if (++count < max_count && curlen == nextlen) { 775 continue; 776 } else if (count < min_count) { 777 do { send_code(s, curlen, s->bl_tree); } while (--count != 0); 778 779 } else if (curlen != 0) { 780 if (curlen != prevlen) { 781 send_code(s, curlen, s->bl_tree); count--; 782 } 783 Assert(count >= 3 && count <= 6, " 3_6?"); 784 send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2); 785 786 } else if (count <= 10) { 787 send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3); 788 789 } else { 790 send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7); 791 } 792 count = 0; prevlen = curlen; 793 if (nextlen == 0) { 794 max_count = 138, min_count = 3; 795 } else if (curlen == nextlen) { 796 max_count = 6, min_count = 3; 797 } else { 798 max_count = 7, min_count = 4; 799 } 800 } 801 } 802 803 /* =========================================================================== 804 * Construct the Huffman tree for the bit lengths and return the index in 805 * bl_order of the last bit length code to send. 806 */ 807 local int build_bl_tree(s) 808 deflate_state *s; 809 { 810 int max_blindex; /* index of last bit length code of non zero freq */ 811 812 /* Determine the bit length frequencies for literal and distance trees */ 813 scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code); 814 scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code); 815 816 /* Build the bit length tree: */ 817 build_tree(s, (tree_desc *)(&(s->bl_desc))); 818 /* opt_len now includes the length of the tree representations, except 819 * the lengths of the bit lengths codes and the 5+5+4 bits for the counts. 820 */ 821 822 /* Determine the number of bit length codes to send. The pkzip format 823 * requires that at least 4 bit length codes be sent. (appnote.txt says 824 * 3 but the actual value used is 4.) 825 */ 826 for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) { 827 if (s->bl_tree[bl_order[max_blindex]].Len != 0) break; 828 } 829 /* Update opt_len to include the bit length tree and counts */ 830 s->opt_len += 3*(max_blindex+1) + 5+5+4; 831 Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", 832 s->opt_len, s->static_len)); 833 834 return max_blindex; 835 } 836 837 /* =========================================================================== 838 * Send the header for a block using dynamic Huffman trees: the counts, the 839 * lengths of the bit length codes, the literal tree and the distance tree. 840 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. 841 */ 842 local void send_all_trees(s, lcodes, dcodes, blcodes) 843 deflate_state *s; 844 int lcodes, dcodes, blcodes; /* number of codes for each tree */ 845 { 846 int rank; /* index in bl_order */ 847 848 Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes"); 849 Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, 850 "too many codes"); 851 Tracev((stderr, "\nbl counts: ")); 852 send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */ 853 send_bits(s, dcodes-1, 5); 854 send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */ 855 for (rank = 0; rank < blcodes; rank++) { 856 Tracev((stderr, "\nbl code %2d ", bl_order[rank])); 857 send_bits(s, s->bl_tree[bl_order[rank]].Len, 3); 858 } 859 Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent)); 860 861 send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */ 862 Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent)); 863 864 send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */ 865 Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent)); 866 } 867 868 /* =========================================================================== 869 * Send a stored block 870 */ 871 void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last) 872 deflate_state *s; 873 charf *buf; /* input block */ 874 ulg stored_len; /* length of input block */ 875 int last; /* one if this is the last block for a file */ 876 { 877 send_bits(s, (STORED_BLOCK<<1)+last, 3); /* send block type */ 878 #ifdef DEBUG_ZLIB 879 s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L; 880 s->compressed_len += (stored_len + 4) << 3; 881 #endif 882 copy_block(s, buf, (unsigned)stored_len, 1); /* with header */ 883 } 884 885 /* =========================================================================== 886 * Send one empty static block to give enough lookahead for inflate. 887 * This takes 10 bits, of which 7 may remain in the bit buffer. 888 * The current inflate code requires 9 bits of lookahead. If the 889 * last two codes for the previous block (real code plus EOB) were coded 890 * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode 891 * the last real code. In this case we send two empty static blocks instead 892 * of one. (There are no problems if the previous block is stored or fixed.) 893 * To simplify the code, we assume the worst case of last real code encoded 894 * on one bit only. 895 */ 896 void ZLIB_INTERNAL _tr_align(s) 897 deflate_state *s; 898 { 899 send_bits(s, STATIC_TREES<<1, 3); 900 send_code(s, END_BLOCK, static_ltree); 901 #ifdef DEBUG_ZLIB 902 s->compressed_len += 10L; /* 3 for block type, 7 for EOB */ 903 #endif 904 bi_flush(s); 905 /* Of the 10 bits for the empty block, we have already sent 906 * (10 - bi_valid) bits. The lookahead for the last real code (before 907 * the EOB of the previous block) was thus at least one plus the length 908 * of the EOB plus what we have just sent of the empty static block. 909 */ 910 if (1 + s->last_eob_len + 10 - s->bi_valid < 9) { 911 send_bits(s, STATIC_TREES<<1, 3); 912 send_code(s, END_BLOCK, static_ltree); 913 #ifdef DEBUG_ZLIB 914 s->compressed_len += 10L; 915 #endif 916 bi_flush(s); 917 } 918 s->last_eob_len = 7; 919 } 920 921 /* =========================================================================== 922 * Determine the best encoding for the current block: dynamic trees, static 923 * trees or store, and output the encoded block to the zip file. 924 */ 925 void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last) 926 deflate_state *s; 927 charf *buf; /* input block, or NULL if too old */ 928 ulg stored_len; /* length of input block */ 929 int last; /* one if this is the last block for a file */ 930 { 931 ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */ 932 int max_blindex = 0; /* index of last bit length code of non zero freq */ 933 934 /* Build the Huffman trees unless a stored block is forced */ 935 if (s->level > 0) { 936 937 /* Check if the file is binary or text */ 938 if (s->strm->data_type == Z_UNKNOWN) 939 s->strm->data_type = detect_data_type(s); 940 941 /* Construct the literal and distance trees */ 942 build_tree(s, (tree_desc *)(&(s->l_desc))); 943 Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len, 944 s->static_len)); 945 946 build_tree(s, (tree_desc *)(&(s->d_desc))); 947 Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len, 948 s->static_len)); 949 /* At this point, opt_len and static_len are the total bit lengths of 950 * the compressed block data, excluding the tree representations. 951 */ 952 953 /* Build the bit length tree for the above two trees, and get the index 954 * in bl_order of the last bit length code to send. 955 */ 956 max_blindex = build_bl_tree(s); 957 958 /* Determine the best encoding. Compute the block lengths in bytes. */ 959 opt_lenb = (s->opt_len+3+7)>>3; 960 static_lenb = (s->static_len+3+7)>>3; 961 962 Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ", 963 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len, 964 s->last_lit)); 965 966 if (static_lenb <= opt_lenb) opt_lenb = static_lenb; 967 968 } else { 969 Assert(buf != (char*)0, "lost buf"); 970 opt_lenb = static_lenb = stored_len + 5; /* force a stored block */ 971 } 972 973 #ifdef FORCE_STORED 974 if (buf != (char*)0) { /* force stored block */ 975 #else 976 if (stored_len+4 <= opt_lenb && buf != (char*)0) { 977 /* 4: two words for the lengths */ 978 #endif 979 /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. 980 * Otherwise we can't have processed more than WSIZE input bytes since 981 * the last block flush, because compression would have been 982 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to 983 * transform a block into a stored block. 984 */ 985 _tr_stored_block(s, buf, stored_len, last); 986 987 #ifdef FORCE_STATIC 988 } else if (static_lenb >= 0) { /* force static trees */ 989 #else 990 } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) { 991 #endif 992 send_bits(s, (STATIC_TREES<<1)+last, 3); 993 compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree); 994 #ifdef DEBUG_ZLIB 995 s->compressed_len += 3 + s->static_len; 996 #endif 997 } else { 998 send_bits(s, (DYN_TREES<<1)+last, 3); 999 send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1, 1000 max_blindex+1); 1001 compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree); 1002 #ifdef DEBUG_ZLIB 1003 s->compressed_len += 3 + s->opt_len; 1004 #endif 1005 } 1006 Assert (s->compressed_len == s->bits_sent, "bad compressed size"); 1007 /* The above check is made mod 2^32, for files larger than 512 MB 1008 * and uLong implemented on 32 bits. 1009 */ 1010 init_block(s); 1011 1012 if (last) { 1013 bi_windup(s); 1014 #ifdef DEBUG_ZLIB 1015 s->compressed_len += 7; /* align on byte boundary */ 1016 #endif 1017 } 1018 Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3, 1019 s->compressed_len-7*last)); 1020 } 1021 1022 /* =========================================================================== 1023 * Save the match info and tally the frequency counts. Return true if 1024 * the current block must be flushed. 1025 */ 1026 int ZLIB_INTERNAL _tr_tally (s, dist, lc) 1027 deflate_state *s; 1028 unsigned dist; /* distance of matched string */ 1029 unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */ 1030 { 1031 s->d_buf[s->last_lit] = (ush)dist; 1032 s->l_buf[s->last_lit++] = (uch)lc; 1033 if (dist == 0) { 1034 /* lc is the unmatched char */ 1035 s->dyn_ltree[lc].Freq++; 1036 } else { 1037 s->matches++; 1038 /* Here, lc is the match length - MIN_MATCH */ 1039 dist--; /* dist = match distance - 1 */ 1040 Assert((ush)dist < (ush)MAX_DIST(s) && 1041 (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) && 1042 (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match"); 1043 1044 s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++; 1045 s->dyn_dtree[d_code(dist)].Freq++; 1046 } 1047 1048 #ifdef TRUNCATE_BLOCK 1049 /* Try to guess if it is profitable to stop the current block here */ 1050 if ((s->last_lit & 0x1fff) == 0 && s->level > 2) { 1051 /* Compute an upper bound for the compressed length */ 1052 ulg out_length = (ulg)s->last_lit*8L; 1053 ulg in_length = (ulg)((long)s->strstart - s->block_start); 1054 int dcode; 1055 for (dcode = 0; dcode < D_CODES; dcode++) { 1056 out_length += (ulg)s->dyn_dtree[dcode].Freq * 1057 (5L+extra_dbits[dcode]); 1058 } 1059 out_length >>= 3; 1060 Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ", 1061 s->last_lit, in_length, out_length, 1062 100L - out_length*100L/in_length)); 1063 if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1; 1064 } 1065 #endif 1066 return (s->last_lit == s->lit_bufsize-1); 1067 /* We avoid equality with lit_bufsize because of wraparound at 64K 1068 * on 16 bit machines and because stored blocks are restricted to 1069 * 64K-1 bytes. 1070 */ 1071 } 1072 1073 /* =========================================================================== 1074 * Send the block data compressed using the given Huffman trees 1075 */ 1076 local void compress_block(s, ltree, dtree) 1077 deflate_state *s; 1078 ct_data *ltree; /* literal tree */ 1079 ct_data *dtree; /* distance tree */ 1080 { 1081 unsigned dist; /* distance of matched string */ 1082 int lc; /* match length or unmatched char (if dist == 0) */ 1083 unsigned lx = 0; /* running index in l_buf */ 1084 unsigned code; /* the code to send */ 1085 int extra; /* number of extra bits to send */ 1086 1087 if (s->last_lit != 0) do { 1088 dist = s->d_buf[lx]; 1089 lc = s->l_buf[lx++]; 1090 if (dist == 0) { 1091 send_code(s, lc, ltree); /* send a literal byte */ 1092 Tracecv(isgraph(lc), (stderr," '%c' ", lc)); 1093 } else { 1094 /* Here, lc is the match length - MIN_MATCH */ 1095 code = _length_code[lc]; 1096 send_code(s, code+LITERALS+1, ltree); /* send the length code */ 1097 extra = extra_lbits[code]; 1098 if (extra != 0) { 1099 lc -= base_length[code]; 1100 send_bits(s, lc, extra); /* send the extra length bits */ 1101 } 1102 dist--; /* dist is now the match distance - 1 */ 1103 code = d_code(dist); 1104 Assert (code < D_CODES, "bad d_code"); 1105 1106 send_code(s, code, dtree); /* send the distance code */ 1107 extra = extra_dbits[code]; 1108 if (extra != 0) { 1109 dist -= base_dist[code]; 1110 send_bits(s, dist, extra); /* send the extra distance bits */ 1111 } 1112 } /* literal or match pair ? */ 1113 1114 /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */ 1115 Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx, 1116 "pendingBuf overflow"); 1117 1118 } while (lx < s->last_lit); 1119 1120 send_code(s, END_BLOCK, ltree); 1121 s->last_eob_len = ltree[END_BLOCK].Len; 1122 } 1123 1124 /* =========================================================================== 1125 * Check if the data type is TEXT or BINARY, using the following algorithm: 1126 * - TEXT if the two conditions below are satisfied: 1127 * a) There are no non-portable control characters belonging to the 1128 * "black list" (0..6, 14..25, 28..31). 1129 * b) There is at least one printable character belonging to the 1130 * "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255). 1131 * - BINARY otherwise. 1132 * - The following partially-portable control characters form a 1133 * "gray list" that is ignored in this detection algorithm: 1134 * (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}). 1135 * IN assertion: the fields Freq of dyn_ltree are set. 1136 */ 1137 local int detect_data_type(s) 1138 deflate_state *s; 1139 { 1140 /* black_mask is the bit mask of black-listed bytes 1141 * set bits 0..6, 14..25, and 28..31 1142 * 0xf3ffc07f = binary 11110011111111111100000001111111 1143 */ 1144 unsigned long black_mask = 0xf3ffc07fUL; 1145 int n; 1146 1147 /* Check for non-textual ("black-listed") bytes. */ 1148 for (n = 0; n <= 31; n++, black_mask >>= 1) 1149 if ((black_mask & 1) && (s->dyn_ltree[n].Freq != 0)) 1150 return Z_BINARY; 1151 1152 /* Check for textual ("white-listed") bytes. */ 1153 if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0 1154 || s->dyn_ltree[13].Freq != 0) 1155 return Z_TEXT; 1156 for (n = 32; n < LITERALS; n++) 1157 if (s->dyn_ltree[n].Freq != 0) 1158 return Z_TEXT; 1159 1160 /* There are no "black-listed" or "white-listed" bytes: 1161 * this stream either is empty or has tolerated ("gray-listed") bytes only. 1162 */ 1163 return Z_BINARY; 1164 } 1165 1166 /* =========================================================================== 1167 * Reverse the first len bits of a code, using straightforward code (a faster 1168 * method would use a table) 1169 * IN assertion: 1 <= len <= 15 1170 */ 1171 local unsigned bi_reverse(code, len) 1172 unsigned code; /* the value to invert */ 1173 int len; /* its bit length */ 1174 { 1175 register unsigned res = 0; 1176 do { 1177 res |= code & 1; 1178 code >>= 1, res <<= 1; 1179 } while (--len > 0); 1180 return res >> 1; 1181 } 1182 1183 /* =========================================================================== 1184 * Flush the bit buffer, keeping at most 7 bits in it. 1185 */ 1186 local void bi_flush(s) 1187 deflate_state *s; 1188 { 1189 if (s->bi_valid == 16) { 1190 put_short(s, s->bi_buf); 1191 s->bi_buf = 0; 1192 s->bi_valid = 0; 1193 } else if (s->bi_valid >= 8) { 1194 put_byte(s, (Byte)s->bi_buf); 1195 s->bi_buf >>= 8; 1196 s->bi_valid -= 8; 1197 } 1198 } 1199 1200 /* =========================================================================== 1201 * Flush the bit buffer and align the output on a byte boundary 1202 */ 1203 local void bi_windup(s) 1204 deflate_state *s; 1205 { 1206 if (s->bi_valid > 8) { 1207 put_short(s, s->bi_buf); 1208 } else if (s->bi_valid > 0) { 1209 put_byte(s, (Byte)s->bi_buf); 1210 } 1211 s->bi_buf = 0; 1212 s->bi_valid = 0; 1213 #ifdef DEBUG_ZLIB 1214 s->bits_sent = (s->bits_sent+7) & ~7; 1215 #endif 1216 } 1217 1218 /* =========================================================================== 1219 * Copy a stored block, storing first the length and its 1220 * one's complement if requested. 1221 */ 1222 local void copy_block(s, buf, len, header) 1223 deflate_state *s; 1224 charf *buf; /* the input data */ 1225 unsigned len; /* its length */ 1226 int header; /* true if block header must be written */ 1227 { 1228 bi_windup(s); /* align on byte boundary */ 1229 s->last_eob_len = 8; /* enough lookahead for inflate */ 1230 1231 if (header) { 1232 put_short(s, (ush)len); 1233 put_short(s, (ush)~len); 1234 #ifdef DEBUG_ZLIB 1235 s->bits_sent += 2*16; 1236 #endif 1237 } 1238 #ifdef DEBUG_ZLIB 1239 s->bits_sent += (ulg)len<<3; 1240 #endif 1241 while (len--) { 1242 put_byte(s, *buf++); 1243 } 1244 } 1245